
Introduction
Skin, hair and eye color vary dramatically among 
geographically and temporally separated human 
populations. It has long been speculated that this is due 
to adaptive changes, but the genetic causes and 
environmental selective pressures underlying this range 
of phenotypic variation have remained largely unknown. 
We now know of a large number of genes that impact on 
human pigmentation, especially in the melanosome 
biogenesis or the melanin biosynthetic pathways [1], and 
we are now in a position to characterize the genetic vari-
ation underlying the diversity seen in these pigmentation 
traits that has arisen during hominid evolution [2]. 
Recently, several locus-specific and genome-wide 
association studies (GWAS) searching for signatures of 
positive selection have highlighted relatively few and 
distinct loci in these pigmentation pathways, suggesting 
convergent evolution has occurred in different popu-
lations. Here we assess these population genetic findings 
in light of our current understanding of pigment biology.

�e key pigment molecule melanin is an inert 
biopolymer produced by melanocyte cells present in the 
skin and hair follicles. It is transported within melano-
some particles along thin cellular projections into the 
surrounding keratinocytes of the epidermis or the corti-
cal region of the growing root sheath, but is retained in 

the iridial melanocytes of the eye [3]. Variations in genes 
within this pathway are therefore in a position to be 
pleiotropic in action, causing skin, hair and eye color to 
become correlated, for example, in Northern European 
populations with a high frequency of light hair, light skin 
and blue eyes or equatorial Africans with dark com plexion, 
dark hair and brown eye color. However, since melanocytes 
located in these three compartments repre sent indepen-
dent cellular populations [4] with alternative regulatory or 
signaling pathways [5], trait-specific variants also occur, 
producing assorted phenotypic com binations such as dark 
hair, light skin and blue eyes common in Europeans or the 
light hair, dark skin and brown eyes seen in Solomon 
Islanders. Another example of this is the sensitivity of 
follicular melanocytes to aging, gradually producing a 
silver-gray to white hair color, indicating a loss of cells 
from the bulb region over the years [6]. �is happens in all 
humans, but age of onset varies both between and within 
ethnic groups. Notably, skin color has only been a target 
for natural selection in hominids following the 
development of hairlessness [7], and a genetic change 
allowing melanocytes to reside in the epidermis must 
therefore have occurred early during our evolution.

�e biochemical pathway of melanogenesis, converting 
the amino acids phenylalanine, tyrosine and cysteine to 
melanin, is under complex genetic control involving the 
catalytic enzymes, structural matrix and ion-transport 
proteins of the melanosome (Figure 1) [8], trafficking 
molecules involved in melanosome maturation and 
export [9,10] and ultimately degradation [11]. It also 
depends on regulatory pathways involving receptors, 
growth factors and transcription factors [12]. �e 
discovery and characterization of human pigmentation 
genes (Table 1), often predicated on genes mapped to an 
animal coat color phenotype, and polymorphism of these 
genes within and between human populations, combined 
with functional studies, have provided the framework to 
understand normal variation in this physical trait and the 
imprints of the environment upon our genome.

Color genes and their variants
�e earliest studies of pigmentation examined Mendelian 
inheritance, identifying genes of high penetrance. © 2010 BioMed Central Ltd
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Mutations that eliminate melanin synthesis, causing the 
dilution of mouse coat colors, the human oculocutaneous 
albinisms (OCA14) [13] and related syndromic disorders 
of broader effect such as HermanskyPudlak syndrome 
(HPS18), initially allowed TYR, OCA2, TYRP1, SLC45A2 
and HPS6 to be defined as human pigmentationrelated 
genes.

After establishing the genetic basis of several 
pigmentation disease phenotypes, the next and more 
challenging step was to assign the major genes 
responsible for the normal spectrum of human 
coloration, which although a polygenic trait, was likely to 
be characterized by a limited number of major genes [14]. 
Using these disease genes as candidates and others 
established by the animal models, the search for alleles of 
major effect in humans was performed by genetic 
association tests. There are now numerous reports 
demonstrating association of general or population 

specific polymorphisms within and flanking these loci 
with normal variation in skin, hair or eye color traits, 
while later analyses took the form of GWAS or examined 
identified candidate single nucleotide polymorphisms 
(SNPs) in large population groups [1525], some of which 
have already been summarized [26]. These combined 
approaches have allowed identification of candidate 
SNPs, loci and genomic regions, with the genes identified 
summarized in Table 1. Each can then be tested for 
evidence of natural selection (Box 1).

Signs of selection
Once genes and variants apparently associated with color 
differences are identified it is possible to examine 
genomewide SNP data using population genetic tests for 
selection. Such tools include decreased heterozygosity 
(LnRH), atypical levels of population differentiation of 
alleles (Fst) or decay of linkage disequilibrium (extended 

Figure 1. Melanin formation in the melanosome. The conversion of phenylalanine to tyrosine by phenylalanine dehydroxylase (PAH) takes 
place in the cytoplasm of melanocytes and is necessary to maintain the supply of this substrate for melanogenesis to occur continuously, with 
its activity positively correlated with skin-type [140]. Active uptake of tyrosine by the melanosome is required, and is initiated by the process of 
oxidation by tyrosinase (TYR) and involves other enzymes such as DHI oxidase (TYRP1) and dopachrome tautomerase (DCT). Ion transport is 
critical to melanosome function, with TYR activity being pH-dependent and its absolute activity being critical for the rate of melanin production. 
The coupling of H+, Na+, Ca2+ and K+ transport by the V-ATP complex, with the involvement of SLC45A2, SLC24A5 and TPCN2 in the regulation 
of this process, is shown. Cystine as a negative regulator of melanogenesis is pumped out by CTNS. The SILV protein forms the matrix backbone 
through specific proteolysis of a precursor protein, upon which eumelanin is deposited. The melanosomes are then transported along thin cellular 
projections known as dendrites and deposited within keratinoctyes, which are the cells that take up the pigment and give the visible color.
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haplotype homozygosity) [27], or combinations of such 
tests [28]. Many of these approaches have found clear 
evidence for a selection of SNPs within pigmentation
related genes as being statistically significantly different 
when tested in different populations [2837] (Table 2). 

One recent study of African, European and Asian 
samples has attempted to test and compare results of 
these methods, based on common SNPs on genotyping 
arrays to results from DNA resequencing of designated 
regions: OCA2, TYRP1, DCT and KITLG [38]. 

Table 1. Human pigmentation gene identification and function

Gene Animal color locusa Human disease/phenotype Protein Candidate GWAS GWAS

TYR Albino OCA1 Melanogenic enzyme + + +

OCA2 Pink-eyed dilute OCA2 Membrane transporter + + +

TYRP1 Brown OCA3 Melanogenic enzyme +

SLC45A2 Underwhite/b-locusb OCA4 Membrane transporter (MATP) + + +

MC1R Extension Red hair G-protein coupled receptor + + +

ASIP Agouti – MC1R antagonist + + +

POMC Pomc Red hair Proopiomelanocortin (POMC/α-MSH) + – –

DCT Slaty – Melanogenic enzyme + – –

SLC24A5 Goldenc – Membrane transporter (NCKX5) + + +

KITLG Steel FPHH Growth factor (SCF) + + +

KIT Dominant white 
spotting

Piebaldism Receptor tyrosine kinase (c-Kit) + – –

IRF4 – – Interferon regulatory factor-4 (IRF4) – + +

HBD3 Black coatd – Antimicrobial peptide (β-defensin 3) – – –

SILV Silver – Melanosomal protein (pMel17) + – –

TPCN2 – – Two pore segment channel/ion transport (TPC2) – + +

MITF Microphthalmia Waardburg II Transcription factor (MITF) + – –

MYO5A Dilute Usher syndrome Myosin type Va + – –

DTNBP1 Sandy HPS7 Lysosome-related organelles complex 1 (BLOC-1) (dysbindin) + – –

RAB27A Ashen Griscelli Rab protein for melanosome transport + – –

ATRN Mahogany – Attractin + – –

LYST Beige Chediak Higashi Membrane protein + – –

MLPH Leaden Griscelli Melanophilin + – –

HPS6 – HPS6 BLOC-2 complex, HSP6 subunit + – –

TRPM1 – – TRP cation channel – + +

ADAM17 Adam17 – Disintegrin and metalloproteinase + –

ADAMTS20 Belted – Disintegrin and metalloproteinase with thrombospondin + – –

EGFR Dsk5 – Epidermal growth factor receptor + – –

CORIN ‘Dirty blonde’ – Serine protease/modifier of agouti + – –

OPRM1 – – Opioid receptor + – –

NRG1e – – Paracrine factor (neuregulin-1) – – –

BNC2 Bonapartec – Zn finger protein (basonuclin-2) + + +

CTNS Ctns–/– Cystinosis Cystine transporter (cystinosin) + – –

EDNRB Piebald spotting Hirshsprung 2 G-protein coupled receptor + – –

EDN3 Lethal spotting Waardburg-Shah Ligand for EDNRB + – –
aMouse coat color unless stated otherwise.
bMedaka fish.
cZebrafish.
dCanine.
eBiochemical/cellular.
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Surprisingly, the strong selection found by haplotype
based statistical tests was not replicated by neutrality 
tests based on the sequence data. Larger data sets of 
coding or exonic regions [39] may improve detection of 
populationspecific selective sweeps [40].

Most studies searching for genes under selection in 
humans have accessed a limited population data set, such 
as the International HapMap Panel [41], but further data 
are continually becoming available from the 1000 
Genomes Project [42].

Population genetic structure has been investigated by 
principal components analysis (PCA) of ancestry 
informative markers (AIMs) in largescale genetic data 
obtained from thousands of individuals using the  
Human Genome Diversity Panel (HGDP) as a reference 
(1,043 individuals, 51 populations, 650,000 SNPs) [43].  
In this finescale study using the AIM panel for 
differentiating individuals into the five broad geographic 
regions, the two topscoring SNPs sit in a region no  
more than 30 kb from the SLC24A5 gene, with several 
other pigmentation genes also being strong markers. 
Although this is consistent with selection of these  
genes in the different groups, such population 
differentiation may equally have arisen due to the 
population bottlenecks that have occurred during human 
evolution (Box 1). Distinguishing between demographic 
forces and natural selection is extremely difficult [43], so 

additional evidence using other statistical approaches is 
required.

Hancock et al. [44] used allelefrequency data to test 
for adaptations to continuous climate variables at the 
genomewide level and to identify genetic loci that 
underlie these adaptations in 61 populations worldwide. 
In addition to the HGDP dataset described earlier, this 
includes extra populations to expand information in 
Africa and Oceania. They gathered environmental data 
for nine continuous climate variables that have a strong 
impact on human physiology; however, these climate 
variables are simple proxies for selective pressures that 
are likely to be much more complex. These analyses did 
adjust for demographic history, and detected correlations 
between climate variables and a number of SNPs 
previously identified by GWAS as playing a prominent 
role in pigmentation and immune response phenotypes. 
The top candidate genes from the pigmentation and 
tanning pathways were SLC45A2 and OCA2, though 
notably MC1R, which is known to play such an important 
role in these processes, was not identified. The OCA2 
gene was also found to be under selection in the 
European population using a modelbased approach 
incorporating spatial ancestry analysis (SPA) of the 
HGDP dataset, in which large gradients in SNP allele 
frequencies in two or threedimensional geographical 
space are searched for [45].

Box 1. How do genetic differences arise in human populations?

Human genomic diversity is a consequence of our history and 
behavior, due to continual population expansion, contraction, 
movement, family structure, environmental (diet and shelter) 
and cultural differences, which all come together to influence 
the demographic forces that underlie evolution. These forces are 
genetic drift, which are stochastic changes of allele frequencies 
in the population, and natural selection. A serial founder effect 
to our populations has been found to be an important model for 
humans, and has generated patterns of diversity among small 
populations that have dispersed over long distances from our 
first origin in Africa. Not all differences in allele frequencies arise 
from adaptive evolution or positive selection for alleles; most are 
consistent with neutral evolution. Balancing selection is where 
multiple alleles at a locus are maintained in a population: specific 
types of balancing selection include heterozygote advantage 
and frequency-dependent selection. Purifying selection or 
negative selection results in the removal of deleterious alleles 
from a population. Background selection occurs in the case 
where purifying selection against deleterious mutations also 
removes variation at linked neutral sites. In genetic hitchhiking, 
positive selection for a beneficial mutation increases frequency 
of neutral variants on the same haplotype. Such a change in 
allele and haplotype frequencies might be large, due to a highly 
advantageous mutation (complete or hard sweep; or partial or 
soft sweep if it is more gradual). Population bottlenecks have 

occurred commonly in our evolution and result in a reduction in 
population size that increases the effects of drift and can skew 
the frequency of gene polymorphisms. The effect of a bottleneck 
on patterns of genetic variation depends on how severe the 
decrease in population size is and the duration of the bottleneck. 
All of these processes need to be considered when looking for 
human pigmentation gene allele frequency differences between 
populations, so as to work out which are signals of adaptive 
evolution or stochastic gene frequency changes.

Evidence that a particular locus has experienced selection 
can be inferred [27] from inter-population differences in allele 
frequencies (Fst-based tests) that are larger than expected based 
on: the (inferred) population demographic histories; correlations 
between population allele frequencies and directly or indirectly 
measured agents of selection correlated with geography, such 
as UV exposure, temperature, precipitation, diet, pathogen 
exposure; the diversity and spectrum of alleles at the locus within 
and between populations, usually called neutrality tests (HKA 
test; Tajima D, Fu and Li F, Fay and Wu H); the extent of linkage 
disequilibrium surrounding the locus (expected haplotype 
homozygosity EHH, PX-EHH, iHs); and variation in the degree of 
population admixture. Tests will differ in their power to detect 
selection at mutations and events of different ages and types. 
Some neutrality tests are less applicable to data from current GWAS 
SNP arrays where common SNPs are overrepresented.
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Human pigmentation genes with signs of selection 
pressure
It is perhaps surprising that few genes of major influence 
in human pigmentation, and none with common 
polymorphism, have been described or characterized 
since our last review of the molecular genetics of human 
pigmentation [3]. Those under positive selection must 
directly alter the expression level of the gene transcript 
(OCA2, IRF4), be in linkage with functional SNPs that do 
so (ASIP, TYRP1, DCT, KITLG) or modify the 
biochemical activity of a protein (MC1R, TYR, SLC24A5, 
SLC45A2) [46]. The fact that there have been only a 
limited number of key genes identified implies any new 
discoveries influencing human pigmentation will 
represent a smaller and smaller proportion of phenotypic 

variation in these traits, or, in the case of CORIN [44], 
OPRM1 [47] NRG1 [48], BNC2 [49,50] and CTNS [51], 
will be of as yet unknown influence, function or 
significance at the population level. This is in line with 
what is seen with other polygenic traits and human 
phenotypes, such as height and body weight [52].

The polymorphisms present in several human 
pigmentation genes will now be discussed in specific 
detail to highlight the different types of changes 
occurring under natural selection. For some loci these 
changes occur in coding regions, while others are distal 
regulatory or intronic changes. In several cases the 
functional variant is yet to be identified, and there are 
strong associations with SNPs tagging the traitassociated 
haplotype.

Table 2. Derived pigmentation gene variants under selection in different populations

Gene SNP Change/position Skin Eye Hair Selectiona

European

  MC1R Multiple Coding, nonsynonymous ++ – +++ +++b,e

  ASIPc rs4911442*T/C (C) 3’ distal/NCOA6 intron + – + ++f

  OCA2 rs12913832*T/C (C) 5’ distal/HERC2 intron86 + +++ + +++e,f

  TYR rs1042602*C/A (A) Ser192Tyr (TCT to TAT) + + + ++

  TYR rs1126809*G/A (A) Arg402Gln (CGA to CAA) + + + ++

  TYRP1c rs1408799*T/C (C) 5’ distal + + + +f

  DCTc rs1407995*C/T (T) Intron 6 – + – +d

  SLC24A5 rs1426654*G/A (A) Ala111Thr (GCA to ACA) +++ + + +++f

  SLC45A2 rs16891982*G/C (C) Leu374Phe (TTG to TTC) +++ + + +++f

  IRF4 rs12203592*C/T (T) Intron 4 ++ ++ ++ +b

  KITLGc rs12821256*T/C (C) 5’ distal ++ – ++ +e,f

Asian

  MC1R rs885479*G/A (A) Arg163Gln (CGA to CAA) + – + ++b

  OCA2 rs1800414*A/G (G) His615Arg (CAT to CGT) ++ – + +++

  OCA2 rs74653330*G/A (A) Ala481Thr (GCC to ACC) ++ – + +++

  DCTc rs1407995*C/T (T) Intron 6 + – + +

  KITLGc rs12821256*T/C (C) 5’ distal ++ – + +

Oceania

  OCA2 Gly775Asp (A) (GGT to GAT) +++ +++ +++ Driftg

  TYRP1 Arg93Cys (T) (CGC to TGC) + + +++ Driftg

African

  SLC24A5 rs1426654*G/A (G) Ala111Thr (GCA to ACA) +++ +++ +++ +++f

  SLC45A2 rs16891982*G/C (G) Leu374Phe (TTG to TTC) +++ +++ +++ +++f

  KITLGc rs642742*T/C (T) 5’ distal +++ + + +++f

aSemiquantitative assessment of phenotypic effect, + weak , ++ medium, +++ strong.
bNo single extended haplotype, competing selective pressures.
cTagging SNPs in linkage disequilibrium with variants that may affect activity.
dTransmission disequilibrium test (TDT) analysis performed on BTNS collection [86].
eDiversity based test: Tajima D, Fu’s Fs.
fHaplotype length-based test: iHS, EHH, XP-EHH.
gInferred from population size, geographical location.
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MC1R (Ch16q24.3) and ASIP (Ch20q11.2)
The human melanocortin1 receptor (MC1R) coding 
region is intronless and spans less than 1 kb [53] on 
chromosome 16; sequencing of this region has been used 
to test for selection for some years [54,55]. In the case of 
MC1R, for example, multiple variants with the same 
effects on pigmentation appear at increased frequency 
with increasing latitude in multiple populations. In 
Europeans MC1R variant alleles are associated with 
pheomelanic red hair, fair skin and freckling, as well as 
skin cancer risk [56].

Savage et al. [57] showed that MC1R allelic diversity 
was low in Africa and high in Europe, and population 
differentiation was greatest between Asia and other 
populations [58]. Two tests for selection were applied. 
The Tajima D statistic was significantly negative in Africa 
and Southern Europe, and suggestive for Northern 
Europe, while Fu’s Fs test was significantly negative in 
both Southern and Northern European samples. These 
results are consistent with the action of positive selection 
in the European populations.

Being relatively well studied, human pigmentation loci 
are a useful window into the distribution of mutation 
effect sizes. The usual theoretical model predicts an 
exponential distribution, with relatively more mutations 
of small effect. MC1R is especially interesting because it 
is a small intronless gene where polymorphism has 
repeatedly arisen quickly (5,000 to 10,000 years) under 
evolutionary pressure in vertebrates from fish to humans 
[59]. In humans, more than 90 nonsynonymous, frame
shift or stop mutations are known to affect the activity of 
the protein, and eight of these are present at greater than 
1% frequency in different populations. In European popu
lations, compound MC1R heterozygotes are common (in 
an Australian twin sample, four times more common 
than homozygotes). Penetrance of compound hetero
zygotes is quite consistent with a multiplicative allelic 
model for hair color [60,61]. This observation extends to 
epistatic effects of other pigmentation traits [62], with 
one mild exception being the interaction between MC1R 
and an ASIP rs4911442*C/Ttagged haplotype.

OCA2 (Ch15q11.2)
The OCA2 gene, homologous to the mouse pinkeye 
dilute locus, is located on chromosome 15 and 
downstream of the HERC locus. The regulation of its 
expression has been proposed to exert the strongest 
influence on iris color [3], as well as having associations 
with skin and hair color [46] in Europeanderived 
populations. The OCA2 protein is thought to be a mature 
melanosomal membrane protein [63], with a potential 
role in trafficking other proteins to melanosomes [64]. 
The key determinant SNP rs12913832*T/C for the 
regulation of OCA2 expression is located in a short 

highly conserved region within intron 86 of the HERC2 
gene, 21 kb upstream of the promoter of OCA2. The 
rs12913832*Cderived allele is highly associated with 
European blue eye color as a recessive trait. The ability of 
this conserved element to act as an enhancer regulating 
OCA2 transcription has recently been confirmed in 
experiments using melanocyte cultures carrying either 
rs12913832*T/T or rs12913832*C/C genotypes [65]. A 
longrange chromatin loop between this enhancer and 
the OCA2 promoter leads to elevated OCA2 expression 
in darkly pigmented rs12913832*T/T cells, but not in 
lightly pigmented rs12913832*C/C cells, concomitant 
with a reduction in transcription factor recruitment to 
this intronic region. This is the first validation that allele
dependent differences in chromatin loop formation result 
in differences in allelic gene expression effecting a 
common phenotypic trait, and serves as a paradigm for 
future studies for how common SNPs may direct changes 
in gene regulation.

The Asianspecific nonsynonymous SNP rs1800414*A/
G in the OCA2 locus was first reported during the 
sequencing of the exonic regions of the human gene to 
establish its structure and to screen for mutations 
associated with albinism [66]. The rs1800414*Gderived 
allele is a His615Arg change in the protein encoded by 
exon 18, and was initially reported to be almost 
exclusively found in East and Southeast Asian 
populations [67,68]. The influence of this allele on skin 
pigmentation was later demonstrated in an association 
study by measurement of melanin index in a sample of 
122 individuals of East Asian ancestry and a replicate 
population with 207 Han Chinese [69]. This clearly 
demonstrated that the rs1800414*G/615Arg allele was 
present in those with lower melanin levels. An analysis of 
the rs1800414 SNP in a larger collection of samples from 
72 populations [70] showed that this is essentially 
restricted to East Asia with frequencies as high as 0.76 
for rs1800414*G and acting as a skinlightening allele. 
Another hypofunctional OCA2 variant allele is 
rs74653330*G/A encoding Ala481Thr, with 70% of the 
function of the wildtype OCA2 protein [71]. This allele 
was first reported to be at high frequency in Northeast 
Asia [72], and a later study of 24 populations showed the 
highest frequency was 0.52 in the Oroquen population in 
China [73]. These reports provide evidence for lighter 
skin pigmentation evolving by means of selection acting 
at least partly genetically independently in Europeans 
and East Asians, that is, convergent evolution. However, 
in Europeans selection may have been predominantly for 
lighter eye color.

TYR (Ch11q14)
Tyrosinase (TYR) was the first human pigmentation gene 
to be identified and characterized, because many 
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mutation reports show it to cause OCA1. Notably, TYR 
accounts for 46% of albinism cases in Caucasians [13], 
indicative of a frequency of mutant alleles approaching 
1/100 in northern Europe [74]. Recent attention has been 
concentrated on two coding polymorphisms of TYR that 
appear at high frequency in Europeans and are largely 
absent in African populations: rs1042602*C/A Ser192Tyr, 
and rs1126809*G/A Arg402Gln. In a population of South 
Asian descent, the rs1042602*A/192Tyr allele was shown 
to be highly associated with lighter skin color [23]. Later 
work studied the frequency of rs1042602 in 1,871 normal 
Indian volunteers comprising 55 ethnic groups, and 
reported that the rs1042602*A/192Tyr allele was 
overrepresented in the IndoEuropeans [75]; however, no 
phenotypic associations with skin color were performed. 
Functional studies of the TYR protein accompanying this 
work revealed a tyrosinase enzyme activity for 192Tyr of 
only 60% of wildtype, possibly due to steric hindrance 
effects in the TYR protein copperA catalytic site. The 
rs1126809*G/A Arg402Gln polymorphism also has 
reduced enzyme activity, with expression studies showing 
that it encodes a thermolabile variant protein with only 
25% activity of wild type. The pathology of this mutation 
in Europeans has been controversial, with some reports 
questioning its association with albinism [13,76]; this 
may be best reconciled by realizing the full spectrum of 
the albinism phenotype and the influence of the 
underlying skin complexion of the individual’s ethnic 
background on this condition [77]. The relationship of 
these TYR coding variants to normal variation in 
pigmentation in Europeans has been studied by several 
groups [15,25,62,78], with reported associations for 
lighter eye color, freckling and melanoma. Recently, both 
alleles have been shown to be protective against the 
development of vitiligo [79].

TYRP1 (Ch9p23) and DCT (Ch13q32)
While TYR catalyses the key initial step in melanin 
production, TYRP1 and DCT (TYRP2) act at subsequent 
steps, influencing the quantity and the quality of 
melanins and stabilizing the TYR enzyme. They also have 
some function in melanocyte survival after ultraviolet 
radiation (UVR) stress and in the maintenance of 
melanosomal structures. The TYRP gene family evolved 
by recurrent gene duplication from a common ancestral 
TYR early in evolution giving rise to TYRP1 and DCT 
[80]. In humans, mutations of TYRP1 causing OCA3 are 
frequently observed in South Africa [13]. Part of this 
phenotype is red bronze skin, gingerred hair and blue 
irides. In a surprising finding, it was recently reported 
that a nonsynonymous amino acid change, Arg93Cys, in 
the TYRP1 protein is a major determinant of the blonde 
hair phenotype. This allele has a frequency of 0.26 on the 
Solomon Islands and is not seen outside of Oceania, so it 

represents a very recent evolutionary event, with the 
allele acting in a recessive manner [81]. Similarly, a very 
high frequency of a populationspecific OCA2 mutation 
causing the expression of a full albinism phenotype has 
been found in the Polynesian Islands [82]. Both are cases 
of genetic drift resulting from population founder effects 
(Box 1). In the European population TYRP1 rs1408799*A 
has been associated with blue eye color [24,25], though 
other SNPs are also associated with blue eyes [49,83], so 
the causative SNP is yet to be recognized.

Recent work has shown that regulatory microRNAs 
also have a role in the regulation of TYRP1 function. 
Alleles that induce or disrupt miR155 regulation have 
been demonstrated to be under different modes of 
selection among human populations, causing a strong 
negative correlation between the frequency of miR155 
regulation of TYRP1 in human populations and their 
latitude of residence. It has been proposed that local 
adaptation of microRNA regulation acts as a rheostat to 
optimize TYRP1 expression in response to differential 
UV radiation [84].

Differences in the eumelanic composition of human 
hair is dependent upon ancestry and age. This was 
determined by direct measurement of melanin content 
and type of eumelanin in a sample of AfricanAmerican, 
East Asian and Caucasian individuals [85]. African and 
European hairs were found to have changes in the ratio of 
dihydroxyindole (DHI) to 5,6dihydroxyindole2
carboxylic acid (DHICA), favoring DHI more as people 
age. However, the Asian samples seemed to have low 
DHICA levels throughout life, and did not have graying 
to the extent of other populations [85]. Since a major role 
of dopachrome tautomerase (DCT) is the isomerization 
of dopachrome to DHICA, it is plausible that these ethnic 
differences reflect differences in DCT expression. 
Interestingly, Lao et al. [18] found a polymorphism in an 
intron of the DCT gene at high frequency in the East 
Asian population (Han Chinese) and that was suggestive 
of selection. This work was extended by Alonso et al. 
[29], who used a battery of different statistical tests to 
enhance the ability to detect selection, finding a signature 
of directional selection on DCT and TYRP1 in Asians. 
The later study of Edwards et al. [69] reported 
rs1407995*C/T and rs2031526*A/G as intronic 
polymorphisms of DCT showing very high frequency 
differences between East Asian and nonAsian 
populations (>0.6). In analysis of European haplotypes 
[86] of these two SNPs and in transmission
disequilibrium tests using rs1407995*C/T, there was an 
effect on eye color, but not skin or hair color.

SLC45A2 (Ch5p14.3)
The most important polymorphism affecting skin and 
hair color is the rs16891982*G/C SNP on chromosome 5 
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in the SLC45A2 gene encoding the MATP protein change 
Leu374Phe [22]. In African and Asian populations, the 
ancestral rs16891982*G/374Leu allele dominates with a 
frequency of 0.99 to 1.0; in European populations it is 
present at a frequency of 0.02 to 0.3 with a strong north
south cline and with the rs16891982*G allele being 
strongly associated with olive skin and dark hair. The 
rs16891982*C/374Phe variant can be predicted to impair 
MATP function, and in cultured melanocytes 374Leu/
Leu homozygotes have more MATP transcript and TYR 
protein than 374Phe/Phe homozygotes [46]. Reduction of 
MATP protein in melanocytes carrying an albinism 
mutation was shown to lead to mislocalization of TYR 
from melanosomes to the plasma membrane and 
incorporation of TYR into exosomes [87]. Another 
coding variant in SLC45A2, rs26722*G/A Glu272Lys, is 
also associated with dark hair, but is in strong 
disequilibrium with rs16891982*G/374Leu in European 
populations. Vierkotter et al. [88], however, have reported 
that the 272Lys protein variant is associated with 
increased presence of solarinduced lentigines in German 
(P = 0.13) and Japanese (P = 0.02) women, whereas all the 
Japanese samples were homozygous for 374Leu/Leu. 
There is also strong linkage disequilibrium between 
rs26722 and other intronic SNPs that predict coloring, 
rs28777 and rs35391 (r2 = 0.63), indicating an extended 
haplotype. Mutations of the SLC45A2 gene that cause 
OCA4 are highest in Asian populations [13].

SLC24A5 (Ch15q21.1)
Lamason and coworkers [89] reported that a mutation in 
SLC24A5, encoding the NCKX5 protein, underlies the 
golden pigmentation phenotype in zebrafish, and found 
an important equivalent variant in humans. The key skin 
pigmentation SNP rs1426654*G/A, changing Thr111Ala, 
is fixed in European populations as the 
rs1426654*A/111Ala allele, while rs1426654*G/111Thr is 
close to fixation in African populations. In cultured 
human melanocytes, the TYR activity of the 111Ala/Ala 
and 111Ala/Thr genotypes are roughly twofold higher 
than for 111Thr/Thr homozygotes [46]. Quillen and 
coworkers [47] estimate the effect of rs1426654*C/T on 
melanin index, via admixture mapping, to be of the same 
magnitude as the SLC45A2 rs1426654*A/374Phe change, 
and their data seem consistent with an additive, rather 
than a dominant, allelic effect of the SLC24A5 
rs1426654*A/111Ala allele on skin reflectance. 
Interestingly, in the indigenous American populations 
they studied, the rs1426654*A/111Ala allele is at 
intermediate frequencies, and shows no evidence of 
selection [47], while there is strong evidence for selection 
in Europeans. Mouse Slc24a5 null animals have normal 
coat color, but diminished RPE melanosomes (smaller 
and paler) and less pigmentation [90].

KITLG (Ch12q22)
The ligand for the c-KIT receptor (KITLG) is known to 
regulate the number of melanocytes during development, 
melanin distribution in the skin, and onset of familial 
progressive syndromes of both hyper and hypo
pigmentation [91]. The first quantitative evidence that 
this gene was involved in skin color variation in humans 
was found using a parallel evolutionary approach based 
on genetic discoveries in marine and freshwater species 
of stickleback fish [92]. This study suggested that 
upstream cisregulatory elements at the human KITLG 
locus were under selection in different natural 
environments, with major peaks of highfrequency 
derived alleles in the large intergenic flanking regions of 
KITLG found in Europeans and East Asians. Genotyping 
of the AIM SNP rs642742*T/C found a significant 
association with a higher melanin index in an African
American sample population. However, the causative 
changes in the locus remain unknown. Notably, a strong 
composite of multiple signals (CMS; indicative of 
selection) was reported for KITLG and narrowed down 
the candidate region [28], which included the 
rs12821256*T/C SNP associated with blonde hair in 
European populations [16,25,49], with SNPs in intron 1 
also reported to be associated with light hair color [93].

IRF4 (Ch6p25)
The interferon regulatory factor (IRF) family is a group of 
DNAbinding transcription factors that are involved with 
downstream regulation of interferon signaling, with the 
IRFs primarily associated with immune system 
development and response. The possible association of 
IRF4s with melanocytic biology has been used as a 
diagnostic marker for various melanoma subtypes [94]. 
Involvement with the melanin biosynthetic pathway was 
initially proposed when a GWAS identified a SNP in an 
intergenic region close to IRF4 displaying association 
with freckling [25]. Further genetic analysis has high
lighted the rs12203592*C/T SNP, located in the fourth 
intron of the IRF4 gene and found to be strongly asso ci
ated with hair color, eye color and skin tanning response 
to sunlight [16,49,95]. Chinese, Japanese and African 
populations are homozygous for the rs12203592*C  
allele, with only European populations possessing 
rs12203592*T. This SNP shows a northsouth gradient 
across Europe, possibly indicative of a selective advantage 
[62,96] and has been implicated in a strong genotypeby
age interaction on nevus count. Carriers of rs12203592*T 
possess higher nevi counts as adolescents, which reverses 
over age with adults possessing lower counts [97].

HBD3 (Ch8p22)
The loci reviewed so far are known to be important 
determinants of pigmentation in humans and other 
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species; however, there are several examples of genetic 
variants acting in nonhuman species only. The β
defensins are a family of small proteins mainly involved 
in innate mucosal and epidermal immunity. An inframe 
glycine (Gly23del) deletion in the canine homolog of 
DEF103B (encoding βdefensin 3) is a major determinant 
of coat color in domestic dogs and wolves [98,99]. The 
structure of βdefensin 3 is similar to ASIP protein, and it 
is now known to act as a highaffinity neutral agonist of 
MC1R, competing with melanocortin and ASIP. There 
are no reported human protein coding variants. The 
detection of equivalent variants in humans is complicated 
by the fact that the defensin gene cluster is in a 250 kbp 
segmental duplication, present as 1 to 12 copies in human 
and other primate populations [100]; there is also a 
dearth of SNPs in this region on standard genomewide 
SNP arrays. The rs2737902*C/T SNP within the 
DEFB103 promoter is more common in East Asia than 
Africa [100]. The cline in rs2737902 allele frequency 
across HGDP populations is correlated with distance 
from the equator (Spearman r = 0.48), so it is possible 
that there is a causative relationship between skin color 
and genotype.

SILV (Ch12q13)
The SILV gene on chromosome 12 encodes the 
melanosomal Pmel17 protein in man and is important in 
several other species, but no common variants are 
associated with human skin or hair color differences. In 
the mouse gene knockout Pmel/ [101] melanosomes 
appear spherical in contrast to the usual oblong shape. 
Complete inactivation of Pmel has only a mild effect on 
the coat color, despite a substantial reduction in the 
darker eumelanin content in hair, similar to that observed 
with the spontaneous silver mutation in the Pmel gene in 
mice. It is likely that alleles reported in other species with 
more striking effects on pigmentation are dominant
negative mutations [101].

Melanin and melanogenesis as a protective 
mechanism against sun exposure
The chemical contents, transfer and accumulation of 
melanosomes in keratinocytes determines hair and skin 
color, but establishing the biological function of melanin 
pigmentation can be enigmatic and dependent on 
environmental cues. While the number of melanocytes 
between different skin tones is relatively constant, dark 
skinned individuals have a higher density of large, singly 
dispersed melanosomes. These remain intact as they 
move upwards in the epidermis to form caps over the 
nuclei of keratinocytes, protecting against UVR DNA 
damage. Melanosomes in lightskinned Europeans are 
smaller and less dense, and aggregate into membrane
bound complexes and degrade rapidly [102]. It is assumed 

that the benefits of darker skin are to do with protection 
against UV light. Apart from protecting against the 
damaging effects of solar UVR, melanin has several other 
roles in the body, including scavenging reactive oxygen 
species, protecting nutrients from photodamage and 
possibly modulating the inflammatory response. Melanin 
can also provide camouflage, transport energy and bind 
drugs, and is involved in hearing, sight and regulation of 
body heat [103].

In addition, some of the precursors and intermediates 
of melanogenesis (Figure 2) also appear to be diffusible 
molecules involved in the photoprotective pathway as 
signaling or hormonelike regulators of melanocyte or 
keratinocyte functions [104]. In particular, the action of 
the DCT pigmentation gene and the DHICA metabolite 
it produces provides a new insight into the function of 
the melanogenic pathway that is distinct from the 
production of the final melanin polymer. A cell culture 
model treating human melanocytes with MC1R agonists 
has shown strong induction of the DCT protein in wild
type cells, but not in melanocytes homozygous for MC1R 
alleles associated with red hair color. This suggests that 
the ability to produce DHICA is compromised in 
Europeans carrying these variant alleles, along with an 
alteration in the type of melanin being synthesized [105]. 
Moreover, overexpression of DCT in WM35 amelanotic 
melanoma cells reduced their sensitivity to oxidative 
stress and their protection against DNA damage [106]. 
When Dct knockout mice were exposed to UVR, they 
had decreased levels of eumelanin and increased levels of 
reactive oxygen species (ROS), sunburn cells and 
apoptotic cells. DHICAderived melanin showed a strong 
hydroxyl radical scavenging ability [107] and inhibited 
lipid peroxidation [108].

As DHICA is a diffusible molecule, it may enter 
keratinocytes directly to induce increased UVR resistance 
[109]. When primary keratinocyte cultures were treated 
with DHICA a range of cellular changes were seen, 
including expression and activity of the antioxidant 
enzymes superoxide dismutase (SOD) and catalase. This 
led to decreased cell damage and apoptosis after UVA 
exposure. The regulation of this DHICAmediated 
differentiation of the keratinocytes was found to involve 
peroxisome proliferator activated receptors (PPARs) 
[109]. In summary, these experiments indicate that DCT, 
and the subsequent action of its product DHICA, are 
intrinsically linked to protection of skin cells against cell 
death and ROS after UVR exposure, as well as their role 
in the generation of protective eumelanin pigment.

Skin color differences through environmental 
selection – but why?
It is now apparent that we have identified human 
pigmentation genes that have been under evolutionary 
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selective pressure. Specific alleles have reached high 
geographic/populationspecific frequencies and in some 
cases have reached near fixation, as for example the 
SLC24A5 and SLC45A2 genes in Europeans. The reasons 
for this selection are likely to be diverse, not all based 
simply on the actions of the melanin pigment itself, and 
possibly even as varied as the alleles themselves. The 
involvement of other signaling pathways must now be 
considered, such as MC1R in the DNA damage response 
[110,111], and DCT as a regulator of melanogenic 
intermediates [108] and p53 function [112]. Others will 
no doubt become apparent as our biological 
understanding of the role of melanogenesis and 
melanocyte cell physiology grows.

Some possible selective pressures acting on skin 
pigmentation in high and low UVR environments include 
the need for vitamin D synthesis and protection from 
photolysis of folate [113], the requirement for the skin to 
be both a permeability barrier against multiple forms of 

stress causing water loss and the first line of the innate 
immune system [114], and protection from skin cancer 
[115] and disease [116].

Overwhelming epidemiological evidence points to 
permanent dark skin pigmentation having been selected 
as a protective measure against the deleterious effects of 
solar UVR exposure in tropical climates, including 
Australia. As vitamin D3 is synthesized only when UVR 
penetrates the skin, the dose received not only varies 
according to the season, length of day, latitude, altitude 
and occupation of the individual, but it is also critically 
dependent upon the physical characteristics of skin 
thickness and melanin content, and, importantly, a 
person’s age. Vitamin D is available from the diet in low 
quantities but varies according to the food source. A lack 
of the vitamin can have serious consequences for 
evolutionary fitness. This understanding initially led to 
the vitamin D hypothesis: that lighter skin types were 
selected in the northern hemisphere due to low 

Figure 2. Protection pathways in the skin against ultraviolet radiation (UVR). UVR induces DNA damage, which leads to activation of p53 
and the formation of POMC and MC1R activation factors. MC1R action can be blocked by ASIP. Upon receptor activation of cAMP, dopachrome 
tautomerase (DCT) activity is upregulated and this leads to the generation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA). MC1R also activates 
melanosome maturation and transfer to the keratinocyte. DHICA removes reactive oxygen species (ROS), and activates catalase (CAT) and 
peroxisome proliferator activated receptor (PPAR) in keratinocytes. Finally, DCT provides antagonistic feedback to p53 in melanocytes [112].
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environmental UVR exposure and deficiencies in dietary 
sources [117]. However, the influence of vitamin D on the 
selection of lighter skin color has been disputed [118]. 
Nessvi et al. [119] found that ethnicity rather than skin 
color better predicted 25hydroxyvitamin D3 levels in 
New Zealanders. This is congruent with the observation 
that no pigmentation gene variants have been 
demonstrated to affect serum vitamin D levels in GWAS 
[120,121], the exception being an association with OCA2 
that was lost after adjusting for lifestyle [122]. Perhaps 
more surprisingly, pigmentation genes were not 
associated with blood folate concentrations in a GWAS 
[123], consistent with earlier clinical studies of UVA 
exposure effects on folate levels [124]. However, the 
behavior of melanin pigment itself after UVR exposure in 
undergoing the immediate pigment darkening response 
may participate in protection against folate 
photodegradation [125].

The ability to produce melanin appears across a wide 
range of species and within tissues not exposed to UVR, 
suggesting other functions of the pigment, but its 
contribution to the barrier function of skin and as a 
driver of human epidermal pigmentation have only 
recently been hypothesized [126]. This is partly based on 
the finding that UVR damages the barrier, so selection for 
increased pigmentation in darker skin would improve 
this barrier function. Darkly pigmented skin does display 
more rapid barrier recovery after acute damage than 
lightly pigmented skin types [127]. Thus, these authors 
have proposed that pigmentation in hominids evolved in 
response to the combined stress of UVR exposure and 
low humidity. Moreover, there is an intimate link between 
maintaining the permeability barrier of the skin and 
antimicrobial defenses, and some researchers suggest 
that darkly pigmented melanocytes enhance this defense 
by acidifying the outer epidermis [126,127]. The cellular 
basis for this epidermal acidification of dark skin is 
suggested to be the melanosomes themselves [127], 
involving polymorphisms in the iontransporter proteins 
of the melanosome [114] that are central to skin color 
differences, as discussed earlier. However, there is 
inconsistency here with the neutralization of the 
melanosome that occurs with an increase in 
melanogenesis [128130], undermining in part the barrier 
hypothesis involving melanosome pH and immune 
defenses. Evidence for pathogendriven and immune 
selection in different populations has not appeared in the 
pigmentation gene set [131].

eye color
Eye color as a trait may be under multiple selection 
pressures, including sexual [132] or personalityrelated 
factors [133], but there may also have been strong co
selection for lightening of pigmentary traits in multiple 

human populations. The selection pressure on the 
OCA2HERC region associated with blue eye color in 
Europeans is so strong [70] that other elements may have 
been in play, and we have proposed that this could have 
been in response to an environmental factor, lack of 
sunlight, to overcome seasonal affective disorder (SAD) 
[3]. SAD is a major depressive illness that has been linked 
with eye color; perhaps those with blue eyes were able to 
withstand the dark, depressing days of the Neolithic 
European winters better than those with brown eye color. 
Notably, the eye has specialized neurons in the retina 
(retinal ganglion cells) that can detect blue light as a non
visual response to help regulate circadian rhythms [134]: 
a missense allele of the photopigment melanopsin in 
retinal ganglion cells may predispose carriers to SAD 
[135], supporting this as a possible connection for the 
selective pressure on the OCA2 rs12913832*T/C SNP.

Conclusions
Each of our genomes are unique, but in comparison to 
other species the human population in general has a low 
level of genetic heterogeneity, with few regions under 
selection [136]. The genome differs in very specific ways, 
acting under the constraint of the environment that 
individuals find themselves in. The pigmentation gene set 
has responded in different ways at different periods of 
our history [137], with light skin developing in parallel in 
Europe and Asia by at least two mechanisms.

We can discern evidence for complete or near
complete selective sweeps for SLC24A5, TYR SLC45A2, 
and for incomplete sweeps for multiple other loci such as 
MC1R (Table 2). An interpretation of the patterns of 
allelic diversity at different pigmentation loci is that once 
the alleles of large effect came close to fixation under 
‘hard’ selection, then selective pressure was reduced with 
‘soft’ selection on other loci, encouraging intermediate 
frequency polymorphism of functional alleles, most 
notably in MC1R. We presume the functional variants 
segregating in OCA2 and TYRP1 in Oceania reflect weak 
purifying selection and drift, given that dark skin color in 
the Solomon Islands means baseline protection against 
UV damage is high. The puzzling observation that there 
are large ethnic differences in MC1R and IRF4 allele 
frequencies, but few longassociated haplotypes, might 
be seen as an effect of a combination of softened selection 
plus strong selection on linked loci. In the case of IRF4, 
there are multiple nearby SNPs in the same gene affecting 
lymphocyte maturation; for MC1R, loci such as FANCA 
and CDK10 are close, and these may be under selection 
themselves [138]. A final point is whether there is 
unequivocal evidence for selection on pigmentation traits 
other than skin color. We have suggested that the blue 
eye colors variants in OCA2 are the strongest candidates 
for this.
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While it is largely believed that human pigmentation 
has faced adaptive selection and been shaped by the 
environment and climate, the genetic causes and selective 
pressures responsible have been difficult to detect and 
resolve. With the flood of information coming from 
human genome projects there has been substantial 
progression of the field, as has been highlighted with the 
pigmentation loci and polymorphisms discussed in this 
article (Table 2). By studying compound haplotype 
systems within these genes, an attempt has been made to 
calculate the age of the alleles associated with lightening 
of European skin color. It is proposed that changes within 
KITLG appeared 30,000 years ago, and within TYRP1, 
SLC24A5 and SLC45A2 at 11,00019,000 years ago, 
respectively [139]. So in the future, even the timing of 
when these selective sweeps occurred may become 
known.
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