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Abstract

ChIP-Seq is widely used to characterize genome-wide binding patterns of transcription factors and other
chromatin-associated proteins. Although comparison of ChIP-Seq data sets is critical for understanding cell type-
dependent and cell state-specific binding, and thus the study of cell-specific gene regulation, few quantitative
approaches have been developed. Here, we present a simple and effective method, MAnorm, for quantitative
comparison of ChIP-Seq data sets describing transcription factor binding sites and epigenetic modifications. The
quantitative binding differences inferred by MAnorm showed strong correlation with both the changes in
expression of target genes and the binding of cell type-specific regulators.

Background
Chromatin immunoprecipitation followed by massively
parallel DNA sequencing (ChIP-Seq) has become the
preferred method to determine genome-wide binding
patterns of transcription factors and other chromatin-
associated proteins [1]. With the rapid accumulation of
ChIP-Seq data, comparison of multiple ChIP-Seq data
sets is increasingly becoming critical for addressing
important biological questions. For example, comparison
of biological replicates is commonly used to find robust
binding sites, and the identification of sites that are dif-
ferentially bound by chromatin-associated proteins in
different cellular contexts is important for elucidating
underlying mechanisms of cell type-specific regulation.
Although ChIP-Seq data generally exhibit high signal-
to-background noise (S/N) ratios compared to ChIP-on-
chip datasets, there are still significant challenges in data
analysis due to variation in sample preparation and
errors introduced in sequencing [1].
Several methods have been proposed for finding ChIP-

enriched regions in a ChIP-Seq sample compared to a
suitable negative control (for example, mock or non-
specific immunoprecipitation). These involve fitting a
model derived from negative control and/or sample low

read intensity (background) regions, and then applying
this model to identify ChIP-enriched regions (peaks)
[2-4]. However, few methods have been proposed for
comparison of ChIP-Seq samples. The simplest
approach classifies the peaks from each sample as either
common or unique, based on whether or not the peak
overlaps with peaks in other samples [5-10]. Although
this method can identify general relationships between
peak sets from different samples, the results are highly
dependent on the cutoff used in peak calling, which is
difficult to select in a completely objective manner.
Moreover, common peaks may show differential binding
between the samples being compared, while other peaks
may be identified as unique to one sample simply
because they fall below an arbitrary cutoff in the other
sample. Differences in background levels further con-
found analysis. Consequently, quantitative comparison
of ChIP-Seq samples, while important for extracting
maximal biological information, is fraught with numer-
ous challenges.
An intuitive and widely used approach of quantitative

comparison relies on rescaling data on the basis of the
total number of sequence reads. However, this method
is inadequate and may introduce errors when the S/N
ratio varies between samples. Recently, statistical tools
have been developed to discover regions that exhibit sig-
nificant differences between two ChIP-Seq data sets. For
example, Xu et al. [11] proposed a hidden Markov
model-based method to detect broad chromatin
domains associated with distinct levels of histone
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modifications between two cell types. Other peak calling
programs identify differential binding regions between
two ChIP-Seq data sets by using one data set as sample
and the other as control [2-4]. Since these methods also
rely on the total number of reads (or background region
reads) to re-scale the data, they fail to circumvent pro-
blems associated with different S/N ratios. In an alterna-
tive approach, Taslim et al. [12] proposed a nonlinear
method that uses locally weighted regression (LOWESS)
for ChIP-Seq data normalization. The underlying
assumption of this method is that the genome-wide dis-
tribution of read densities has equal mean value and
variance across samples [12]. A potential problem with
this approach is that global symmetry will be introduced
after normalization, an assumption that may not be
valid when comparing biological samples with different
numbers of binding sites. In addition, this method nor-
malizes samples based on the absolute difference of read
counts instead of log2 ratio commonly used in tradi-
tional MA plot methods [13], and thus the differences
deduced by this method cannot be used directly for
quantitative comparison with other observations of bio-
logical significance, such as fold changes in gene
expression.
Here, we describe a simple and effective model,

termed MAnorm, to quantitatively compare ChIP-Seq
data sets. To circumvent the issue of differences in S/N
ratio between samples, we focused on ChIP-enriched
regions (peaks), and introduced a novel idea, that ChIP-
Seq common peaks could serve as a reference to build
the rescaling model for normalization. This approach is
based on the empirical assumption that if a chromatin-
associated protein has a substantial number of peaks
shared in two conditions, the binding at these common
regions will tend to be determined by similar mechan-
isms, and thus should exhibit similar global binding
intensities across samples. This idea is further supported
by motif analysis that we present. MAnorm exhibits
good performance when applied to ChIP-Seq data for
both epigenetic modifications and transcription factor
binding site identification. Importantly, quantitative dif-
ferences inferred by MAnorm are strongly correlated
with differential expression of target genes and the bind-
ing of cell type-specific regulators. Comparisons to prior
methods using genome-wide signals for normalization
reveal that MAnorm is free of bias and better reflects
authentic biological changes. Therefore, MAnorm
should serve as a powerful tool in probing mechanisms
of gene regulation.

Results
Model description
Data normalization is an important step in sequencing
data analysis. However, normalization of ChIP-Seq data

is a difficult task due to the differential S/N ratio across
samples (see Discussion). These differences cannot sim-
ply be addressed using traditional microarray data nor-
malization methods, such as quantile normalization [14]
and MA plot followed by LOWESS regression [13].
Here we borrow the idea of the MA plot and propose a
novel method for quantitative comparison of ChIP-Seq
data sets based on two empirical assumptions. First, we
assume the true intensities of most common peaks are
the same between two ChIP-Seq samples. This assump-
tion is valid when the binding regions represented by
the common peaks show a much higher level of co-loca-
lization between samples than that expected at random,
and thus binding at the common peaks should be deter-
mined by similar mechanisms and exhibit similar global
binding intensity between samples. Second, the observed
differences in sequence read density in common peaks
are presumed to reflect the scaling relationship of ChIP-
Seq signals between two samples, which can thus be
applied to all peaks. Based on these hypotheses, the log2
ratio of read density between two samples (M) was
plotted against the average log2 read density (A) for all
peaks, and robust linear regression was applied to fit the
global dependence between the M-A values of common
peaks. Finally, the derived linear model was used as a
reference for normalization and extrapolated to all
peaks. The normalized M value was then used as a
quantitative measure of differential binding in each peak
region between two samples, with peak regions asso-
ciated with larger absolute M values exhibiting greater
differences in binding. The workflow of the method,
MAnorm, is shown in Figure 1. The MAnorm package
is available for download in Additional file 1.

Comparison of cell line-dependent epigenetic
modifications using MAnorm
Differential epigenetic modifications are closely asso-
ciated with many developmental and disease processes
[15]. As such, quantitative comparison of ChIP-Seq sig-
nals across multiple cell types may help elucidate under-
lying epigenetic mechanisms of disease and tissue-
specific regulation. We applied MAnorm to analyze the
differences between H1 human embryonic stem (ES)
cells and two disease-related cell lines, K562 and
HeLaS3, for two histone modifications positively asso-
ciated with gene expression, H3K4me3 and H3K27ac.
For each chromatin mark, peaks identified in each cell
line showed substantial overlap with those from the
other two cell lines, with the overlap ranging from 16-
to 24-fold greater than the overlap observed by random
permutations (Figure 2a; Supplementary Figure 1 in
Additional file 2). Before normalization, the MA plots
exhibited an overall global dependence of M value on A,
which was closely fitted by a linear model derived by
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Figure 1 Workflow of MAnorm. MAnorm takes the coordinate of all peaks and aligned reads in both samples as input. The (M, A) value of
each common peak is then calculated and plotted, where M = log2 (Read density in sample 1/Read density in sample 2) and A = 0.5 × log2
(Read density in sample 1 × Read density in sample 2). Robust regression is subsequently applied to the (M, A) values of all common peaks and
a linear model is derived. Finally, the linear model is extrapolated to all peaks for normalization. A P-value is also calculated for each peak to
describe the statistical significance of read intensity difference between the two samples being compared.
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Figure 2 Normalization of H3K4me3 ChIP-Seq data in H1 ES cells and K562 cells. (a) Venn diagram representing the overlap of H3K4me3
peaks between H1 ES and K562 cells. The overlap of peaks between the two cell lines was 24-fold greater than that observed for random
permutations of the peak sets. (b,c) MA plots of all peaks from both samples before (b) and after MAnorm (c). The red line is the linear model
derived from common peaks by robust regression. Purple and green circles represent unique peaks; red and black circles represent common
peaks. (d) P-values associated with normalized peaks, displayed as an MA plot, with the color range representing -log10 P-value. Most peaks
associated with |M| > 1 have a P-value < 10-10.
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robust regression (Figure 2b; Supplementary Figure 2 in
Additional file 2). A similar global dependence was evi-
dent in comparisons of biological replicates (Supplemen-
tary Figure 7 in Additional file 2; discussed below),
indicating the dependence of M on A does not reflect
biological changes but is due mainly to systemic bias
and noise. After application of MAnorm to remove this
dependence from the set of common peaks, the distribu-
tion of common peaks became highly symmetric with
respect to the new A axis. Furthermore, the two sets of
unique peaks became more symmetric in all compari-
sons (Figure 2c; Supplementary Figure 2 in Additional
file 2). These observations suggest that the ChIP-Seq
signals in all peaks follow a similar scaling relationship
and that the extrapolation of the linear model from
common peaks to all peaks is valid. The significance of
differential binding in each peak region was determined
using a P-value calculated based on a Bayesian model
developed by Audic and Claverie [16] (Figure 2d; Sup-
plementary Figure 2 in Additional file 2).
Next, we investigated the relationship between the M

value (= log2 (Read density in cell type 1/Read density in
cell type 2)) and the change in expression of peak tar-
gets between cell types. In general, target genes asso-
ciated with positive M values - that is, peaks with higher
H3K4me3 and H3K27ac read intensity in cell type 1 -
were enriched in genes more highly expressed in cell
type 1. Conversely, target genes associated with negative
M values were enriched in genes more highly expressed
in cell type 2 (Figure 3; Supplementary Figure 3 in
Additional file 2). These findings are consistent with the
activating role of these two histone modifications [17].
Notably, the enrichment score of genes more highly
expressed in cell type 1 showed strong positive correla-
tion with the M values, while the enrichment score of
genes more highly expressed in cell type 2 correlated
negatively with M, suggesting that the M statistics deter-
mined by MAnorm serve as an indicator of cell type-
specificity for the epigenetic marks in peak regions (Fig-
ure 3; Supplementary Figure 3 in Additional file 2).
Furthermore, the target genes associated with an abso-
lute M value > 1 were significantly enriched in genes
highly expressed in the corresponding cell type among
all our comparisons, implying that the absolute M value
of 1 is a suitable cutoff for defining cell type-specifically
marked genes. It should be noted that many common
target genes were associated with M values far from 0,
and were still highly enriched for cell type-specifically
expressed genes (Figure 3a; Supplementary Figure 3a in
Additional file 2), indicating that the differential epige-
netic marks at these genes are also functional. On the
other hand, those unique target genes with M values
near zero displayed much weaker enrichment of cell
type-specifically expressed genes (Figure 3b, c;

Supplementary Figure 3b, c in Additional file 2), indicat-
ing that they are not uniquely marked in one cell type.
MAnorm also exhibited good performance when applied
to ChIP-seq datasets composed of broad, diffuse peaks,
such as histone modifications like H3K36me3 (Supple-
mentary Figure 4 in Additional file 2 and Supplementary
Text in Additional file 3). In conclusion, MAnorm
quantitatively describes authentic binding differences of
chromatin-associated proteins, and thus represents an
improvement over arbitrary definitions of common and
unique targets based on peak overlap between samples.

Identification of cell type-specific regulators directly
associated with differential binding
A conventional strategy to identify cell type-specific reg-
ulators associated with changes in epigenetic marks
relies on the identification of transcription factor bind-
ing sites that are highly enriched in unique peak regions.
This method often yields multiple candidates, and thus
complicates the identification of key regulators asso-
ciated with the differences in epigenetic marks in each
cell type. One advantage of the continuous M value
determined by MAnorm is that it can be used to iden-
tify potential regulators driving cell type-specific epige-
netic modifications. To do so, we searched for motifs
that show the highest correlation with M values for all
peaks. For example, we compared H1 ES and K562 cell
lines for differences in H3K27ac, a histone mark that
serves as an indicator of both active promoters and cell
type-specific enhancers [18,19]. We found that OCT4
(POU5F1) and SOX2 binding motifs were closely clus-
tered with the M value (= log2 (H3K27ac read density in
H1 ES cells/H3K27ac read density in K562 cells) of
H3K27ac peaks (Figure 4a), suggesting the correspond-
ing factors are closely related to the activation of ES
cell-specific genes and cis-elements. In contrast, -M
value (= log2 (H3K27ac read density in K562 cells/
H3K27ac read density in H1 ES cells) formed a compact
module with the binding motifs for transcription factors
GATA1 and SCL (TAL1) (Figure 4b), suggesting their
roles as regulators favoring H3K27ac modification in
K562 cells. These findings are consistent with the estab-
lished roles of OCT4-SOX2 in ES cell self-renewal
[20,21] and GATA-SCL in hematopoiesis and leukemo-
genesis [5]. On the other hand, several motifs, including
MYC and ETS motifs (for example, ELK1, ELK4,
GABPA), were highly enriched in both peak sets, but
showed no association with the differential binding of
H3K27ac (specifically, M value); this indicates they are
involved in H3K27ac modification in a non-cell type-
specific manner. This finding in turn supports the work-
ing assumption of our model that binding at most com-
mon peaks is determined by similar mechanisms.
Furthermore, upon comparison of the H3K27ac marks
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Figure 3 Quantitative differences in H3K4me3 marks between two cell lines are strongly correlated with cell type-specific expression
of peak targets. (a) Enrichment of the target genes of all common H3K4me3 peaks in H1 ES cells and K562 cells in cell type-specifically
expressed genes as identified by SAM (see Materials and methods). The target genes were grouped by the M values of nearby peaks and the
enrichment scores were calculated as the ratio of overlap between target genes grouped by M value and differentially expressed genes
compared to expected overlap at random. (b,c) Enrichment of the the target genes of all unique H3K4me3 peaks in H1 ES cells (b) or K562 cells
(c) in cell type-specifically expressed genes.
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Figure 4 Hierarchical clustering of the M value and motif scores in all H3K27ac peaks of H1 ES cells and K562 cells. (a,b) Hierarchical
clustering was applied to the correlation coefficients of M values (= log2 (Read density in H1 ES/Read density in K562)) or -M values (= log2
(Read density in K562/Read density in H1 ES)) of all H3K27ac peaks identified in H1 ES cells (a) or K562 cells (b), with motif scores determined for
130 JASPAR vertebrate core motifs in the peak regions. Only the motifs significantly enriched in the peaks of either cell type are shown here
(enrichment score > 1.2 and Bonferroni corrected P-value < 1e-5 by Fisher exact test). The names of the motifs closely clustered with M value or
-M value are colored in red.
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Figure 5 Comparison of c-Myc ChIP-Seq data between HeLaS3 and K562 cell lines. (a) Venn diagram showing the overlap of c-Myc
binding site peaks between HeLaS3 and K562 cell lines. The overlap of cMyc peaks between the two cell lines was 65-fold greater than that
observed for random permutations of the peak sets. (b,c) Hierarchical clustering of correlation coefficients of M value or -M value of all c-Myc
peaks in HeLaS3 cells (b) and K562 cells (c) with the motif scores in the corresponding peak regions. Only significantly enriched motifs are
shown. (d) Scatter plot of the M values determined for c-Myc binding versus the M values for H3K27ac based on ChIP-Seq comparisons
between HeLaS3 and K562 cell lines.
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in H1 ES or K562 cells with those in HeLaS3 cells, these
same transcription factor motifs were tightly associated
with the H1 ES or K562-specific enrichment of
H3K27ac marks at the corresponding target regions
(Supplementary Figure 5 in Additional file 2), indicating
the clustering results are robust. Thus, MAnorm serves
as a powerful tool to uncover transcription factor motifs
and factors critical for cell-specific gene regulation.

Differences in c-Myc binding between HeLaS3 and K562
cells
The oncogene Myc (c-Myc) is an important transcrip-
tional regulator in both ES cells and cancer cells [22,23].
Mechanisms underlying its cell type-specific binding are
largely unknown. We applied MAnorm to quantify dif-
ferential binding of c-Myc in HeLaS3 and K562 cells
and explored its relationship with other factors. Using a
P-value cutoff of 1E-6, 18,924 peaks were detected in
the c-Myc ChIP-Seq data set of HeLaS3 cells, and
13,140 peaks were detected in K562 cells; approximately
6,000 peaks were common to both cell lines (Figure 5a).
MAnorm largely removed the global dependence of M
on A (Supplementary Figure 6a, b in Additional file 2).
A significant fraction of c-Myc peaks were associated
with M values far from zero, suggesting that c-Myc has
a large number of differential binding loci between
HeLaS3 cells and K562 cells. To search for cell line-spe-
cific co-factors that might contribute to such differential
binding, we performed hierarchical clustering between
the M statistics inferred by MAnorm and the motif
scores in the c-Myc binding peaks. The c-Myc motif
was highly enriched in both sets of c-Myc peaks (data
not shown), but did not show significant correlation
with M statistics in either clustering map (Figure 5b, c),
indicating that the c-Myc motif is not responsible for
the cell line-differential binding seen for c-Myc. Of note,
the M statistic (= log2 (c-Myc read density in K562/c-
Myc read density in HeLaS3)) clustered with the motifs
of two other factors, GATA1 and SCL (TAL1) (Figure
5b), and the -M statistic (= log2 (c-Myc read density in
HeLaS3/c-Myc read density in K562) clustered with the
motifs of AP1 and TEAD1 (Figure 5c). Strikingly, these
clustering patterns were highly similar to those obtained
from the comparison of the H3K27ac mark between
these two cell types (Supplementary Figure 5b in Addi-
tional file 2), suggesting an underlying correlation
between the cell type-specific binding of c-Myc and the
H3K27ac mark. To test whether this was the case, we
mapped c-Myc binding sites to gene promoters, and
found that for the 9,013 genes targeted by both c-Myc
and H3K27ac, the Pearson correlation coefficient
between the M statistics of c-Myc and H3K27ac was
0.73 (Figure 5d), lending further support to our cluster-
ing result.

Application to the integration of ChIP-Seq replicates
Integrating ChIP-Seq data from multiple biological
replicates, which in some cases are generated by differ-
ent laboratories and/or using different platforms, may
be employed to reduce the false positive rate in identi-
fied binding sites. A simple approach is to define a
stringent set of peaks composed only of the common
peaks shared by two or more replicates. However, this
method is highly sensitive to peak cutoff and may
exclude peaks that have similar ChIP intensities
between replicates. Moreover, some common peaks that
show dramatic differences in read density are retained.
Therefore, to make full use of the information in biolo-
gical replicates, a quantitative comparison of peak inten-
sity is particularly useful. We have applied MAnorm to
compare two replicates of H1 ES cell H3K27ac ChIP-
Seq data. After application of MAnorm (Supplementary
Figure 7a, b in Additional file 2), many of the unique
peaks were associated with M values close to zero, indi-
cating that these peaks exhibit good reproducibility
between replicates. On the other hand, there remained
a small fraction of common peaks with M values far
from zero, representing strong signal differences
between replicates. Next, we showed that the M value
between replicates is a good indicator of H3K27ac tar-
get gene expression. We grouped H3K27ac target genes
by the absolute value of M statistics and calculated the
expression distribution of each gene group. Given that
H3K27ac marks are positively associated with gene
expression, we anticipated that more highly expressed
genes will have stronger H3K27ac marks, and therefore
be more reliable. In fact, we observed that genes having
higher expression tend to be the targets of H3K27ac
peaks with lower absolute M values, that is, peaks show-
ing smaller difference between replicates, for both com-
mon peaks and unique peaks (Supplementary Figure 7c-
e in Additional file 2). Furthermore, by overlapping the
above set of ENCODE peaks with H3K27ac peaks for
H1 ES cells generated in a different laboratory [19], we
found that a much lower proportion of the peaks with |
M| > 1 were covered by the new peak set than those
with |M| < 1 (Supplementary Figure 7f in Additional
file 2). This suggests that |M| = 1 can also be used as
an empirical cutoff to filter unreliable peaks. Thus,
MAnorm can be used both to check whether two repli-
cates are concordant, and also to obtain high confidence
peak lists by filtering out inconsistent peaks. Compared
with arbitrary removal of unique peaks, MAnorm allows
for better use of replicate peak data. The MAnorm
package (Additional file 1) provides the opportunity to
list concordant and non-concordant peaks between two
samples based on user-specified cutoffs, with the con-
cordant peak list corresponding to high-confidence
peaks.
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Figure 6 Comparison of different normalization models. (a-c) MA plot of H3K27ac peaks in H1 ES cells and K562 cells after normalization by
total reads (a), quantile normalization (b) and genome-wide MA plot followed by LOWESS regression (c). The corresponding MA plot based on
MAnorm is shown in Supplementary Figure 2a in Additional file 2. (d-g) Scatter plot of log2 expression ratios of target genes between H1 ES
cells and K562 cells versus the M values normalized by total reads (d), quantile normalization (e), genome-wide MA plot followed by LOWESS
normalization (f), and MAnorm (g). The color bar represents the density of dots in the scatter plot and purple dots represent the outliers
separated from the others. (h) Distribution of M values for each normalization method and distribution of log2 expression ratios of non-
differentially expressed target genes (fold-change < 1.5). T-statistics and P-values calculated based on one sample Students’ t-test comparing to 0
for each normalization method were as follows: MAnorm, t-statistic = -0.55 and P = 0.58 by t-test; total reads normalization, t-statistic = -88 and
P < 1E-100; quantile normalization, t-statistic = -140 and P < 1E-100; genome-wide MA, t-statistic = 24 and P < 1E-100. For non-differentially
expressed target genes, t-statistic = -0.76 and P = 0.45.
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Comparison with other methods
We compared the performance of MAnorm with three
widely used normalization methods that use genome-
wide signals as reference, namely, normalization by total
reads, quantile normalization, which assumes the gen-
ome-wide distribution of read densities to be the same
across samples, and normalization using a genome-wide
MA plot followed by LOWESS regression. We used all
four methods to compare H3K27ac ChIP-Seq data
between H1 ES and K562 cells. The MA plot normal-
ized by MAnorm (Supplementary Figure 2a in Addi-
tional file 2) was relatively symmetric, while
corresponding plots obtained by the other three normal-
ization methods remained highly asymmetric. Of note,
the common peaks showed a clear global bias towards
stronger binding in K562 cells for total read normaliza-
tion and quantile normalization (Figure 6a, b) and
toward H1 ES cells for genome-wide MA plot normali-
zation (Figure 6c). To examine which method better
reflects a true biological signal, we compared M values
normalized by all four methods with the expression
change of target genes. If a specific type of histone mod-
ification is closely related to gene regulation, the direc-
tion of histone modification change should be consistent
with that of the change in expression of the target
genes. By visual inspection, we found this was true for
the M values normalized by MAnorm (Figure 6g). In
contrast, M values normalized by the other three meth-
ods were inconsistent with the log2-expression ratios of
target genes (Figure 6d-f). Specifically, most of the genes
with no change in H3K27ac levels (M = 0) had higher
(total read and quantile normalization) or lower (gen-
ome-wide MA plot normalization) expression in H1 ES
cells compared to K562 cells; while the majority of the
genes expressed at similar levels in these two cell types
were associated with negative (total read and quantile
normalization) or positive (genome-wide MA plot nor-
malization) M values, that is, they had higher (total read
and quantile normalization) or lower (genome-wide MA
plot normalization) levels of H3K27ac in K562 cells.
To quantitatively measure the bias of the M values

given by the above normalization methods, we first col-
lected non-differentially expressed genes (fold-change <
1.5) between H1 ES cells and K562 cells. As shown in
Figure 6h, these genes are indeed not differentially
expressed (t-statistics = -0.76 and P-value = 0.45 by Stu-
dents’ t-test in comparison to an expression ratio of 1
(M = 0)), indicating they are suitable for our compari-
son. Since H3K27ac marks are closely associated with
transcriptional activation, it is reasonable to assume that
these non-differentially expressed genes should exhibit
similar global H3K27ac levels. This is true only for
H3K27ac levels determined by MAnorm, where the M
values for H3K27ac of the non-differentially expressed

target genes were not significantly different from a ratio
of 1 (M = 0; t-statistic = -0.55 and P-value = 0.58 by t-
test; Figure 6h, red curve). In contrast, M values for
H3K27ac obtained by the other three normalization
methods exhibited large deviations from M = 0 (t-statis-
tic ranging from 24 to 140 and P-value < 1e-100; Figure
6h). Thus, MAnorm exhibits superior performance in
identifying authentic biological changes.
We also compared the performance of MAnorm in

detecting differential binding regions in ChIP-Seq data
sets with that of two currently used statistical methods,
ChIPdiff [11] and MACS [4]. For this analysis, one data
set was used as sample and the other was used as con-
trol in order to detect regions with significantly elevated
ChIP-Seq signals in the first data set [4]. We applied all
three methods to compare ChIP-Seq data for H3K27ac
marks between H1 ES cells and K562 cells (Supplemen-
tary Table 1 in Additional file 4). ChIPdiff and MACS
identified four to six times more target regions asso-
ciated with significantly increased ChIP-Seq signals for
K562 cells compared with those found for H1 ES cells,
whereas MAnorm yielded a similar number of cell type-
biased peaks in each cell line. To compare the enrich-
ment of cell type-specifically expressed genes in the sets
of target genes of the differential binding regions discov-
ered by the three methods, we selected the same num-
ber of target genes associated with top differential
binding regions identified by each method. The target
genes of top differential binding regions identified by
MAnorm contained similar numbers of H1 ES cell
highly expressed genes but a greater number of K562
cell highly expressed genes compared to those identified
by ChIPdiff and MACS (Supplementary Table 1 in
Additional file 4), suggesting MAnorm performs better
in detecting differentially binding regions than the other
two methods. Importantly, the fold changes of differen-
tial binding given by ChIPdiff and MACS were based on
the total number of reads, which may not be appropri-
ate, as discussed above. Additionally, MAnorm showed
even better enrichment of cell type-specifically expressed
genes in differential binding region targets than the
method developed by Taslim et al. [12] when applied to
ChIP-Seq data presented in their study (Supplementary
Table 2 in Additional file 4).

Discussion
Normalization methods are typically based on the
assumption that certain properties are invariant across
samples. For example, quantile normalization in gene
expression microarrays renders the distribution of
expression levels of all genes constant between samples
[14]. Alternatively, normalization may be based on
housekeeping genes, whose expression is presumed to
remain constant across samples. The situation is quite
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different in ChIP-Seq studies, since the binding of most
chromatin-associated proteins is highly dynamic and cell
type-dependent. Thus, it is arbitrary to assume that the
genome-wide distribution of ChIP-seq signals remains
constant between samples. It is also challenging to iden-
tify reliable control genomic regions bound by a chro-
matin-associated protein in a non-cell type-specific
manner that can serve as an internal reference for nor-
malization. Yet another difficulty underlying ChIP-Seq
studies is background noise, which is often difficult to
distinguish from authentic ChIP signals. Furthermore,
the S/N ratio often varies across samples. These same
issues apply to DNase-Seq data sets, as discussed else-
where [24]. In many peak-calling models, the distribu-
tion of background signal is used to normalize sample
and control data, which is reasonable when control data
are composed mainly of background signal, and the pur-
pose is to identify sequence read-enriched regions
within a sample that shows significant differences com-
pared to the background. However, this approach is
inappropriate for sample-to-sample comparisons, espe-
cially when the S/N difference is large across samples.
For example, samples relatively free of ‘noise’ will yield a
larger number of statistically significant peaks compared
to samples with a higher level of background sequence
reads, but these additional peaks may not be true cell
line-specific or condition-specific peaks. In MAnorm,
we focused only on regions identified as significant
peaks, and thus minimized the impact of S/N differences
between samples. Accordingly, the output of MAnorm
focuses on peak regions most likely to be of biological
relevance.
MAnorm shows improved performance when com-

pared with other methods currently used to detect differ-
ential binding regions between ChIP-Seq data sets. More
importantly, MAnorm provides a quantitative measure-
ment of binding differences, which reflects authentic bio-
logical differences. This feature is an asset for
downstream analysis, including expression assays and
transcription co-factor identification studies. Although
the definition of ChIP-Seq peaks is highly dependent on
the cutoff used in peak calling, MAnorm is robust to cut-
off selection (Supplementary Figure 8 in Additional file 2
and Additional file 3). Furthermore, the normalized read
densities of each peak in both ChIP-Seq samples can be
calculated from the (M, A) values normalized by MAn-
orm, and then used to evaluate whether the cutoffs used
to define peaks are comparable between the ChIP-Seq
samples being compared (Supplementary Figure 8 in
Additional file 2 and Additional file 3).
MAnorm relies on two working assumptions. First,

MAnorm is designed for quantitative comparison of
ChIP-Seq data sets that have a substantial number of
peak regions in common. Second, MAnorm postulates

that there are no global changes in the true ChIP signals
at these common peaks. We believe these underlying
hypotheses are widely applicable and do not significantly
restrict the use of MAnorm, as exemplified by our appli-
cation of MAnorm to elucidate hormone-regulated, cell
state-specific transcription factor binding in mouse liver
in vivo [25]. For ChIP-seq samples for which there is
not a significant overlap in peak sets, the binding of
chromatin-associated proteins could be uncorrelated or
even anti-correlated at a genome-wide scale and MAn-
orm would not be applicable. However, in that case a
quantitative comparison would likely not be that useful.
In addition, in cases where the binding patterns for a
chromatin-bound factor change widely across the gen-
ome, such as following knock down of a core subunit of
a chromatin-associated protein complex [26], more spe-
cific analysis would be required to quantitatively deter-
mine the global changes.
The pairwise approach to comparison of ChIP-Seq

samples proposed here can be extended to multiple
sample comparison, as was successfully demonstrated in
the case of two-channel microarray data analysis [13].
Furthermore, it is well known that transcription factors
and epigenetic modifications act together to modulate
gene expression [27]. Most recently, statistical models
have been developed to study such combinatorial pat-
terns in a genome-wide fashion [28-32]. However, how
changes in epigenetic marks and transcriptional factors
correlate with each other across cell lines is still largely
unexplored. In this study, we used MAnorm to success-
fully detect an underlying correlation between cell-type
dependent binding of c-Myc and the H3K27ac mark in
two disease-related cell types. Thus, it will be interesting
to integrate quantitative changes of other epigenetic
marks and transcriptional factors for further elucidation
of the complex mechanisms underlying cell type-specific
regulation.

Conclusions
MAnorm exhibited excellent performance in quantita-
tive comparison of ChIP-Seq data sets for both epige-
netic modifications and transcription factors; the
quantitative binding differences inferred by MAnorm
were highly correlated with both the changes in expres-
sion of target genes and also the binding of cell type-
specific regulators. With the accumulation of ChIP-seq
data sets, MAnorm should serve as a powerful tool for
obtaining a more comprehensive understanding of cell
type-specific and cell state-specific regulation during
organism development and disease onset.

Materials and methods
The workflow of MAnorm is summarized in Figure 1.
First, four bed files that describe the coordinates of all
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predefined peaks and aligned sequence reads of two
ChIP-Seq samples are used as input. Second, MAnorm
calculates the number of reads in a window of the same
length centered at the summit of each peak. Here the
window size should be comparable to the median length
of ChIP-enriched regions; we recommend 2,000 bp win-
dow size for histone modifications and 1,000 bp for
transcription factor binding sites. The (M, A) value of
each peak is then defined as:

M = log2(R1/R2) (1)

and:

A = log2(R1 × R2)/2 (2)

Here, R1 is the read density at this peak region in
ChIP-Seq sample 1 and R2 is the corresponding read
density in sample 2. To avoid log20, we added a value of
1 to the real number of reads for all peaks. Thus, the
value of M describes the log2 fold change of the read
density at a peak region between two samples, while A
represents the average signal intensity in terms of log2-
transformed read density. To build the normalization
model, each peak of the two samples being compared
was further classified as a common or a unique peak,
depending on whether or not it overlapped (by at least
one nucleotide, as implemented in our analysis in this
study) with any peak in the other sample. The down-
loadable MATLAB MAnorm package (Additional file 1)
also provides a parameter for users to select common
peaks based on a cutoff of peak summit-to-summit dis-
tance. By default, this value is set to 500 bp for histone
modifications and 250 bp for transcription factors. In
addition, when a peak overlaps with multiple peaks in
the other sample, MAnorm selects the peak with the
smallest summit-to-summit distance to avoid potential
bias in building the normalization model. Next, robust
regression was applied to the M-A values of common
peaks using iterative re-weighted least squares with a bi-
square weighting function [33] and a linear model was
derived to fit the global dependence between the M-A
values of these peaks:

M = a + b × A (3)

To normalize the (M, A) values of all peaks, MAnorm
performed coordinate transformation to make the A
axis overlap with the linear model derived from regres-
sion. The corresponding (M, A) value under the new
coordinate system was then taken as the normalized (M,
A) value of each peak. Finally, a P-value associated with
each peak was calculated to quantify the significance of
differential binding at this locus using a Bayesian model
developed by Audic and Claverie [16]:

p(y|x) = (x + y)!/x!y!2x=y=1

in which x and y specify the normalized read count
at this peak in sample 1 and sample 2, respectively.
Additional file 3 provides further details on P-value
calculations. When the read densities at most peak
regions are high, most peaks associated with absolute
M values > 1 are associated with significant P-values.
Then, the M value can be used to rank peaks and
select differential binding regions, as was done in ana-
lyzing ENCODE ChIP-Seq data (Supplementary Table
1 in Additional file 4). When read densities at most
peak regions are relatively low, some of the peaks asso-
ciated with absolute M values > 1 may still fail to
obtain significant P-values. In such a case, we suggest
ranking peaks by P-values and defining differential
binding regions using combined cutoffs of both M
value and P-value, as we did when analyzing the ChIP-
seq data from Taslim et. al. [12] (Supplementary Table
2 in Additional file 4).
The output of MAnorm includes the normalized (M,

A) value and the corresponding P-value of each peak.
To illustrate the normalization process, the (M, A)
values of all peaks before and after normalization are
plotted together with the linear model derived from
common peaks. The MAnorm package will also gen-
erate three bed files presenting the genome coordi-
nates for the non-differential binding region and two
differential binding regions based on user-specified
cutoffs, together with two wig files (corresponding to
the two peak lists under comparison) that can be
uploaded to a genome browser for visualization of the
M value for each peak (Supplementary Figure 9).
MATLAB and R versions of the MAnorm package are
available for downloading in Additional file 1.

Application of MAnorm to ENCODE ChIP-Seq data
The performance of MAnorm was tested using
ENCODE ChIP-Seq data describing histone modifica-
tions (H3K4me3 and H3K27ac) [34] and transcription
factor binding (c-Myc and Pol II) [35] across three
human cell lines: H1 ES cells, HeLaS3 cells, and K562
cells [36]. Since these data were generated and pro-
cessed by different laboratories associated with the
ENCODE project, the data sets were reanalyzed and the
ChIP-Seq peaks in each sample were redefined using
MACS [4] using a P-value cutoff of 1e-10 for histone
modifications and a P-value cutoff of 1e-6 for transcrip-
tion factor binding. The peaks of histone modifications
were further filtered by the false discovery rate (FDR)
values modeled by MACS. The target genes of each
group of peaks were defined as those RefSeq genes that
have a given peak(s) in the promoter region, defined as
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the region from 8 kb upstream to 2 kb downstream of
the transcription start site.
Gene expression data for all three cell types were col-

lected from the Gene Expression Omnibus (GEO) data-
base using accession numbers [GEO:GSE26312] (for H1
ES cells) [29], [GEO:GSE2735] (for HeLaS3 cells) [37]
and [GEO:GSE12056] (for K562 cells) [38], and the raw
data were reprocessed by dChip [39]. The differentially
expressed genes were subsequently identified by Signifi-
cance Analysis of Microarrays (SAM) [40] using a com-
bined cutoff of fold change > 2 and FDR < 0.01. In
total, 3,465 genes more highly expressed in H1 ES cells
and 2,224 genes more highly expressed in K562 cells
were identified from the H1 ES to K562 comparison;
5,815 genes more highly expressed in H1 ES cells and
1,649 genes more highly expressed in HeLaS3 cells were
identified from the H1 ES cell to HeLaS3 cell compari-
son; and 3,555 genes more highly expressed in HeLaS3
cells and 5,916 genes more highly expressed in K562
cells were identified from the HeLaS3 cell to K562 cell
comparison. To study the relationship between binding
differences in peak regions and the expression change of
the corresponding target genes, we used the M values of
peaks to divide the targeted genes into different groups
separated by integer M values from -4 to 4, and then
calculated the enrichment score of the overlap between
each gene group and those differentially expressed
genes. To avoid extreme enrichment scores, groups
composed of < 50 genes were merged with the larger of
the adjacent two gene groups.

Motif scan and hierarchical clustering of motif scores with
peak M value
To detect the potential binding of transcription factors
in defined peak regions, we downloaded the position
weight matrixes of 130 core vertebrate motifs from the
JASPAR database [41] and performed motif scan [42]
applied to a 1,000 bp window centered at the peak sum-
mit. For each motif F, the raw motif matching score at
each peak P was calculated as:

max
s∈p

[
log

P(S|M)
P(S|B)

]

in which S is a sequence fragment of the same length
as the motif and B is the background frequency of dif-
ferent nucleotides estimated from 10,000 random 1,000
bp sequences sampled from the genome. The motif
score of motif M in peak P was defined as the raw motif
matching score divided by the maximum possible score,
that is, the raw motif score obtained by the consensus
sequence of the motif.
To identify transcription factors associated with cell

type-specific binding of the ChIP’d proteins, we applied

hierarchical clustering with Ward’s linkage to cluster the
M value with the motif matching score of JASPAR
motifs in all peaks of cell type 1, and separately the -M
value was clustered with the motif scores in all peaks of
cell type 2, using ‘1 - r’ as the distance metric, where r
is the Pearson correlation coefficient. Only motifs with
an enrichment score > 1.2 and Bonferroni-corrected P-
value < 1.0E-5 by Fisher exact test are shown in the
clustering plots.

Comparing the performance of MAnorm and other
methods
For total read normalization, we divided the read inten-
sity of each peak region by the total number of mapped
sequence reads. For quantile normalization, we first
divided the whole genome into non-overlapping bins of
the same size as the window used in MAnorm (2,000 bp
for H3K27ac), and then calculated the read count in
each bin. Finally, the distribution of bin read counts was
normalized to be the same by matching all quantiles
between samples. For normalization by genome-wide
MA plots, we first divided the whole genome into non-
overlapping bins of the same size as the window used in
MAnorm (2,000 bp for H3K27ac), and then calculated
the M-A value of each bin. The dependence between
M-A value was then removed by subtracting M values
with local linear model fitted by LOWESS regression
from the genome-wide M-A values.
To compare the performance of MAnorm with the

model developed by Taslim et al. [12], we used MACS
to identify peaks from the same Pol II ChIP-Seq datasets
used by [12], and then applied MAnorm to compare Pol
II binding profiles between estradiol (E2)-stimulated
MCF7 cells and unstimulated MCF7 cells. The gene
expression data of unstimulated and E2-stimulated
MCF7 cells was obtained from the GEO database, acces-
sion number [GEO:GSE11352] [43]. We identified 59
genes showing higher expression in unstimulated MCF7
cells and 130 genes showing higher expression in E2-sti-
mulated (12 h) MCF7 cells using SAM with fold change
> 2 and FDR < 0.1. Finally, the performance of MAnorm
was evaluated by comparing the difference of Pol II
binding determined by both models with the differential
expression of target genes.

Additional material

Additional file 1: MAnorm package written in MATLAB and R.

Additional file 2: Supplementary figures.

Additional file 3: Supplementary text. Includes text on the use of
MAnorm normalized read density to determine whether the peak calling
cutoff is comparable between two ChIP-seq data sets; results of
downstream analyses following MAnorm are robust to different peak
cutoffs; integrating multiple replicates in ChIP-seq data set comparison;
derivation of the P-value that quantifies the significance of differential
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binding at peak regions; using MAnorm to compare H3K36me3 ChIP-seq
data; assessing the effect of number of common peaks used in analysis;
comparing signal-to-noise ratio before and after normalization;
Supplementary Methods.

Additional file 4: Supplementary Tables - comparison of MAnorm
with other methods.
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