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Abstract

Background: First-generation molecular profiles for human breast cancers have enabled the identification of
features that can predict therapeutic response; however, little is known about how the various data types can best
be combined to yield optimal predictors. Collections of breast cancer cell lines mirror many aspects of breast
cancer molecular pathobiology, and measurements of their omic and biological therapeutic responses are
well-suited for development of strategies to identify the most predictive molecular feature sets.

Results: We used least squares-support vector machines and random forest algorithms to identify molecular
features associated with responses of a collection of 70 breast cancer cell lines to 90 experimental or approved
therapeutic agents. The datasets analyzed included measurements of copy number aberrations, mutations, gene
and isoform expression, promoter methylation and protein expression. Transcriptional subtype contributed strongly
to response predictors for 25% of compounds, and adding other molecular data types improved prediction for
65%. No single molecular dataset consistently out-performed the others, suggesting that therapeutic response is
mediated at multiple levels in the genome. Response predictors were developed and applied to TCGA data, and
were found to be present in subsets of those patient samples.

Conclusions: These results suggest that matching patients to treatments based on transcriptional subtype will
improve response rates, and inclusion of additional features from other profiling data types may provide additional
benefit. Further, we suggest a systems biology strategy for guiding clinical trials so that patient cohorts most likely
to respond to new therapies may be more efficiently identified.
Background
Breast cancer is a clinically and genomically heteroge-
neous disease. Six subtypes were defined approximately
a decade ago based on transcriptional characteristics and
were designated luminal A, luminal B, ERBB2-enriched,
basal-like, claudin-low and normal-like [1,2]. New cancers
can be assigned to these subtypes using a 50-gene tran-
scriptional signature designated the PAM50 [1]. However,
the number of distinct subtypes is increasing steadily as
multiple data types are integrated. Integration of genome
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copy number and transcriptional profiles defines 10
subtypes [3], and adding mutation status [4], methylation
pattern [5], pattern of splice variants [6], protein and
phosphoprotein expression [7] and microRNA expression
and pathway activity [8] may define still more subtypes.
The Cancer Genome Atlas (TCGA) project and other
international genomics efforts were founded to improve
our understanding of the molecular landscapes of most
major tumor types with the ultimate goal of increasing
the precision with which individual cancers are man-
aged. One application of these data is to identify mo-
lecular signatures that can be used to assign specific
treatment to individual patients. However, strategies to
develop optimal predictive marker sets are still being
explored. Indeed, it is not yet clear which molecular
data types (genome, transcriptome, proteome, and so on)
will be most useful as response predictors.
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In breast cancer, cell lines mirror many of the molecular
characteristics of the tumors from which they were derived,
and are therefore a useful preclinical model in which to ex-
plore strategies for predictive marker development [8,9]. To
this end, we have analyzed the responses of 70 well charac-
terized breast cancer cell lines to 90 compounds and used
two independent machine learning approaches to identify
pretreatment molecular features that are strongly associated
with responses within the cell line panel. For most com-
pounds tested, in vitro cell line systems provide the only
experimental data that can be used to identify predictive
response signatures, as most of the compounds have not
been tested in clinical trials. Our study focuses on breast
cancer [10,11] and extends earlier efforts [12-14], by includ-
ing more cell lines, by evaluating a larger number of com-
pounds relevant to breast cancer, and by increasing the
molecular data types used for predictor development. Data
types used for correlative analysis include pretreatment
measurements of mRNA expression, genome copy number,
protein expression, promoter methylation, gene mutation,
and transcriptome sequence (RNAseq). This compendium
of data is now available to the community as a resource for
further studies of breast cancer and the inter-relationships
between data types. We report here on initial machine
learning-based methods to identify correlations between
these molecular features and drug response. In the process,
we assessed the utility of individual data sets and the inte-
grated data set for response predictor development. We
also describe a publicly available software package that we
developed to predict compound efficacy in individual tu-
mors based on their omic features. This tool could be used
to assign an experimental compound to individual patients
in marker-guided trials, and serves as a model for how to
assign approved drugs to individual patients in the clinical
setting. We explored the performance of the predictors by
using it to assign compounds to 306 TCGA samples based
on their molecular profiles.

Results and discussion
Breast cancer cell line panel
We assembled a collection of 84 breast cancer cell lines
composed of 35 luminal, 27 basal, 10 claudin-low, 7
normal-like, 2 matched normal cell lines, and 3 of unknown
subtype (Additional file 1) [8]. Fourteen luminal and 7 basal
cell lines were also ERBB2-amplified. Seventy cell lines were
tested for response to 138 compounds by growth inhibition
assays. The cells were treated in triplicate with nine dif-
ferent concentrations of each compound as previously
described [8]. The concentration required to inhibit growth
by 50% (GI50) was used as the response measure for each
compound. Compounds with low variation in response in
the cell line panel were eliminated, leaving a response data
set of 90 compounds. An overview of the 70 cell lines with
subtype information and 90 therapeutic compounds with
GI50 values is provided in Additional file 1. All 70 lines were
used in development of at least some predictors depending
on data type availability. The therapeutic compounds
include conventional cytotoxic agents such as taxanes,
platinols and anthracyclines, as well as targeted agents such
as hormone and kinase inhibitors. Some of the agents
target the same protein or share common molecular
mechanisms of action. Responses to compounds with
common mechanisms of action were highly correlated,
as has been described previously [8].

A rich and multi-omic molecular profiling dataset
Seven pretreatment molecular profiling data sets were
analyzed to identify molecular features associated with
response. These included profiles for DNA copy number
(Affymetrix SNP6 - EGA accessions EGAS00000000059
and EGAS00001000585), mRNA expression (Affymetrix
U133A and Exon 1.0 ST array - ArrayExpress accessions
E-TABM-157 and E-MTAB-181), transcriptome sequence
(RNAseq - Gene Expression Omnibus (GEO) accession
GSE48216), promoter methylation (Illumina Methylation27
BeadChip - GEO accession GSE42944), protein abundance
(Reverse Protein Lysate Array - Additional file 2), and mu-
tation status (Exome-Seq - GEO accession GSE48216). The
data were preprocessed as described in Supplementary
Methods of Additional file 3. Figure S1 in Additional file 3
gives an overview of the number of features per data set
before and after filtering based on variance and signal
detection above background where applicable. Exome-seq
data were available for 75 cell lines, followed by SNP6 data
for 74 cell lines, therapeutic response data for 70, RNAseq
for 56, exon array for 56, Reverse Phase Protein Array
(RPPA) for 49, methylation for 47, and U133A expression
array data for 46 cell lines. Information on the overlap in
cell lines with both response data and molecular data is
provided in Additional file 3. The set of 48 core cell lines
was defined as those with response data and at least 4 mo-
lecular data sets.

Inter-data relationships
We investigated the association between expression, copy
number and methylation data. We distinguished correlation
at the cell line level and gene level. At the cell line level, we
report average correlation between datasets for each cell
line across all genes, while correlation at the gene level rep-
resents the average correlation between datasets for each
gene across all cell lines. Correlation among the three ex-
pression datasets (U133A, exon array, and RNAseq) ranged
from 0.6 to 0.77 at the cell line level, and from 0.58 to 0.71
at the gene level. Promoter methylation and gene expres-
sion were, on average, negatively correlated as expected,
with correlation ranging from -0.16 to -0.25 at the cell line
level and -0.10 to -0.15 at the gene level. Across the gen-
ome, copy number and gene expression were positively
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correlated (0.18 to 0.22 at the cell line level; 0.35 to 0.44 at
the gene level). When restricted to copy number aberra-
tions, 22 to 39% of genes in the aberrant regions showed a
significant concordance between their genomic and tran-
scriptomic profiles from U133A, exon array and RNAseq
after multiple testing correction (see the ‘Intra-data rela-
tionships’ section in Supplementary Results in Additional
file 3 and Table S4a-c in Additional file 3).

Machine learning approaches identify accurate cell
line-derived response signatures
We developed candidate response signatures by analyzing
associations between biological responses to therapy
and pretreatment omic signatures. We used the inte-
grative approach displayed in Figure 1 for the con-
struction of compound sensitivity signatures. Standard
data pre-processing methods were applied to each dataset.
Classification signatures for response were developed
using the weighted least squares support vector ma-
chine (LS-SVM) [15] in combination with a grid search
approach for feature optimization, as well as random for-
ests (RF) [16], both described in detail in the Supplemen-
tary Methods in Additional file 3. For this, the cell lines
were divided into a sensitive and resistant group for each
compound using the mean GI50 value for that compound
(Additional file 4). This seemed most reasonable after man-
ual inspection, with concordant results obtained using TGI
(concentration required to achieve total growth inhibition)
as response measure. Multiple random divisions of the
cell lines into two-thirds training and one-third test sets
were performed for both methods, and area under a re-
ceiver operating characteristic curve (AUC) was calcu-
lated as an estimate of accuracy (Additional file 3).
The candidate signatures incorporated copy number,

methylation, transcription and/or proteomic features. We
also included the mutation status of TP53, PIK3CA, MLL3,
CDH1, MAP2K4, PTEN and NCOR1, chosen based on re-
ported frequencies from TCGA breast project. That
project sequenced the exomes of 507 breast invasive
carcinomas and identified approximately 30,000 som-
atic mutations [4]. Each of the 7 genes was mutated in
at least 3% of samples with a false discovery rate (FDR)
P-value <0.05. Our whole exome sequencing showed that
these genes were also mutated in at least 3% of the
breast cancer cell lines. Their mutation rate in TCGA
and the cell line panel showed a similar distribution
across the subtypes (Figure S2 in Additional file 3). We
excluded lower prevalence mutations because their
low frequency limits the possibility of significant
associations.
These signatures incorporating any of the molecular fea-

tures are shown in Additional file 5. They predicted com-
pound response within the cell lines with high estimated
accuracy (AUC >0.70) regardless of classification method
for 51 (57%) of the compounds tested. Concordance be-
tween GI50 and TGI exceeded 80% for 67% (34/51) of these
compounds. A comparison across all 90 compounds of the
LS-SVM and RF models with highest AUC based on copy
number, methylation, transcription and/or proteomic fea-
tures revealed a high correlation between both classification
methods (Spearman correlation coefficient = 0.85, P-value
<0.001), with the LS-SVM more predictive for 35 com-
pounds and RF for 55 compounds (Figure S3 in Add-
itional file 3). However, there was a better correlation
between both classification methods for compounds
with strong biomarkers of response (upper third; Spear-
man correlation coefficient 0.84) and compounds without
a clear signal associated with drug response (lower
third; Spearman correlation coefficient 0.46). This sug-
gests that for compounds with strong biomarkers, a
signature can be identified by either approach. For
compounds with a weaker signal of drug response
(middle third), there was a larger discrepancy in per-
formance between both classification methods (Spear-
man correlation coefficient 0.16), with neither of them
outperforming the other.
Thirteen of the 51 compounds (25%) showed a strong

transcriptional subtype-specific response (AUC >0.70), with
the best omics signature not adding predictive information
beyond a simple transcriptional subtype-based prediction
(AUC increase below 0.1) (Figure 2; Additional file 5). This
suggests that the use of transcriptional subtype alone could
greatly improve prediction of response for a substantial
fraction of agents [8], as is already done for the estro-
gen receptor (ER), ERBB2 receptor, and selective use of
chemotherapy in breast cancer subtypes. This is con-
sistent with our earlier report that molecular pathway
activity varies between transcriptional subtypes [8].
However, deeper molecular profiling added significant
predictive information about probable response for the
majority of compounds (33/51 = 65%) with an increase
in AUC of at least 0.1 beyond subtype alone. Mutation
status of the seven genes introduced above was in general
not more predictive than any other dataset, with the
exception of tamoxifen and CGC-11144. For tamoxifen
response, prediction based on mutation status was sub-
stantially better than subtype, driven predominantly by
the higher mutation prevalence of PIK3CA mutations
in luminal compared to basal breast cancer and there-
fore an association of PIK3CA mutation with lack of
response [4]. For CGC-11144, the mutation-based AUC
was 0.70, primarily driven by TP53 and much higher
than obtained with the best performing molecular data
set (methylation, AUC 0.42).

In vivo validation of the cell line-derived response signatures
We validated in vitro signatures for expression profiles
from tumor samples with response information, in addition



Figure 1 Cell line-based response prediction strategy. (A) We assembled a collection of 84 breast cancer cell lines composed of 35 luminal,
27 basal, 10 claudin-low, 7 normal-like, 2 matched normal and 3 of unknown subtype. Fourteen luminal and 7 basal cell lines were also
ERBB2-amplified. (B) Seventy lines were tested for response to 138 compounds by growth inhibition assays. Compounds with low variation in
response in the cell line panel were eliminated, leaving a response data set of 90 compounds. Cell lines were divided into a sensitive and
resistant group for each compound using the mean GI50 value for that compound. (C) Seven pretreatment molecular profiling data sets were
analyzed to identify molecular features associated with response. Exome-seq data were available for 75 cell lines, followed by SNP6 data for 74
cell lines, RNAseq for 56, exon array for 56, RPPA for 49, methylation for 47, and U133A expression array data for 46 cell lines. All 70 lines were
used in development of at least some predictors depending on data type availability. (D) Classification signatures were developed using the
molecular feature data (after filtering) and with response status as the target. Two methods, weighted least squares support vector machine
(LS-SVM) and random forests (RF), were utilized. The best performing signature was chosen for each drug and data type combination. This allows
prediction of response for additional cell lines or tumors with any given combination of input data types. (E) Cell line-based response predictors
were applied to 306 TCGA breast tumors for which expression (Exp), copy number (CNV) and methylation (Meth) measurements were all
available. (F) This identified 22 compounds with a model AUC >0.7 for which at least some patients were predicted to be responsive with a
probability >0.65. Thresholds for considering a tumor responsive were objectively chosen for each compound from the distribution of predicted
probabilities and each patient was assigned to a status of resistant, intermediate or sensitive. WPMV, weighted percent of model variables.
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to an assessment of cell line signal in tumor samples (Sup-
plementary Results in Additional file 3). Such independent
information was available for tamoxifen [17-20] and the
histone deacetylase inhibitor valproic acid [21]. The inde-
pendent tamoxifen data are from a meta-analysis where
relapse-free survival status was available for 439 ER-
positive patients [17-20]. Our in vitro 174-gene signature
for tamoxifen, built on the complete panel of cell lines
regardless of ER status, predicted a significantly improved
relapse-free survival for patients predicted to be tamoxifen-
sensitive (log-rank test; P-value 0.02; Figure 3). For valproic
acid, therapeutic responses were tested for 13 tumor
samples grown in three-dimensional cultures [21]. Our
in vitro 150-gene signature for the histone deacetylase
inhibitor vorinostat (Figure S4a in Additional file 3) distin-
guished valproic acid responders from non-responders
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(See figure on previous page.)
Figure 2 Comparison of transcriptional subtype and molecular profiling for 51 (57%) of the compounds with predicted compound
response within the cell lines with high estimated accuracy (AUC >0.70). AUC obtained with transcriptional subtype is shown in gray.
Compounds are ordered based on increase in AUC from subtype to the best performing molecular data. The increase in AUC with respect to
subtype obtained with the best performing molecular data is shown in cyan. For 65% of the compounds, molecular profiling performed
substantially better than subtype, with an AUC increase of at least 0.1 (compounds above the red dashed line). Subtype was sufficient for 25% of
the compounds with AUC >0.70 and AUC increase obtained with molecular profiling less than 0.1 (compounds below the red dashed line with
subtype AUC above the blue solid line).
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(AUC = 0.97), with 7/8 sensitive samples (87.5%) and 4/5
resistant samples (80%) classified correctly when using a
probability threshold of 0.5 for response dichotomization
(Figure S4b in Additional file 3).
Unfortunately, omic profiles and corresponding clinical

responses are not available for the other compounds tested
in vitro. For these, we investigated whether the in vitro pre-
dictive signature was present in 536 breast TCGA tumors
and consistent with the signature observed in cell lines.
Here, we limited our analyses to those data types that are
available in the TCGA dataset. Specifically, we developed
response predictors for the breast cancer cell line panel
using profiles for expression (U133A, exon array at the
gene level, or RNAseq at the gene level), copy number,
and promoter methylation for 51 compounds for which
predictive power was high (AUC >0.7; Additional file 5).
We applied these signatures to a set of 369 luminal, 95
basal, 8 claudin-low, and 58 ERBB2-amplified samples
from the TCGA project. We used profiles of expression
(n = 536), copy number (n = 306) and promoter methy-
lation (n = 318) in our analyses. Additional file 5 shows
that the transcriptional subtype specificities measured
Figure 3 Validation of the cell line signature for tamoxifen in a
meta-set of 439 breast cancer patients treated with tamoxifen.
Kaplan-Meier plot of relapse free survival for patients predicted to be
sensitive versus resistant to tamoxifen according to the 174-gene
cell line-based predictor.
for these compounds in the cell lines were concordant
with the subtype of TCGA samples predicted to re-
spond. Figure S5 in Additional file 3 shows the pre-
dicted probability of response to four compounds with
test AUC >0.7 for TCGA tumor samples ordered ac-
cording to increasing probability. Importantly, genes in
these signatures that were coordinately regulated in the
set of cell lines were also coordinately regulated in the
tumor samples (average Jaccard coefficient = 0.68, P-
value <0.0001; Figure S6 in Additional file 3). This panel
of 51 compounds represented most major therapeutic
target classes (phosphatidylinositol 3-kinase (PI3K), re-
ceptor tyrosine kinase, anti-mitotic, DNA damage, cell
cycle, proteasome, anti-metabolite, TP53, mitogen-
activated protein kinase (MAPK), and estrogen antagon-
ist). Eighteen of these compounds have been approved by
the US Food and Drug Administration, including five for
breast cancer. Phase I clinical trials are ongoing for seven
compounds, phase II trials are underway for seven com-
pounds, including six for breast cancer, and one com-
pound is currently being tested in a phase III trial
(Additional file 5). Thus further validation of signatures
may be possible in the near future.

Robust predictors of drug response are found at all levels
of the genome
With seven data types available on a single set of samples,
we were well-positioned to assess whether particular tech-
nologies or molecular data types consistently out-perform
others in the prediction of drug sensitivity. To obtain a
ranking of the importance of the molecular datasets, we
compared prediction performance of classifiers built on in-
dividual data sets and their combination for 29 common
cell lines (with the exclusion of the normal-like cell lines).
Importantly, no single data type performed well for all com-
pounds, with each data type performing best for some com-
pounds (Figure S7 in Additional file 3). Table S6a,c in
Additional file 3 shows the ranking of the datasets accord-
ing to the independent classifiers obtained with LS-SVM
and RF, respectively. For the LS-SVM classifiers, RNAseq
performed best for 22 compounds, exon array for 20
compounds, SNP6 for 18, U133A for 17 and methylation
data for 12 compounds (Table S6a in Additional file 3).
Similar results were confirmed with the RF approach
(Table S6c in Additional file 3). Even though it had varying
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performance for individual compounds, in general, RNAseq
significantly outperformed all other data types across
the complete panel of 90 compounds (paired t-test with
multiple testing correction; P-values ranging from 0.026
to 2e-8; Figure 4). SNP6 copy number data resulted in
significantly worse predictive power compared to all other
data types (P-values 0.038 to 2e-8). In addition, exon array
outperformed U133A, with a P-value of 0.0002.
In Table S6b,d in Additional file 3, a distinction is made

between two groups of compounds: compounds for which
all datasets perform similarly well (for example, CGC-11047,
GSK461364, GSK2126458, lapatinib) versus compounds
for which results with one dataset are much better than
obtained with any of the other datasets, defined as an
AUC increase of at least 0.1. For example, exon array
worked best for VX-680 (AUC 0.81), RNAseq for carbopla-
tin (AUC 0.89), and RPPA for bortezomib (AUC 0.87). Data
type specificity was in general not related to therapeutic
compound class, although there were a few exceptions for
LS-SVM with RNAseq performing well for polyamine an-
alogs (CGC-11047, CGC-11144) and mitotic inhibitors
(ixabepilone, paclitaxel, vinorelbine), SNP6 for ERBB2/
epidermal growth factor receptor (EGFR) inhibitors
(AG1478, BIBW2992, erlotinib, gefitinib, lapatinib), and
methylation for CDK1 inhibitors (NU6102, purvalanol A).
Figure 4 Boxplot of best AUC values for all 90 compounds across 6 d
approach (LS-SVM in red circles, or random forest in blue squares) is displa
models built on gene-level data only versus all features (exons, junctions, a
significant difference in performance among any of the data types (P-value
revealed a significant outperformance of RNAseq with respect to all other
compared to all other data types, and exon array additionally significantly o
The full combination of genome-wide datasets yielded a
higher AUC value than the best performing individual
dataset for only a limited number of compounds (AKT1-2
inhibitor, GSK461364 and PF-4691502). The full combin-
ation signatures, however, generally ranked closely to
the best signatures based on individual data types. We
refer to the 'Robust predictors of drug response' section in
Supplementary Results in Additional file 3 for two additional
complementary analyses on dataset comparison.

Splice-specific predictors provide only minimal
information
We compared the performance of classifiers between the
fully featured data and gene-level data in order to inves-
tigate the contribution of splice-specific predictors for
RNAseq and exon array data. The fully featured data in-
cluded transcript- and exon-level estimates for the exon
array data and transcript-, exon-, junction, boundary-,
and intron-level estimates for the RNAseq data. Overall,
there was no increase in performance for classifiers built
with 'splice-aware' data versus gene level only. The over-
all difference in AUC from all features minus gene-level
was 0.002 for RNAseq and -0.006 for exon array, a negli-
gible difference in both cases. However, there were a few
individual compounds with a modest increase in
ata types. For all data types, the highest AUC obtained with either
yed. For RNAseq and exon array, the highest AUC is shown among
nd so on). The one-way repeated measures ANOVA test revealed a
2.6e-5). Post hoc pairwise comparisons with multiple testing correction

data types. SNP6 copy number performed significantly worse
utperformed U133A.
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performance when considering splicing information
(Table S8 in Additional file 3). Interestingly, both ERBB2
targeting compounds, BIBW2992 and lapatinib, showed
improved performance using splice-aware features in
both RNAseq and exon array datasets. This suggests that
splice-aware predictors may perform better for predic-
tion of ERBB2 amplification and response to compounds
that target it. However, the overall result suggests that
prediction of response does not benefit greatly from spli-
cing information over gene-level estimates of expression.
This indicates that the high performance of RNAseq for
discrimination may have more to do with that technol-
ogy’s improved sensitivity and dynamic range, rather
than its ability to detect splicing patterns.

Pathway overrepresentation analysis aids in
interpretation of the response signatures
We surveyed the pathways and biological processes
represented by genes for the 49 best-performing
therapeutic response signatures incorporating copy
number, methylation, transcription, and/or proteomic
features (i.e., no mutation status) with AUC >0.7 (Add-
itional file 5). For these compounds we created func-
tionally organized networks with the ClueGO plugin in
Cytoscape [22] using Gene Ontology (GO) categories
and Kyoto Encyclopedia of Genes and Genomes
(KEGG)/BioCarta pathways (Supplementary Methods in
Additional file 3). Our previous work identified tran-
scriptional networks associated with response to many
of these compounds [8]. In this study, 5 to 100% (median
79%) of GO categories and pathways present in the pre-
dictive signatures were found to be significantly associ-
ated with drug response (FDR P-value <0.05). The
majority of these significant pathways, however, were
also associated with transcriptional subtype (17 to
100%, median 70%). These were filtered out to capture
subtype-independent biology underlying each compound’s
mechanism of action. The resulting non-subtype-specific
pathways with FDR P-value <0.05 are shown in Additional
file 6. Eighty-eight percent of the compounds for which
we conducted pathway analysis were significantly asso-
ciated with one or more GO category and 80% were sig-
nificantly associated with one or more KEGG pathway.
The most commonly identified KEGG pathways (six or
more compounds) were hedgehog signaling, basal cell
carcinoma, glycosphingolipid biosynthesis, ribosome,
spliceosome and Wnt signaling. The most commonly
identified GO processes (six or more compounds) also in-
cluded many critical cancer pathways and processes, such
as regulation of cell cycle, cell death, protein kinase activity,
metabolism, TGFβ receptor signaling, cell-cell adhesion,
microtubule polymerization, and Wnt receptor signaling.
Many of these processes can be linked directly to the known
mechanisms of action of their associated compounds. For
example, the signature for docetaxel was significantly
enriched for microtubule polymerization genes. Docetaxel is
known to function by microtubule disassembly inhibition.
Similarly, signatures for the AKT1/2 kinase inhibitor,
bosutinib SRC kinase inhibitor, TCS PIM-11 kinase in-
hibitor and four PI3K inhibitors (GSK2119563,
GSK2126458, PF-4691502, TGX-221) were all enriched in
genes involved in the negative regulation of protein kinase
activity. These kinase regulation genes tended to be consist-
ently up-regulated or both methylated and down-regulated,
depending on the therapeutic response signature. Many of
the genes in this enriched gene set have well-described roles
in modulation of the PI3K/MAPK cascades, including
ERRFI1 [23], DUSP6/7/8 [24] and SPRY1/2/4 [25]. In par-
ticular, we found that high expression of GADD45A was
associated with resistance to GSK2126458, PF-4691502 and
the AKT1/2 inhibitor, which is consistent with the observa-
tion that AKT inhibition modulates cell growth via activa-
tion of GADD45A [26]. The pan-PI3K targeting agent
GSK2126458 is reported to function as a competitive ATP
binding inhibitor and the signature for this compound was
over-represented in ATP metabolic processes [27].
Genomic aberrations and transcriptomic/proteomic

features played prominent roles in some of the candidate
response signatures. For copy number aberrations, ERBB2
amplification was strongly associated with response to the
ERBB2 targeting compounds lapatinib (two-sample t-test,
P-value 2.1e-11) and BIBW2992 (1.6e-5) and to EGFR in-
hibitors AG1478 (2.5e-4) and gefitinib (9.5e-4). In addition
to the association of overall mutation status with tamoxifen
and CGC-11144 response discussed above, we also found
several individual mutations to be relevant for treatment
response. The presence of mutations in TP53 was strongly
associated with response to the PI3K inhibitor BEZ235, with
13/25 (52%) of the sensitive cell lines harboring TP53 muta-
tions compared to 3/19 (16%) for the resistant cell lines
(Fisher’s exact test, P-value 0.025). This may be an indica-
tion of synthetic lethality resulting from BEZ235 inhibition
of ATR (Ataxia telangiectasia and Rad3-related protein)
leading to replicative stress in TP53-deficient cells [28].
Kim et al. [29] showed a similar trend in a study of 310
cell lines across multiple lineages in which co-mutation of
TP53 and PIK3CA was positively associated with response
to BEZ235. In our study, mutation status for PIK3CA
was associated with response to the PI3K inhibitor
GSK1059615B, with 11/27 (41%) sensitive cell lines
carrying PIK3CA mutations compared to 2/21 (10%)
for resistant cell lines (P-value 0.022). These findings
are consistent with recent clinical observations in pa-
tients with breast and gynecologic malignancies where
treatment with similar agents resulted in response for
30% of patients with PIK3CA mutations compared to a
response rate of 10% in wild-type PIK3CA patients
[30].
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Response signature Toolbox to predict response in
individual tumors
Our long-term goal is to develop a way to select therapeutic
compounds most likely to be effective in an individual pa-
tient. A shorter-term goal is to test experimental com-
pounds in patients that are most likely to be responsive.
Both of these goals require a strategy to order compounds
according to their predicted relative efficacy for individual
patients. To this end, we developed software to rank order
compounds for predicted efficacy in individual patients (see
the 'Patient response prediction toolbox in R' section in
Supplementary Results in Additional file 3). The software
applies signatures of response developed in vitro to mea-
surements of expression, copy number, and/or methylation
for individual samples and produces a list of recommended
treatments ranked according to predicted probability of re-
sponse and in vitro GI50 dynamic range. For cases where
several compounds are predicted to be equally effective,
highest priority is assigned to the compound with high-
est GI50 dynamic range in the cell line panel.
Given the concordance of the predictive signatures for

the 51 compounds in gene expression and subtype asso-
ciation between the cell lines and tumor samples from
TCGA, we applied our in vitro response predictors to the
306 sample subset for which expression, copy number and
methylation measurements were all available. This identi-
fied 22 compounds with a model AUC >0.7 for which at
least some patients were predicted to be responsive with a
probability >0.65. In all cases, thresholds for considering a
tumor responsive were objectively chosen for each com-
pound from the distribution of predicted probabilities and
each patient was assigned to a status of resistant, intermedi-
ate or sensitive (see the 'Patient response prediction toolbox
in R' section in Supplementary Results in Additional file 3,
and Table S10 in Additional file 3). The resulting pattern of
predicted sensitivity for the 22 compounds is displayed in
Figure 5. Most of the compounds were predicted to have
strong transcriptional subtype specificity (P-values 1.5e-70
to 0.02) although gefitinib and NU6102 were exceptions
(Table S9 in Additional file 3). Not surprisingly, predicted
sensitivity to lapatinib, BIBW2992 and to a lesser extent
EGFR inhibitors was highly specific to ERBB2+ patients.
Similarly, ER+ (and also many ERBB2+) patients were
more frequently predicted to be sensitive to the PI3K
inhibitors, AKT inhibitors, tamoxifen and to a lesser extent
fluorouracil (5-FU). Patients in the basal (ER-/ERBB2-) sub-
type were predicted to be sensitive to cisplatin, PLK inhibi-
tor (GSK461364A), bortezomib, gamma-secretase inhibitor
(PF-3084014), paclitaxel and Nutlin 3A. The percentage of
patients predicted to respond to any given compound
ranged from 15.7% for BIBW2992 to 43.8% for the PI3K
alpha inhibitor GSK2119563. Nearly all patients (99.3%)
were predicted to respond to at least one treatment and each
patient was predicted to be sensitive to an average of
approximately six treatments. The predicted response rate to
5-FU was estimated at 23.9% (Figure S8 in Additional file 3),
in agreement with the observed response rates to 5-FU as
monotherapy in breast cancer (17% [21] to 26% [31,32]).
The compound response signatures for the 22 compounds
featured in Figure 5 are presented in Additional file 7.

Conclusions
In this study we developed strategies to identify molecu-
lar response signatures for 90 compounds based on mea-
sured responses in a panel of 70 breast cancer cell lines,
and we assessed the predictive strengths of several strat-
egies. The molecular features comprising the high quality
signatures are candidate molecular markers of response
that we suggest for clinical evaluation. In most cases, the
signatures with high predictive power in the cell line panel
show significant PAM50 subtype specificity, suggesting
that assigning compounds in clinical trials according
to transcriptional subtype will increase the frequency
of responding patients. However, our findings suggest
that treatment decisions could further be improved for
most compounds using specifically developed response
signatures based on profiling at multiple omic levels,
independent of - or in addition to - the previously de-
fined transcriptional subtypes. We make available the
drug response data and molecular profiling data from
seven different platforms for the entire cell line panel as a
resource for the community to aid in improving methods
of drug response prediction.
We found predictive signatures of response across all

platforms and levels of the genome. When restricting
the analysis to just 55 well-known cancer proteins and
phosphoprotein genes, all platforms do a reasonable job
of measuring a signal associated with and predictive of drug
response. This indicates that if a compound has a molecu-
lar signature that correlates with response, it is likely that
many of the molecular data types will be able to measure
this signature in some way. Furthermore, there was no sub-
stantial advantage of the combined platforms compared
with the individual platforms. Some platforms might be
able to measure the signature with slightly better accuracy,
but our results indicate that many of the platforms could
be optimized to identify a response-associated predictor.
Conversely, in the genome-wide comparison, the more

comprehensive platforms are the ones that overall re-
sulted in better prediction performance. This difference
may reflect the fact that for those platforms, we selected
the most significant feature per gene. For example, when a
gene measured on the Affymetrix microarray is significantly
differentially expressed, the chance is high that a particular
exon or transcript is even more significant. Thus, the rich-
ness of data types like RNAseq offer the chance to identify
both the signature and the most useful specific gene regions
and junctions for use in a diagnostic (Figure 4). Taken



Figure 5 Heatmap representation of predicted sensitivity in the TCGA population. This heatmap represents the predicted pattern of
sensitivity in 306 TCGA patients with expression, methylation and copy number data for 22 compounds with model AUC >0.7 and with at least
some patients predicted to respond with probability >0.65. For the 306 patients, association is shown with ER, progesterone receptor (PR), ERBB2
status, tumor size (T), lymph node involvement (N), distant metastasis (M), and subtype. Of the 22 therapeutic compounds, 5 are
chemotherapeutic and 17 are targeted agents. Probability values shown were re-scaled to reflect custom sensitivity thresholds as described in
Supplementary Methods of Additional file 3. Res., resistant; Int., intermediate; Sens., sensitive.
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together, these results suggest that the more comprehensive
genome-wide platforms could be used for discovery, and
once identified, significant features can be migrated to alter-
native platforms for a lab diagnostic.
Currently, treatment decisions are guided by ER and

ERBB2 status. Using the TCGA dataset of 306 samples with
expression, copy number and methylation measurements
as a hypothetical example (Figure 5), a personalized
treatment decision would be available for 81% of pa-
tients based on ERBB2 or ER status alone (55 ERBB2+,
193 ERBB2-/ER+). However, given reported response
rates for trastuzumab (15 to 50%) [33] and tamoxifen
(approximately 25%) [34] we can expect a substantial
fraction of these will not respond. The candidate pre-
dictors proposed here could inform such clinical deci-
sions for nearly all patients. Therefore, by considering
diverse molecular data, we might suggest treatment options
for not only the approximately 20% of patients who are
ERBB2-/ER- but also secondary treatment options for
those who will suboptimally respond to ER or ERBB2
directed treatments.
While our efforts to develop predictive drug response

signatures are quite promising, they come with several
conceptual caveats. Although the cell line panel is a
reasonable model system, it does not capture several
features known to be of critical importance in primary
tumors. In particular, we have not modeled influences
of the microenvironment, including additional cell
types known to contribute to tumorigenesis [35], as
well as variation in oxygen content, which has been
shown to influence therapeutic response [36]. Expanding
these experiments to three-dimensional model systems or
mouse xenografts would aid in translation to the clinic.
Additionally, validating these predictors in independent
data sets will be important for determining how robust
they are (see Supplementary Results and Additional file 8).
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Despite these limitations, our observation that we could
find evidence of these predictive signatures in the TCGA
data suggests that our cell line system is likely captur-
ing many of the key elements involved in mediating
therapeutic response.
Of course, the cell line-derived predictive signatures

described in this study require substantial clinical val-
idation. One possibility is in neoadjuvant trials like the
I-SPY 2 TRIAL [37], in which in vitro-derived signatures
for individual compounds are tested for power in predicting
pathologic complete response or change in tumor volume
measured with magnetic resonance imaging. An alternative
approach for validation of signatures for approved drugs
is to compare outcomes in patients assigned compounds
according to in vitro predictors with outcomes in patients
assigned drugs according to physicians’ first treatment
choice. This study constitutes the basis for such a trial,
with the development of a portfolio of in vitro predictors
(for example, the 22 compounds displayed in Figure 5) and
a computational tool that physicians might use to select
compounds from that portfolio for individual patients.
Regardless of the specific design of the clinical trial,

gene expression, methylation and copy number levels
should be collected for all patients. High throughput
sequencing techniques can provide all three with the
additional benefits of alternative splicing information.
As outlined in Figure 1, measurements of expression,
methylation and copy number would serve as input to the
predictor toolbox. The output of the toolbox consists of a
report for each individualized patient, with the 22 thera-
peutic compounds ranked according to a patient’s likeli-
hood of response and in vitro GI50 dynamic range. The
full panel of 22 drug compounds could be tested simultan-
eously in a multi-arm trial to speed up the validation of
the in vitro approach. The proposed clinical trial may also
involve further optimizing of the number of markers in
the signatures and choosing clinically relevant thresholds
for tumor classification.

Materials and methods
We refer to Supplementary Methods in Additional file 3
for a detailed description of the therapeutic compound
response data, molecular data for the breast cancer cell
lines, molecular data for the external breast cancer tumor
samples used for validation, classification methods, data
integration approach, statistical methods, pathway overrep-
resentation analysis, and the patient response prediction
toolbox for the R project for statistical computing.

Data and code deposition
Genome copy number data have been deposited at the
European Genome-phenome Archive (EGA) [38], hosted
at the EBI (accession numbers EGAS00000000059 and
EGAS00001000585). Gene expression data for the cell
lines were derived from Affymetrix GeneChip Human
Genome U133A and Affymetrix GeneChip Human Exon
1.0 ST arrays. Raw data are available in ArrayExpress
[39], hosted at the EBI (accession numbers E-TABM-157
and E-MTAB-181). RNAseq and exome-seq data can be
accessed at the GEO, [40], accession number GSE48216.
Genome-wide methylation data for the cell lines are also
available through GEO, accession number GSE42944.
Software and data for treatment response prediction are
available on Synapse [41]. The software has also been
deposited at GitHub [42]. The raw drug response data
are available as Additional file 9.
Additional files

Additional file 1: Table S1. Overview of 84 cell lines with subtype
information and available data. GI50 values for 90 therapeutic compounds
are provided for 70/84 cell lines included in all analyses.

Additional file 2: Table S2. Processed Reverse Protein Lysate Array
(RPPA) intensity data for 70 (phospho)proteins with fully validated
antibodies in 49 cell lines. See Supplementary Methods in Additional file
3 for data processing details.

Additional file 3: Supplementary Methods, Supplementary Results,
Figures S1 to S10, and Tables S4, S6, S8, S9, S10, S12, and S13.
Supplementary Methods: detailed description of the therapeutic
compound response data, molecular data for the breast cancer cell lines,
molecular data for the external breast cancer tumor samples used for
validation, classification methods, data integration approach, statistical
methods, and pathway overrepresentation analysis. Supplementary
Results: assessment of cell line signal in tumor samples, inter-data
relationships, prediction comparison of datasets, validation against other
cell line datasets, and the patient response prediction toolbox for the R
project for statistical computing. Table S4: overview of genes with good
correlation (FDR P-value <0.05) between SNP6 and gene expression; 22
to 39% of genes in copy number aberration regions show a significant
concordance between their genomic and transcriptomic profile after
multiple testing correction. Table S6: data type ranking of the
importance of the molecular datasets by comparison of prediction
performance of LS-SVM and RF classifiers built on individual data sets and
their combination, and by comparison of the average appearance of data
types in the top 100 of ranked features, with and without inclusion of
RPPA data. Examples are also provided of compounds for which (most)
datasets give similar results or for which one dataset performs better
(shown in bold). Table S8: performance for 'splice-specific' response
predictors (RF) with an AUC increase >0.05 when comparing all transcript
features to gene-level values alone. Table S9: statistical association
between clinical variables and predicted response for 306 TCGA patients
with expression, methylation and copy number data available. For each
compound, the best performing model was utilized (LS-SVM or RF with
any combination of expression, copy number and methylation data).
Table S10: resistant/intermediate/sensitive cutoffs for 22 compounds
with model AUC >0.7 and at least one patient with probability of
response >0.65. Cutoff value 1 separates patients considered resistant
from intermediate. Cutoff value 2 separates patients considered
intermediate from sensitive. The percentage value for each group
indicates the percentage of total patients (n = 306) in each group.
Table S12: presence and variance of filtered features from U133A and
exon array cell line data in tumor samples. Features from U133A and the
exon array that passed the variance and presence filter in the cell lines
were present in the majority of breast cancer tumor samples. Table S13:
summary of 167 predictors in random forests classifier for lapatinib
(all data types, optimal predictor number). Figure S1: data summary in
terms of number of features before and after data-type-specific reduction
and unsupervised filtering based on variance and signal detection above
background. Figure S2: overview of the mutation prevalence in the cell

http://www.biomedcentral.com/content/supplementary/gb-2013-14-10-r110-S2.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2013-14-10-r110-S3.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2013-14-10-r110-S1.docx
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line panel and TCGA data set for the list of seven common coding
variants detected by TCGA, with a distinction between luminal, basal and
ERBB2-enriched. Cell lines with unknown subtype are displayed in
orange. To make the subtypes comparable, luminal A and B were
grouped into luminal for the TCGA data set, whilst basal and claudin-low
cell lines were grouped into basal. The mutation rate in TCGA and the
cell line panel shows a similar distribution across the subtypes.
Figure S3: comparison of the best LS-SVM and RF models for the 90
compounds, sorted according to highest AUC obtained with either
model. Figure S4: validation of the cell line signature for vorinostat in
tumor samples grown in three dimensions: heatmap of the 150-gene
signature for vorinostat in the cell line panel and 13 tumor samples
treated with valproic acid. Seven out of eight sensitive samples (87.5%)
and four out of five resistant samples (80%) are classified correctly with a
probability threshold of 0.5 for response dichotomization. Figure S5:
predicted probability of response of TCGA tumor samples to compounds
lapatinib, sigma AKT1-2 inhibitor, GSK2126458 and docetaxel. The TCGA
tumor samples are ordered according to increasing probability of response.
Figure S6: correlation-based coherence heatmap for two cell line-derived
gene signatures: coherence among 67 genes of the U133A signature for the
sigma AKT1-2 inhibitor in the cell lines (left) and TCGA tumor samples (right)
(Jaccard coefficient = 0.85; P-value <0.0001); coherence among 109 genes of
the RNAseq signature for everolimus in the cell lines (left) and TCGA tumor
samples (right) (Jaccard coefficient = 0.79; P-value <0.0001). Figure S7:
comparison of the best model per dataset for the 90 compounds, sorted
according to highest AUC obtained with either model (LS-SVM or RF). For
RNAseq and exon array, the highest AUC is shown among models built on
gene-level data only or all features (exons, junctions, and so on). Figure S8:
distributions of response probabilities for 5-FU determined by mixed
model clustering and used for cutoff selection. With a cutoff of 0.74,
23.9% of TCGA tumor samples were predicted to respond to 5-FU
(Table S10 in Additional file 3). Figure S9: association between
response to lapatinib and ERBB2 status, response to BIBW2992 and
ERBB2 status, and response to tamoxifen and ER status for 306 TCGA
patients with expression, methylation and copy number data
available. Figure S10: heatmap of the 167 highest ranked features for
lapatinib, obtained with RF applied to the full set of molecular data.

Additional file 4: Table S3. GI50 dichotomization threshold for each
compound, defined as the mean GI50 for the 48 core cell lines.

Additional file 5: Table S5. Overview of the best LS-SVM/RF model for
all 90 therapeutic compounds with comparison to the LS-SVM AUC based
on subtype and ERBB2 status. For the subset of 51 therapeutic compounds
with test AUC exceeding 0.7, additional information is provided on clinical
trial status, comparison of GI50 with TGI, validation results of the cell line
signal in the TCGA tumor samples, and most significant non-subtype related
KEGG/BioCarta pathways from Additional file 6.

Additional file 6: Table S7. List of significant non-subtype specific GO
categories and KEGG/BioCarta pathways with FDR P-value <0.05. Per
category/pathway information includes FDR P-value and the number of
signature genes, percentage of signature genes and list of signature genes
that are part of this category/pathway. Significant pathways associated with
both drug response and transcriptional subtype were excluded, to capture
biology underlying each compound’s mechanism of action.

Additional file 7: Table S11. Compound response signatures for the
22 compounds featured in Figure 5 with model AUC >0.7 and at least
one patient from the TCGA set of 306 tumor samples with expression,
copy number and methylation data available with probability of
response >0.65.

Additional file 8: Table S14. Validation results for six drugs
(BIBW2992, lapatinib, rapamycin, GSK2126458, gefitinib and
GSK2141795) in 11 HER2+ lines.

Additional file 9: Raw drug response data. Raw drug response data
used to compute GI50 values used in this study. The columns represent
the following: cellline = cell line lineage; compound = compound
tested; drug_plate_id = unique identifier for the plate of 3 compounds;
T0_plate_id = unique identifier for the time 0 h control plate associated
with the drug plate; background_od1, background_od2 = background
od values (for correction of background luminesence); od0.1, od0.2,
od0.3 = triplicate measures for untreated cells; od1.1, od1.2, od1.3…
od9.1, od9.2, od9.3 = triplicate measures of number of cells alive
after treatment with lowest to highest drug; T0_background_od1,
T0_background_od2 = background od values (for correction of
background luminesence); T0_median_od = median od at T0;
c1 to c9 = drug concentrations tested; units = units of drug
concentration tested.

Abbreviations
5-FU: fluorouracil; AUC: area under the receiver operating characteristic curve;
EGFR: epidermal growth factor receptor; ER: estrogen receptor; FDR: false
discovery rate; GEO: Gene Expression Omnibus; GI50: concentration at which
growth is inhibited by 50%; GO: Gene Ontology; KEGG: Kyoto Encyclopedia
of Genes and Genomes; LS-SVM: least squares support vector machine;
MAPK: mitogen-activated protein kinase; PAM: Prediction Analysis for
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