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Genome-wide mapping of FOXM1 binding
reveals co-binding with estrogen receptor alpha
in breast cancer cells
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Abstract

Background: The forkhead transcription factor FOXM1 is a key regulator of the cell cycle. It is frequently over-
expressed in cancer and is emerging as an important therapeutic target. In breast cancer FOXM1 expression is
linked with estrogen receptor (ERa) activity and resistance to endocrine therapies, with high levels correlated with
poor prognosis. However, the precise role of FOXM1 in ER positive breast cancer is not yet fully understood.

Results: The study utilizes chromatin immunoprecipitation followed by high-throughput sequencing to map
FOXM1 binding in both ERa-positive and -negative breast cancer cell lines. The comparison between binding site
distributions in the two cell lines uncovered a previously undescribed relationship between binding of FOXM1 and
ERa. Further molecular analyses demonstrated that these two factors can bind simultaneously at genomic sites and
furthermore that FOXM1 regulates the transcriptional activity of ERa via interaction with the coactivator CARM1.
Inhibition of FOXM1 activity using the natural product thiostrepton revealed down-regulation of a set of FOXM1-
regulated genes that are correlated with patient outcome in clinical breast cancer samples.

Conclusions: These findings reveal a novel role for FOXM1 in ERa transcriptional activity in breast cancer and
uncover a FOXM1-regulated gene signature associated with ER-positive breast cancer patient prognosis.

Background
The forkhead transcription factor FOXM1 is a key regu-
lator of the cell cycle [1,2] critical for the G1 to S phase
transition and G2 to M progression [3]. Expression of
FOXM1 is essential for mitotic spindle assembly and cor-
rect chromosome segregation with depletion leading to
mitotic catastrophe and cell cycle arrest [4]. FOXM1 is
also known to regulate the expression of genes involved
in angiogenesis [5], metastasis [6] and response to oxida-
tive stress and DNA damage [7,8]. Overexpression of
FOXM1 has been reported in many types of cancer [9]
and is correlated with poor prognosis [10,11]. Aberrant
FOXM1 expression is an early event in oncogenesis [12],
possibly acting as an initiating factor [13] and has been
associated with genomic instability [12].

Breast cancer is one of the leading causes of cancer mor-
tality in women and numerous studies have shown a cor-
relation between FOXM1 expression and breast cancer
progression [4,14,15], suggesting that FOXM1 is a poten-
tial prognostic breast tumor marker [16]. FOXM1 expres-
sion in breast cancer was found to correlate with levels of
YWHAZ, a member of the 14-3-3 family of proteins [17]
and also with HER2 status [15,16]. Meta-analysis of gene
expression data from breast cancer patient studies identi-
fied FOXM1 as one of 117 genes comprising a gene
expression signature predictive of survival [18]. FOXM1
over-expression has also been linked with drug resistance
in breast cancer chemotherapy [19,20] and therefore poor
clinical prognosis.
Approximately 70% of breast cancers are estrogen

receptor (ERa)-positive and there is increasing evidence
to suggest that ERa and FOXM1 act as co-regulators.
FOXM1 and ERa regulate the expression of each other
in a positive cross-regulatory loop [21,22]. FOXM1 has
previously been identified as an ERa-responsive gene
[23] and has been suggested to act as a prognostic
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marker in endocrine-positive cancers [24]. Furthermore,
resistance to anti-estrogen treatment has been correlated
with increased FOXM1 expression [21].
We investigated the relationship between FOXM1 and

ERa in breast cancer by mapping global FOXM1 binding
in an ERa-positive cell line (MCF7) and an ERa-negative
cell line (MDA-MB-231) using chromatin immunoprecipi-
tation followed by high-throughput sequencing (ChIP-
seq). We show that there are cell-line dependent patterns
of FOXM1 binding. We identify a common set of FOXM1
binding sites in the promoter regions of cell cycle-regulat-
ing genes but additionally in MCF7 cells; the majority of
binding is located in intronic and intragenic regions with a
high concordance to ERa binding, similar to the distribu-
tion of FOXA1 [25], another forkhead factor. These data
suggest a distinct role for FOXM1 in different cellular
contexts.

Results
FOXM1 binding overlaps with ER binding genome-wide
As FOXM1 has been implicated as an important transcrip-
tion factor in breast cancer, we mapped FOXM1 binding
genome-wide using ChIP-seq in asynchronous MCF7 cells
to determine the regulatory regions bound by FOXM1.
Four biological replicates were conducted in MCF7 cells,
resulting in 21,029 FOXM1 discrete binding events
detected in at least two replicates. FOXM1 is known to be
a key regulator of the cell cycle by regulating the transcrip-
tion of genes required for G1/S and G2/M phase transi-
tion [3], and indeed we find binding in the promoter
regions of many cell cycle regulating genes (Figure 1a).
However, analysis of the genomic distribution of FOXM1
binding events (Figure 1b) reveals that the majority of
binding is found in intronic and intergenic regions, show-
ing a similar pattern to that of nuclear hormone receptors
[26]. We carried out functional analysis of the genes
within 50 kb of a binding peak and identified 34 over-
represented categories with a false discovery rate (FDR) <
0.01 (Figure 1c; Table S1 in Additional file 1). As expected,
the top enriched biological processes were cell prolifera-
tion, M phase regulation and mitosis. Response to steroid
hormone stimulus was another enriched category. Motif
enrichment analysis was conducted on the 200 bp region
around the peak center of the binding peaks using the
motif-based sequence analysis tool AME [27]. Amongst
the top significantly enriched motifs present in regions of
FOXM1 binding were members of the Forkhead, leucine
zipper, GATA and nuclear hormone receptor families
(examples shown in Figure 1d; additional motifs identified
are shown in Table S2 in Additional file 1).
As the ER binding motif was significantly enriched in

the FOXM1 binding data, we overlapped the FOXM1
peaks with a previously published dataset for ERa binding
[28] in asynchronous MCF7 cells. Considering overlapping

peaks as those that share at least one base pair, we find a
high degree of overlap between FOXM1 and ERa sites,
with approximately 80% of FOXM1 binding occurring at
ERa binding regions (Figure 2a, b). As FOXA1 has been
shown to act as an ERa pioneer factor and is known to be
required for ERa chromatin binding, we overlapped
FOXM1 binding data with published genome-wide
FOXA1 binding data [25]. FOXM1 and FOXA1 showed a
high degree of concordance, with approximately 71% of
FOXM1 binding events overlapping with FOXA1 binding
events (Figure 2b).
We looked at the enriched motifs present in the regions

of joint FOXM1/ERa compared to sites where only
FOXM1 is located (Figure 2c). There is a high degree of
overlap in the motifs identified (Table S2 in Additional file
1); in both cases the forkhead motif (FOXA1) is the most
significantly enriched motif and also the leucine zipper
motifs for FOS and AP1, which have previously been asso-
ciated with ER and FOXA1 binding sites [29] and recently
with potential FOXM1 binding regions [30]. The FOXM1-
only regions did not contain ESR1 motifs or indeed any
motifs for nuclear hormone receptor family members pre-
sent in the joint binding regions. We identified a number
of motifs present only in the regions of FOXM1 binding
(Table S3 and Figure S1A in Additional file 1); interest-
ingly, these included the NFY CCAAT motif, which has
recently been associated with FOXM1 binding in promo-
ter regions of cell cycle-regulated genes in both U2OS [31]
and HeLa cells [30]. The CTCF motif was enriched in
FOXM1 only regions. CTCF has been linked with both ER
and FOXA1 binding sites and a recent ChIP-seq study
[32] demonstrated a set of co-localized CTCF/ER or
CTCF/FOXA1 binding sites in MCF7 cells; however, the
majority were CTCF/FOXA1 joint sites, with the CTCF/
ER sites located predominantly in promoter regions.
To confirm that FOXM1 and ERa can simultaneously

co-occupy the same chromatin location, re-ChIP experi-
ments followed by quantitative PCR (qPCR) were per-
formed focusing on regions of co-binding and, as controls,
regions with only ERa binding (example regions are
shown in Figure 2d). ERa ChIP was performed first using
asynchronous MCF7 cells followed by FOXM1 ChIP or
IgG as a negative control. Results confirmed (Figure 2e)
that these transcription factors simultaneously co-occupy
the same genomic locations. Using co-immunoprecipita-
tion Figure 2f), we observed a direct interaction between
FOXM1 and ERa, suggesting that FOXM1 binds as part
of the ER transcriptional complex [33].

FOXM1 binding at co-bound sites is dependent on ERa
To investigate the relationship between FOXM1 and
ERa at sites of co-binding, we looked at the recruitment
of FOXM1 following treatment of MCF7 cells with ful-
vestrant, an estrogen receptor antagonist [34] that forms
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an unstable complex with ER, thereby increasing the
rate of degradation. Following a 3 hour treatment with
fulvestrant, there was a significant reduction in ERa
protein but FOXM1 protein and transcript levels were
unchanged (Figure 3a; Figure S2 in Additional file 1).
We performed ChIP followed by qPCR for regions where
FOXM1 and ERa both bind (determined by analysis of
ChIP-seq data; Figure 2d) and regions where only FOXM1
binds. This showed (Figure 3b) a significant reduction in
FOXM1 binding (P < 0.05) at regions where ERa also
binds but not at ERa-negative regions such as the promo-
ter of PLK1. We also looked at the mRNA levels of the
target genes of the binding regions (Figure S2 in Addi-
tional file 1) and observed a significant reduction in
expression for genes that are co-bound by FOXM1 and
ERa (P < 0.05). This result suggests that ERa binding is
required for FOXM1 recruitment at co-bound regions and
confirms the re-ChIP results showing co-occupancy of

FOXM1 and ERa at these same genomic loci. In contrast,
treatment with the proteasome inhibitor MG132, which is
known to reduce FOXM1 expression [35], reduces
FOXM1 binding at both ERa co-bound and also ERa-
negative regions (Figure S3 in Additional file 1). We
assessed the effect of small interfering RNA (siRNA)-
mediated knockdown of FOXM1 on ERa binding by
ChIP-qPCR. The level of ERa protein was not significantly
altered by FOXM1 knockdown as shown by western blot
(Figure 3c) and we did not see any significant differences
in ERa binding at known binding sites (Figure 3d), sug-
gesting that FOXM1, unlike FOXA1, is not necessary for
ERa to bind to the chromatin. Previous studies have
shown that FOXM1 expression is required for ERa-
induced proliferation [21] and indeed we observed that
depletion of FOXM1 significantly reduced the expression
of a number of ERa-regulated genes (Figure 3e), suggest-
ing a functional role for FOXM1 at these co-bound sites.

Figure 1 Genome-wide distribution of FOXM1 binding in MCF7 cells. (a) Three representative regions of FOXM1 binding in the promoter
regions of known FOXM1 target genes; CCNB1, CDC25B and CENPF. (b) Global distribution of FOXM1 binding events in MCF7 cells. (b) REViGO
analysis of the functional annotation of FOXM1 binding sites with colors representing P-value. (d) Significantly enriched motifs in the 200 bp
regions around peak center.
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Figure 2 FOXM1 shows co-operative binding with ER in MCF7 cells. (a) Heat map showing overlap between FOXM1 and ER binding events.
The window represents ± 5 kb regions centered on FOXM1 binding events. (b) Overlap of binding sites between FOXM1, ER and FOXA1 in
MCF7 cells. (c) Motif analysis shown as a wordcloud schematic of the significantly enriched motifs present in regions bound either by both ER
and FOXM1 or by FOXM1 only. The text size is inversely proportional to the log P-value. (d) Examples of genomic locations showing regions of
joint FOXM1/ER binding and also ER only (PRMT8). (e) Re-ChIP showing co-occupancy of ER and FOXM1 in regions where both factors bind
compared with regions where only ER binds (PFKFB3 and PRMT8). (f) Co-immunoprecipitation showing pull-down of ER with FOXM1 antibody.
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Figure 3 FOXM1 binding at ERa co-bound sites is dependent on ERa. (a) FOXM1 binding was assessed following depletion of ER by
fulvestrant (10 nM) treatment for 3 h. Western blot showing depletion of ERa whilst FOXM1 protein levels are unchanged. (b) ChIP for FOXM1
was followed by qPCR to assess binding at ERa co-bound sites and FOXM1-only binding sites. ERa binding was assessed following depletion of
FOXM1 by siRNA treatment for 48 h. (c) Western blot showing depletion of FOXM1 whilst ERa protein levels are not significantly changed.
(d) ChIP for ER followed by qPCR to detect binding at FOXM1 co-bound regions. Depletion of FOXM1 affects ERa-regulated gene expression.
(e) qPCR of ERa-regulated gene expression in MCF7 cells treated with siRNA for siControl or FOXM1 for 48 h. Nascent and total mRNA levels
were measured. FOXM1 interacts directly with the co-activator CARM1 and regulates CARM1-mediated histone H3 arginine methylation.
(f) Co-immunoprecipitation showing pull-down of CARM1 with FOXM1 antibody using either low binding (LB) or high binding (HB)
immunoprecipitation buffers additionally supplemented with dithiothreitol (DTT). (g) ChIP for methylated arginine 17 on histone H3 followed by
qPCR for regions of FOXM1 and ER co-binding. Data are normalized to total H3 in MCF7 transfected with siRNA for 48 h (siControl or FOXM1).
(h) Proposed simplified model for FOXM1/ER/CARM1 complex in transcription regulation at enhancer regions. Data representative of triplicate
experiments ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001.
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Interaction of FOXM1 with ERa and CARM1 co-activator
Since FOXM1 was not required for ERa to bind to
DNA, we hypothesized that FOXM1 may be involved in
tethering co-factors to the ERa complex. We used an
initial proteomic screen (data not shown) to identify
FOXM1 interacting proteins and checked for proteins
known to be part of the ERa transcriptional complex
[36]. Using this method we found a possible interaction
with co-activator-associated arginine methyltransferase
(CARM1), one of the key co-factors involved in ERa
signaling [37,38]. We demonstrate (Figure 3f) using co-
immunoprecipitation that there is a direct interaction
between these proteins and propose that this might be
important for regulating transcriptional activity at these
sites. CARM1 is known to act as a transcriptional regu-
lator by methylation of arginine residues in histones and
co-activator proteins such as p160 and CBP/p300 [39].
We therefore investigated whether FOXM1 binding at
ERa co-bound sites regulated the methylation activity of
CARM1. ChIP-qPCR for H3 arginine 17 modifications
in MCF7 cells treated with siRNA for FOXM1 showed a
significant decrease following depletion of FOXM1 pro-
tein at the sites of co-binding (Figure 3g). This suggests
that FOXM1 may assist in recruitment of co-factors,
such as CARM1, to ERa binding sites (Figure 3h).

FOXM1 binding is altered in ERa-negative cell lines
To explore the hypothesis that FOXM1 is recruited to
DNA by ERa in ER-positive breast cancer cells, we
performed ChIP-seq to map FOXM1 binding in the
ERa-negative cell line MDA-MB-231 and compared
the binding events to ERa-positive MCF7 (Figure 4a).
We observed little overlap in FOXM1 binding events
between the two cell lines, with only 14% of MCF7
FOXM1 binding occurring at the same genomic location
in MDA-MB-231 cells. Approximately 52% of the com-
mon binding regions in the two cell lines were found at
sites where ERa is not bound in MCF7 cells (example
shown in Figure 4b), implying a subset of biologically
reproducible ERa-independent FOXM1 binding events.
FOXM1 binding in the different cell lines showed differ-
ent genomic distributions (Figure 4c) with a significant
enrichment of binding in promoter regions in the
MDA-MB-231 cells when compared to MCF7 cells
(approximately 31% compared to approximately 9% in
MCF7, compared to approximately 2% for the genome
average distribution) and 5’ UTR (approximately 13%
compared to approximately 2% in MCF7 and approxi-
mately 0.4% for the genome average distribution) whilst
binding in the intergenic and intronic regions was
reduced (approximately 50% compared to approximately
85% in MCF7 and 92% for the genome average distribu-
tion). Most of the shared FOXM1 binding events are in
promoter regions (Figure S4 in Additional file 1).

Motif analysis of MDA-MB-231 binding peaks showed
little overlap with those identified in MCF7 binding peaks
in regions of joint binding with ERa; however, comparison
with the top enriched motifs in the FOXM1 binding
regions in MCF7 cells revealed a similar pattern of cis-ele-
ments present (Figure 4d; Table S4 in Additional file 1).
Interestingly, although present, the FKH motif was not
amongst the top 50 enriched motifs in this cell line. The
most significantly enriched motifs were for members of
the Ets and leucine zipper families of transcription factors;
also present was the NFY CCAAT-binding motifs, which
were recently shown to be present in sites of FOXM1
binding in U2OS cells [31]. This suggests that while there
is a core set of common FOXM1 binding sites, there are
also cell line-specific binding patterns. The lower enrich-
ment of FKH motifs in the MDA-MB-231 cells suggests
recruitment by other transcription factors. We found
enrichment of the helix-loop-helix transcription factor
family motif in the MDA-MB-231 cell line and have
observed a high level of concordance with c-MYC binding
in this cell line (data not shown).
ChIP-qPCR of FOXM1 binding sites was carried out in

additional ERa-positive (namely ZR-751 and T47D) and
-negative (namely MDA-MB-453 and MCF10A) cell lines
(Figure 4e, f) looking at regions identified in MCF7 cells as
FOXM1-only sites or sites of ERa co-binding. We found
that FOXM1 binding in all cell lines tested was enriched
in the promoter regions of cell cycle-regulating proteins
whilst in the ERa-positive cells (ZR-751 and T47D) bind-
ing was also detected in regions known to be ERa binding
sites in MCF7 (GREB1, RARa and TFF1) but not in the
ERa-negative cells (MDA-MB-453 and MCF10A). The
pattern of FOXM1 binding was confirmed using two addi-
tional antibodies with specificity to different regions of
FOXM1 (Figure S5 in Additional file 1) in MCF7 cells.

Inhibition of FOXM1 binding in MCF7 cells modulates
binding at specific sites
To study the effect of inhibition of FOXM1 binding on
gene expression and cellular phenotype, we treated
MCF7 cells with the thiazole antibiotic thiostrepton (Fig-
ure 5a). This molecule inhibits FOXM1 activity [40,41]
and we have previously shown that thiostrepton interacts
directly with FOXM1 inhibiting DNA binding [42] at cer-
tain genomic loci. In this study we aimed to extend this
analysis genome-wide. Thiostrepton is known to reduce
FOXM1 expression and as such we treated cells for 4
hours, a timepoint where there is no significant change
in FOXM1 protein level [42] and performed ChIP-seq to
map global changes in FOXM1 binding. ChIP-seq was
performed in quadruplicate with at least 25 million
sequencing reads per replicate (Table S5 in Additional
file 1). FOXM1 binding events were identified using
MACS [43] and any FOXM1 binding events present in at
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Figure 4 FOXM1 shows differential binding according to ERa status in breast cancer cells. (a) Overlap of FOXM1 binding events between
MCF7 (ER-positive cells) and MDA-MB-231 (ER-negative cells). (b) Examples of genomic regions showing FOXM1 binding in MCF7 and MDA-MB-
231 cells compared to ER binding in MCF7 cells, contrasting ER-negative regions to ER-positive regions. (c) CEAS analysis showing genomic
distribution of FOXM1 binding events in MCF7 and MDA-MB-231. (d) Motif analysis shown as a wordcloud schematic of the significantly
enriched motifs present in FOXM1 bound regions in MDA-MB-231 cells and in binding regions overlapping in MCF7 cells. The text size is
inversely proportional to the log P-value. (e) Western blot showing FOXM1 and ERa protein levels in six breast cancer lines. (f) FOXM1 ChIP
followed by qPCR was performed in ER-positive breast cancer cell lines (MCF7, T47D and ZR-751), ER-negative breast cancer cell lines (MDA-MB-
231 and MDA-MB-453) and the normal breast cell line MCF10A to compare FOXM1 binding at known regions of co-binding with ER (from MCF7
ChIP-seq data) to ER-negative binding regions. Data representative of triplicate experiments ± standard deviation.
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Figure 5 Treatment of MCF7 cells with thiostrepton alters FOXM1 binding genome-wide. (a) Molecular structure of the thiazole antibiotic
thiostrepton. (b) Differential binding analysis (DBA) was used to identify significantly (FDR < 0.05) differentially bound peaks in DMSO compared
to thiostrepton (TS)-treated cells from four replicates. The dots shown in red represent peaks where FOXM1 binding is significantly increased/
decreased compared to the control. Enrichment of Gene Ontology processes associated with the differentially bound peaks was determined
using GREAT; the top four significantly enriched processes in the upbound and downbound regions are shown. (c) Heatmap of DBA binding
events for two of the replicates showing FOXM1 binding signal intensity in regions up- or down-regulated by thiostrepton treatment in a
window of ± 5 kb and total signal intensity of differentially bound peaks showing fold change in binding in thiostrepton-treated compared to
control cells. (d) Examples of genomic loci where FOXM1 binding is reduced following treatment of MCF7 cells with thiostrepton. (e) Motif
analysis of the 200 bp region around peak center in the differentially bound peaks.
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least two out of the four replicates were considered.
Differential binding analysis (DBA; see Materials and
methods) was used on this dataset of 21,494 FOXM1
binding events to identify binding events that were statis-
tically differentially bound in either the control or thios-
trepton-treated condition. Using an FDR < 0.05, a total of
1,902 differentially bound peaks were identified from the
replicate sets of control/thiostrepton-treated samples
(Figure 5b; Additional file 2), with the majority of
FOXM1 binding events showing decreased binding after
treatment with thiostrepton (1,446, representing approxi-
mately 76% of all differential FOXM1 binding events)
(Figure 5c), consistent with our previous report that
thiostrepton inhibits FOXM1 DNA binding [42]. Exam-
ples of differentially bound regions are shown in Figure
5d. Pathway analysis using GREAT (Genomic Region
Enrichment Analysis Tool) [44] on regions associated
with differentially bound peaks (Figure 5b) showed that
regions with increased FOXM1 binding after thiostrepton
treatment were enriched for apoptosis signaling path-
ways, consistent with the known induction of apoptosis
with thiostrepton [45]. Interestingly, in the FOXM1 bind-
ing regions with decreased binding after thiostrepton
treatment, the top enriched processes were related to the
steroid hormone-signaling pathway as well as fibroblast
growth factor receptor (FGFR) signaling, a key pathway
involved in epithelial to mesenchymal transition and cell
proliferation [46,47]. This supports the qPCR data (Fig-
ure 3e) showing decreased expression of ERa-regulated
genes following depletion of FOXM1, suggesting a func-
tional role for FOXM1 in ERa activity at co-binding
sites. Cis-regulatory element annotation system (CEAS)
analysis of the DBA peaks (Figure S6 in Additional file 1)
showed that the increased binding was enriched in pro-
moter regions. Interestingly, motif analysis of the DBA
peak regions (Figure 5e; Table S6 in Additional file 1)
showed that three out of the four enriched motifs were for
FKH factors in the down-regulated regions whilst there
was no enrichment of FKH motifs in the up-regulated
regions.
To test whether the differentially bound FOXM1

regions affect gene expression, we performed gene
expression analysis on MCF7 cells after treatment with
dimethylsulphoxide (DMSO) or thiostrepton for 6 hours.
Using an FDR < 0.01 and log ratio ≥ 0.5, there were 2,322
differentially expressed genes (Figure 6a), with 1,098
down-regulated and 1,224 up-regulated genes. Gene
Ontology analysis of the function annotations for the dif-
ferentially expressed genes showed that out of the top
ten categories based on P-value, cell cycle regulation and
apoptosis pathways were over represented (Table S7 in
Additional file 1 lists the top 10 up/down-regulated
genes and Additional file 3 lists all differentially
expressed genes). Interestingly the ERa signaling pathway

was also highly enriched, again supporting the impor-
tance of FOXM1 as a key factor in ERa signaling.
We integrated the differentially expressed genes and dif-

ferentially bound peaks (identified from the DBA) using
either a 10 or 50 kb window. For genes within 10 kb of the
nearest peak there was a correlation of 0.48 (95% confi-
dence intervals 0.29 to 0.63) between the thiostrepton
regulated FOXM1 binding events and the thiostrepton
regulated genes (Figure 6c). Extending the window to
50 kb resulted in a correlation of 0.41 (95% confidence
intervals 0.32 to 0.49). Using the 50 kb window we identi-
fied 383 peaks associated with genes (Additional file 4). To
validate these results we selected 17 down-regulated and
5 up-regulated genes (Table S8 in Additional file 1) and
performed independent ChIP experiments with MCF7
cells treated with DMSO/thiostrepton for 4 hours followed
by qPCR for the peak region from the DBA (Figure 6d).
We found that there was a significant reduction (P < 0.05)
in binding in all of the down-regulated regions correspond-
ing with the reduced expression in the microarray dataset.
However, for the up-regulated regions we found that the
level of enrichment was too low to verify reproducibly.

Inhibition of FOXM1 regulates a gene-signature
correlated with prognosis
Gene Set Enrichment Analysis (GSEA) [48] was used to
compare thiostrepton-regulated genes containing a
FOXM1 binding peak (FDR < 0.05) within 50 kb of the
transcription start site (TSS) (405 unique genes) with
curated gene sets in the Molecular Signature Database
(MSigDB). We analyzed the up- and down-regulated
genes as separate lists. Using the down-regulated gene set
(198 identified genes) the top 10 significantly overlapping
sets were all related to breast cancer and ERa signaling
(Table S9 and Figure S7 in Additional file 1). There was a
significant correlation between the thiostrepton down-
regulated gene set and genes shown in previous studies
to be estrogen-regulated in both ERa-positive cell lines
[49,50] and tumor samples [51,52] and gene sets related
to resistance to endocrine therapy [53-55]. Similar analy-
sis using the genes up-regulated by thiostrepton (111
identified genes) revealed that the ten most significantly
overlapped gene sets were from diverse studies (Table
S10 in Additional file 1), none of which related to breast
cancer or ERa signaling.
As FOXM1 itself is a poor prognosis marker in ERa

breast cancer (Figure S8 in Additional file 1) we tested
whether the genes regulated by thiostrepton and with a
FOXM1 binding site within 50 kb of the TSS were corre-
lated with clinical outcome in breast cancer. In this case
we again considered the up- and down-regulated genes
separately and tested whether there was any correlation
with patient survival using a publically available data set
of 286 breast cancer patients with associated survival
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data [56]. We restricted analysis to ERa-positive patients
(209) and used this set to test for enrichment of genes
correlated with prognosis in the thiostrepton-regulated
gene sets. In the case of the up-regulated genes there was
no evidence of overrepresentation (P = 0.217). However,
for the down-regulated genes there was a significant cor-
relation (P < 10-6) with 38 genes identified (Table S11 in
Additional file 1) whose expression is related to prog-
nosis (high expression correlated to reduced time to

relapse; Figure 7a, b; Figure S9 in Additional file 1). Sur-
vival analysis using this 38 gene-signature showed a sig-
nificant correlation (P < 0.0034) with patient survival
(Figure 7b), with high expression correlating with
reduced time to relapse; these results were also con-
firmed using another independent dataset (P = 0.0094)
[57] (Figure 7c; Figure S10 in Additional file 1). We
looked for known functional interactions within
the genes identified using STRING (Search Tool for the

Figure 6 Changes in FOXM1 binding induced by thiostrepton correlate with an altered gene expression profile. (a) Microarray analysis
of gene expression changes following treatment of MCF7 cells with DMSO or thiostrepton (TS) for 6 h. Only genes with an FDR < 0.01 were
considered, resulting in 5,638 differentially expressed genes. Heat map shows differentially expressed genes for the six replicates. (b) GeneGo
analysis of the differentially expressed genes showing the top ten enriched biological processes. (c) Correlation between differentially bound
FOXM1 peaks from DBA analysis and differentially expressed genes from the microarray analysis following thiostrepton treatment. Blue dots
represent peaks within 10 kb of the gene TSS, grey dots < 50 kb from the TSS. (d) FOXM1 ChIP was performed on DMSO or thiostrepton-
treated MCF7 cells and qPCR was used to check FOXM1 binding in regions identified in DBA analysis as significantly differentially bound. Data
representative of triplicate experiments ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001.
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Retrieval of Interacting Genes/Proteins) [58] and found
high confidence interactions linking 20 proteins relating
to mitotic spindle formation, chromosome segregation
and cell cycle regulation (Figure S11 in Additional file 1).
This confirms the therapeutic potential of targeting

FOXM1, as thiostrepton treatment reduces the expression
of genes whose high expression correlates with poor
patient outcome in breast cancer.

Discussion
The forkhead factor FOXM1 was first linked with cancer
in 2002 [59] and has subsequently been shown to be
involved in cancer initiation [13], progression [60] and
prognosis [10] in diverse tissue types. FOXM1 is a known
regulator of cell proliferation and mitotic spindle assem-
bly genes but has also been linked with regulating epithe-
lial to mesenchymal transition, angiogenesis, metastasis

and more recently with induction of DNA methylation
[61].
In this study we focus on the role of FOXM1 in breast

cancer with the aim of mapping global FOXM1 binding
sites in both ER-positive and -negative cancer cell lines
and relating this to biological function. We show that
FOXM1 binding occurs in the promoter regions of many
cell cycle-related genes and also genes known to regulate
mitotic spindle assembly; BUB1, ASPM, MAD2L1 and
members of the kinesin family. We also confirmed binding
in target genes such as CAV1 [62] and MMP family mem-
bers; MMP2 and 8, VEGF and FGF linking with the role of
FOXM1 in metastasis.
The high degree of overlap between FOXM1 binding

and ERa binding in MCF7 is of significant interest as
previous studies have shown co-regulation of these fac-
tors [21,22] and importantly that FOXM1 expression is

Figure 7 FOXM1 regulates genes associated with poor prognosis in ER-positive breast cancer patients. Comparison of the thiostrepton
down-regulated genes with a FOXM1 binding site (± 50 kb TSS) with expression data from a breast cancer patient array dataset containing 286
samples (209 ER positive) with patient survival outcome [56] showed a set of 42 probes (38 unique genes) significantly associated with poor
prognosis. (a) Heat map showing gene expression in the ER-positive patients. Patients are grouped into good prognosis (non-relapsed, blue
ribbon) and poor prognosis (relapsed, red ribbon). Gene expression is represented as light blue or red for patients with expression below or
above the gene median, respectively. (b) Kaplan-Meier plot showed a significant positive correlation between patient relapse and expression of
genes down-regulated by thiostrepton and associated with FOXM1 binding sites. (c) Kaplan-Meier plot using the same gene signature set as in
(b) in an independent breast cancer dataset [57] confirmed correlation with patient survival.
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essential for ERa-induced proliferation. We show that
FOXM1 and ERa bind to the chromatin at the same
place at the same time; however, the presence of FOXM1
at ERa co-bound chromatin sites is not required for ERa
recruitment but is necessary for the loading of other
cofactors to the ER transcriptional complex, such as
CARM1. CARM1 is known to activate transcription by
methylating histone H3 arginine residues [63] and consti-
tutes a key part of nuclear hormone receptor transcrip-
tional complexes acting in conjunction with other
coactivators, such as CBP/p300, SRC-2 and GRIP1
[33,64]. FOXM1 has previously been shown to interact
directly with CARM1 binding factors such as p300/CBP
[65] but, to our knowledge, this is the first time that a
direct interaction has been shown between FOXM1 and
CARM1.
The differences in FOXM1 binding with ERa status in

breast cancer cells contribute another dimension to the
already complex mechanisms known to regulate
FOXM1 transactivation. FOXM1 activity is regulated by
multiple protein-protein interactions; during the cell
cycle the temporal control required for precise G2/M
transition is regulated both by phosphorylation steps
involving different Cyclin/Cdks [66-68] and by inhibition
by B55a, a subunit of protein phosphatase 2A [69].
Transcriptional activity is modulated by recruitment of
coactivators and interaction with other transcription fac-
tors [70]. The data from our study suggest another
mode of interaction of FOXM1, in this case co-binding
with ERa in ERa-positive breast cancer cells.
A similar role for FOXM1 in transcriptional regulation

by recruitment of co-factors at specific genomic locations
was proposed in a recent study by Carr et al. [71]. They
showed that FOXM1 represses GATA-3 expression in the
mammary gland by recruiting the methyltransferase
DNMT3b to binding sites within the GATA-3 promoter,
thereby leading to methylation-induced gene silencing.
Inhibition of FOXM1 binding in MCF7 cells using

thiostrepton confirmed the importance of this transcrip-
tion factor in the regulation of ERa signaling pathways.
Analysis of the regions where binding was significantly
reduced showed that these were cis-regulatory regions
involved in ERa pathways and indeed the gene expres-
sion changes confirmed that ERa signaling pathways
were affected. Somewhat surprisingly, FOXM1 binding
was increased at a number of genomic sites following
thiostrepton treatment; however, these sites did not con-
tain consensus FKH binding motifs and may represent a
redistribution of FOXM1 in a similar manner to that
described for the androgen receptor following FOXA1
depletion [72]. In the absence of FOXA1, androgen
receptor binding was delocalized around the genome,
generating, in addition to FOXA1 dependent-sites, both a
subset of FOXA1-inhibited sites and a subset of FOXA1-

independent binding sites where androgen receptor
recruitment may occur via the presence of transcription
factors other than FOXA1 with pioneer activity. Further-
more, a recent publication showed that FOXM1 has an
atypical DNA binding mechanism [31], with binding at
some genomic sites occurring via recruitment and bind-
ing to the MMB transcriptional activator complex. This
mechanism not only explains how binding is increased at
certain sites after inhibition of direct DNA binding but
also fits with the binding pattern we observed in MDA-
MB-231 cells compared to MCF7 cells, where the FKH
motif was poorly enriched compared to other motifs
such as the ETS family members. In fact we cannot rule
out that some of the enriched FKH consensus sites in
MCF7 cells actually represent FOXA1 binding motifs
with FOXM1 tethered via other transcriptional co-fac-
tors. Thus, FOXM1, as a key regulator of the cell cycle,
may show cell line-dependent patterns of DNA binding
due to recruitment by different transcriptional complexes
responsible for driving the proliferation in a particular
cellular context.
As FOXM1 expression has previously been correlated

with prognosis in breast cancer we used our dataset to
identify a novel FOXM1-regulated gene set significantly
correlated with ER-positive breast cancer prognosis and
drug resistance, thus confirming previous studies show-
ing that FOXM1 over-expression is associated with
resistance to drug treatment [19,21]. This gene-signature
of 38 FOXM1-regulated genes down-regulated by thios-
trepton treatment was predictive of prognosis in ER-
positive breast cancer patient datasets. Within this set
are many well described FOXM1 target genes, such as
those involved in mitotic spindle formation; however,
there are a number of interesting novel FOXM1 target
genes, such as ABCC5, a transporter protein associated
with multi-drug resistance that may provide useful
insights for future studies into the role of FOXM1 in
breast cancer.

Conclusions
We have demonstrated that FOXM1 shows distinct pat-
terns of binding depending on ERa status in breast cancer
cells, but within an ER-positive context FOXM1 plays an
important role in ERa signaling pathways. Specifically,
FOXM1 regulates a gene signature that correlates with
poor prognosis in breast cancer patients, supporting the
therapeutic potential in targeting FOXM1 in ER-positive
breast cancer.

Materials and methods
Cell culture
Human MCF7, MDA-MB-231, ZR-751, T47D, MDA-
MB-453 and MCF10A cell lines were obtained from the
ECACC (European Collection of Animal Cell Cultures)
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and grown in DMEM or RPMI (ZR-751, T47D) supple-
mented with 10% FBS and the MCF10A in MEGB
(Lonza Biologics, Slough, Berkshire, UK). Thiostrepton
(Sigma-Aldrich Company Ltd, Gillingham, Dorset, UK)
and MG132 (Sigma) were made up as stock solutions of
10 mM in DMSO and used at a final concentration of
10 μM (thiostrepton) and 3 μM (MG132) and fulves-
trant (ICI 182780) was added at a final concentration of
10 nM.

Western blots
Western blots were performed using antibodies for anti-
FOXM1 (sc-502) and anti-ER (sc-543) from Santa Cruz
Biotechnology (Dallas, Texas, USA) and anti-b-actin
(ab6276) from Abcam (Cambridge, Cambridgeshire,
UK). Further details are provided in the Supplementary
materials and methods in Additional file 1.

Quantitative real-time PCR analysis
MCF7 cells were treated with thiostrepton/MG132/ful-
vestrant and RNA was collected after the indicated
timepoints and qPCR was performed using Power Sybr
mix (ABI, Warrington, Cheshire, UK) on a CFX96 Real-
time thermal cycler (Bio-Rad, Hemel Hempstead, Hert-
fordshire, UK). Further details and primer sequences are
given in Additional file 1.

Small interfering siRNA
MCF7 cells were transfected with Dharmacon siGenome
pools for FOXM1 or siCONTROL at 15 nM using lipo-
fectamine 2000. Knockdown of FOXM1 protein levels
was confirmed by western blotting after 48 h incubation.

Microarray analysis
MCF7 cells were treated with either thiostrepton or
DMSO for 6 h. Each treatment was carried out in repli-
cates of six. Gene expression analysis was carried out on
Illumina Human HT12 version 4 bead arrays. Details of
analysis are given in the Supplementary materials and
methods in Additional file 1. Data are available through
the NCBI’s Gene Expression Omnibus [73] using GEO
Series accession number GSE40767.

Chromatin immunoprecipitation
ChIP experiments were performed as previously
described [74]. Antibodies used were anti-FOXM1
(Santa Cruz sc-502, Genetex GTX1000276, Genetex
GTX102170 [GeneTex, Irvine, California, USA]) and
anti-ER (Santa Cruz sc-543), anti-histone H3 (Abcam
ab1791) and anti-histone H3 (asym-dimethyl Arg17;
Novus NB21-1132 (Novus Biologicals, Cambridge, Cam-
bridgeshire, UK)). Experimental details and primer
sequences are available in Additional file 1.

ChIP-sequencing experiments
To detect FOXM1 binding sites affected by thiostrepton
versus DMSO, ChIP-Seq experiments were performed
in four biological replicates in MCF7 cells and in two
biological replicates in MDA-MB-231 (Table S5 in
Additional file 1). ChIP DNA was processed for Illumina
sequencing as previously described [74]. Details of ana-
lysis are in Additional file 3. Data are available through
the NCBI’s Gene Expression Omnibus [73] using GEO
Series accession number GSE40767.

Analysis of differential binding
To identify regions of differential FOXM1 binding
between the control (DMSO) and thiostrepton-treated
samples, a general linear model was fitted to each puta-
tive binding site to test for the difference in read count
between treatments (see Supplementary materials and
methods in Additional file 1 for detection and definition
of binding sites). Model fitting and testing was per-
formed using the Bioconductor library edgeR [75] using
the function estimateGLMTagwiseDisp for estimating
the dispersion parameter of the negative binomial distri-
bution and glmFit and glmLRT for fitting and testing
the difference of treatment of each binding site [76].
The heatmaps in Figures 2 and 5 were prepared with
Java Treeview [77].

Motif analysis and genomic distribution of binding events
The CEAS [78] function in Cistrome [79] was used to
functionally annotate binding sites. Known transcription
factor motifs significantly enriched in the binding sites
were identified with AME [27]. The -log p-value of sig-
nificance was used to scale the word clouds using the R
package wordcloud [80].

Gene Ontology pathway analysis
Gene Otology pathway enrichment was performed using
GeneGo metacore (MetaCore from Thomson Reuters
(New York, USA)) and visualized with REViGO (Reduce
and Visualize Gene Ontology) [81].

Re-ChIP
Re-ChIP was performed as described [82] using the
same antibodies as for ChIP and normal rabbit IgG
(2729) from Cell Signaling Technology (Danvers, Massa-
chusetts, USA).

Co-immunoprecipitation
Experiments were performed using the nuclear co-
immunoprecipitation kit from Active motif (Carlsbad,
California, USA) with pull-down using FOXM1 (Santa
Cruz sc-502) following the manufacturer’s protocol with
immunoprecipitation carried out using either the low or
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high buffers provided supplemented with 1X protease
inhibitor cocktail and 1 mM dithiothreitol (DTT).
Detection was performed by western blotting using ERa
(Novacastra, Milton Keynes, Buckingham, UK) and
CARM1 (Santa Cruz sc-5421) with LiCor IRDye second-
ary antibodies; 800LT goat anti-mouse, 680LT goat anti-
rabbit and 680LT donkey anti-goat. Further details are
in Supplementary materials and methods in Additional
file 1.

Survival analysis
The clinical and gene expression dataset GSE2034 [56]
was analyzed to investigate whether genes regulated by
thiostrepton are involved in poor cancer prognosis; only
the 209 ER-positive samples were considered. Details of
the analysis are in Supplementary materials and meth-
ods in Additional file 1). Gene Set Enrichment Analysis
(GSEA) [48] was performed using the web-based tool
[83] to compare gene lists with the Molecular Signatures
Database (MSigDB).

Statistical analysis
All statistical analyses not described above were per-
formed with GraphPad prism software or R [84]. The
tests for difference between means were performed
using the two-tailed Student’s t-test. If not otherwise
stated, P-value < 0.05 was considered statistically signifi-
cant. Error bars represent standard deviations.

Additional material

Additional file 1: Supplementary materials and methods, tables and
figures as mentioned in the text.

Additional file 2: FOXM1 binding peaks in MCF7 cells. Excel
spreadsheet containing the location of FOXM1 binding peaks identified
using MACS in replicate samples of MCF7 cells treated with DMSO or
thiostrepton. Differential bound peaks (FDR < 0.05) were identified using
edgeR.

Additional file 3: Differentially expressed gene list from microarray
analysis. Excel spreadsheet with details of differentially expressed gene
(FDR < 0.01) from microarray analysis for DMSO versus thiostrepton-
treated MCF7 cells.

Additional file 4: FOXM1 binding peaks from DBA versus
expression changes from microarray. Excel spreadsheet containing
LogFC values for differential expression of genes with TSSs located
within ± 50 kb of differentially bound FOXM1 identified from DBA in
MCF7 cells treated with DMSO or thiostrepton.
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