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Genome Biology

Predicting the effects of frameshifting indels

Jing Hu' and Pauline C Ng*'

Abstract

Each human has approximately 50 to 280 frameshifting indels, yet their implications are unknown. We created SIFT
Indel, a prediction method for frameshifting indels that has 84% accuracy. The percentage of human frameshifting
indels predicted to be gene-damaging is negatively correlated with allele frequency. We also show that although the
first frameshifting indel in a gene causes loss of function, there is a tendency for the second frameshifting indel to
compensate and restore protein function. SIFT Indel is available at http://sift-dna.org/www/SIFT_indels2 htm!

Background

Small insertions/deletions (indels of 20 bp or less)
account for nearly 24% of known Mendelian disease
mutations. It is the second largest class of mutation type
that leads to disease following amino acid substitutions,
which account for over half of known Mendelian disease
mutations [1]. There exist many bioinformatics algo-
rithms that predict whether an amino acid substitution
affects protein function (for example, SIFT [2], PolyPhen
[3]; see [4] for a review), and these are commonly used
for predicting and prioritizing disease variants, but very
little work has been done for indels [5]. Because indels
account for a significant fraction of known disease-caus-
ing mutations, an algorithm that can clearly distinguish
between neutral and gene-damaging indels would be
useful.

Historically, indels have been less studied compared to
single nucleotide variants and structural variation. Indel
identification is challenging for Sanger and next-genera-
tion sequencing, although advances have been made
[6-9]. Mills et al. [10] identified 1.96 million indels from
Sanger reads in the NCBI trace archive that showed
relatively low overlap with dbSNP, 1000 Genomes, and
five personal genomes. This indicates that indel discov-
ery has not reached saturation. As more indels are iden-
tified, the challenge will be to characterize these new
variants.

Indels in coding regions of the genome that have
lengths that are not divisible by three may cause frame-
shifts. The mutant mRNA may be subsequently
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degraded by nonsense-mediated or non-stop-mediated
mRNA decay [11-13]. Researchers tend to assume these
frameshifting (FS) indels are loss-of-function variants.
However, we and other researchers have identified some
trends for FS indel variants observed in the human
population. For example, polymorphic indels tend to
cluster towards the end of a protein, thereby avoiding
nonsense-mediated decay [14,15]. They also tend to
occur in hypothetical and olfactory genes, which are
under relaxed selection [14]. This suggests that some FS
indels could be functionally neutral.

Each individual human genome can contain approxi-
mately 50 to 280 small FS indels [16,17]. However, identi-
fication of FS indels is prone to sequencing, mapping,
and annotation errors so the real number is likely to be
towards the lower end of this range [17]. With inexpen-
sive and ubiquitous genome sequencing, it would be
time-consuming to analyze these hundreds of mutations
manually, yet it would be important to distinguish the
functionally neutral indels from those that are under
negative selection. We present the SIFT indel algorithm,
which predicts the effects of indels at 84% accuracy. This
is an extension to the SIFT algorithm, which predicts the
effect of amino acid substitutions [2,18-20]. We show
that the percentage of FS indels predicted to be gene-
damaging is negatively correlated with allele frequency.
We also show that genes with FS indels are dynamically
evolving between nonfunctional and functional forms.

Results

Classifier construction and performance

We construct a classifier based on the decision tree
algorithm to predict if an indel is ‘gene-damaging’
(affects the function of the gene it resides in) or ‘neutral’
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(does not affect gene function). The SIFT Indel classifier
was trained to distinguish between two datasets: (1) a
set of disease-causing FS indels, and (2) functionally
neutral indels. The disease-causing FS indels were taken
from the Human Gene Mutation Database (HGMD)
[21], a database of disease mutations found in patients.
The neutral indels consisted of coding indels with sizes
not divisible by three that were derived from pairwise
alignments of human with cow, dog, horse, chimpanzee,
rhesus macaque, and rat [22] (Materials and methods).

Decision tree algorithms have been widely applied to
many bioinformatics problems, including the classifica-
tion of SNPs [23-25]. One of the benefits of decision tree
algorithms compared with other black-box machine
learning algorithms (for example, neural networks, sup-
port vector machine, and so on) is that it provides inter-
pretable classification rules, which might provide insight
about the mechanism behind the classification. We there-
fore constructed a decision tree to distinguish between
the gene-damaging and neutral indels. Disease-causing
indels are treated as the positive class, while neutral
indels are treated as the negative class. Sensitivity is the
fraction of disease-causing indels that are correctly pre-
dicted as gene-damaging. Specificity is the fraction of
neutral indels that are correctly predicted as neutral. Pre-
cision is the percentage of predicted gene-damaging
indels that are actually gene-damaging. Accuracy is the
percentage of overall predictions that are correct.

For each indel, 20 features are extracted describing the
indel and its influences on the gene product (Table S1 in
Additional file 1) [11-13,26-30]. When all 20 features are
used, the decision tree achieved an average performance
of 85% sensitivity, 81% specificity, 82% precision, and
83% accuracy across ten experiments (Table 1). Because
the number of disease indels and neutral indels (1,292
versus 2,602) is not balanced in our non-redundant data-
set, in order to avoid training bias, we used all 1,292 dis-
ease indels and randomly sampled 1,292 neutral indels
from the neutral dataset for training and cross-validation.
To ensure that the sampling process does not signifi-
cantly affect the prediction performance, we conducted
ten ten-fold cross-validation experiments. For each
experiment we resampled the neutral indel dataset, and a
ten-fold cross-validation process was used to evaluate the
classification performance. The standard deviations were
within very reasonable range (that is, 1.3%, 1.2%, 0.9%,
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and 0.8%, respectively), which shows that sampling does
not have much influence on the prediction performance
and it is safe to use sampling to train the final decision
tree.

However, not all the 20 features are equally useful for the
prediction of FS indels. Also, some features might be cor-
related with each other, which can impair prediction per-
formance. We therefore used one of the samplings and
applied a greedy feature selection method to select the
most relevant features by adding one feature at a time. In
each iteration for the feature selection process, the fea-
ture that showed the largest improvement in performance
was chosen. As can been see from Figure 1, the decision
tree reaches its maximum performance in terms of classi-
fication accuracy after four features are chosen. The four
selected features in the order of being chosen are: 1) frac-
tion of affected conserved DNA bases; 2) indel location
relative to the transcript, and taking the maximum across
all transcripts; 3) fraction of affected conserved amino
acids, taking the maximum across all transcripts; and 4)
minimum distance of indel to the exon boundary of all
affected transcripts. They are features 14, 5, 18, and 15,
respectively, in Table S1 in Additional file 1 where more
detailed descriptions can be found. The final method
uses these four features and achieves 90% sensitivity, 78%
specificity, 81% precision and 84% overall accuracy
(Table 1). The final method has better performance than
using all twenty features.

When calculating conservation, there is a possibility
for circularity because DNA and protein conservation
scores use the same mammalian sequences that we used
to construct our neutral indel data set. We disprove that
circularity is an issue. For DNA conservation, we used
PhyloP scores and PhyloP treats gap positions as miss-
ing data [29]. Therefore, there is no circularity when
using DNA conservation. Protein conservation scores
were calculated as described in Table S1 in Additional
file 1 where a protein multiple sequence alignment was
constructed from vertebrate sequences and conservation
scores derived from the alignment. To check that circu-
larity is not a factor, we reconstructed the multiple
sequence alignment without the sequences from which
neutral indels were derived and recalculated conserva-
tion scores. Performance was not significantly affected
when these conservation scores were used (accuracy
84% versus 83%; Table S2 in Additional file 1).

Table 1 Performance of the decision tree using different features

Features used Sensitivity + SD

Specificity + SD

Precision + SD Accuracy + SD

20 features 85+ 13%
4 selected features 90%

81+ 1.2%
78% 81% 84%

81 + 0.9% 83 + 0.8%

SD, standard deviation.
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Figure 1 The classification performance of the decision tree is improved as the feature selection progresses until the number of
selected features reaches four, where the decision tree reaches its best accuracy evaluated by using ten-fold cross-validation. The
prediction accuracy does not change significantly when five features are selected.
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Contribution of selection features and classification rules
One of the benefits of a decision tree is that it provides
us with classification rules, which can provide some bio-
logical insights. For a decision tree, the tree’s internal
nodes test features while the tree’s leaves make deci-
sions. A classification rule and its corresponding thresh-
olds are automatically extracted by following the
decision path from the root of the tree to one of its
leaves. This is a non-heuristic process. The confidence
score is the fraction of training samples that are cor-
rectly classified using a given path. From the trained
decision tree, there are twelve classification rules derived
(see table in [31]), among which four not only cover
most of the training samples but also have high confi-
dence scores. These rules are as follows.

Rule 1: if the percentage of affected conserved DNA
bases is very small (< 1.2% of all conserved DNA bases
of the gene), then the indel will not affect gene function.
The confidence score for this rule is 0.96. (There were
687 data points that followed this rule; 660 were cor-
rectly classified as neutral.)

Rule 2: even if the maximum relative indel location is
not near the end of the coding sequence (< 85.5%), then

the indel is still neutral as long as the percentage of
affected conserved DNA bases is relatively low (< 4.3%).
This explains why there are some indels in the middle
of cDNA sequence (which could be nonconserved alter-
natively spliced exons), but are still functionally neutral.
The confidence score for this rule is 0.92. (There were
129 data points that followed this rule; 118 were cor-
rectly classified as neutral.)

Rule 3: if the percentage of affected conserved DNA
bases is relatively low (< 4.3%), the maximum fraction
of lost conserved amino acids is very low (< 0.9%), and
maximum indel position is near the end of the cDNA
sequence (> 85.5%), then the indel is predicted to be
functionally neutral. The confidence score for this rule
is 0.81. (There were 102 data points that followed this
rule; 83 were correctly classified as neutral.)

Rule 4: if more than 6.2% of the conserved DNA bases
are affected, conserved amino acids have been lost (>
0.9%), the indel position is in the middle of one of the
cDNA sequences (maximum relative indel location >
8.7%), and the indel is also in the middle of the exon
(minimum distance of indel to the exon boundary is > 6),
then the indel is likely to be gene-damaging. The
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confidence score for this rule is 0.86. (There were 1,193
data points that followed this rule; 1,024 were correctly
classified as gene-damaging.)

From the training dataset, 66.6% (861) neutral indels
follow rules 1 to 3 and 79.3% (1,024) gene-damaging
indels follow rule 4. Therefore, these four rules repre-
sent the majority of training samples. Together, these
rules reflect the biological knowledge that if an indel
affects a very small percentage of conserved DNA bases
and causes a very small fraction of conserved amino
acids to be lost in the resulting protein, then very likely
the indel will have no significant effect on gene function.
An indel is more likely to be gene-damaging if the indel
affects a high percentage of conserved DNA regions
and/or amino acids, and the indel tends to be in the
middle of a cDNA sequence and exon.

One concern with our neutral dataset is that it may
contain indels arising from sequencing errors [32].
Therefore, as further validation to our algorithm, we
applied the final four-feature algorithm to additional neu-
tral datasets. In our first set, we examined indels
observed in at least two species and with no other gaps
within 30 bp (n = 167). Requiring the indel to be
observed independently in at least two species reduces
erroneous indel calls. The 30-bp threshold was based on
the observation that neighboring non-3n indels can com-
pensate for a frameshifting non-3n indel, thus restoring
gene function (see latter section ‘Fixed loss-of-function
indels in other mammalian genomes’). In this small but
highly filtered neutral dataset, high specificity 87% (145/
167) was observed. This high-quality neutral dataset
minimizes indel call errors but its small size (# = 167)
prevents us from using it as a training set because this
would lead to over-fitting of the decision tree [33]. When
we lowered the 30-bp threshold to 5 bp, the data set
increased in size but specificity dropped to 63% (1,961/
2,960). However, manual inspection of 20 indels incor-
rectly predicted as gene-damaging from this dataset
showed that 40% (8/20) had nearby compensatory non-
3n indels. After correcting for this, the estimated specifi-
city is approximately 77%, which is close to the final
method (78%).

Human indels

We applied the SIFT Indel algorithm to the FS indels iden-
tified from the human genomes sequenced by the 1000
Genomes Project (1000G) [34] and by Complete Geno-
mics, Inc. (CGI) [35]. The 1000G has identified indels from
low-coverage genome sequencing of Europeans, Asians,
and Africans. CGI has sequenced a diversity panel that
contains a smaller number of individuals, but at higher
depth (69 individuals from 11 different populations). The
allele frequencies of 1000G indels are population-specific,
while the allele frequencies for CGI indels are global
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because they are based on the diversity panel. Analyzing
both 1000G and CGI datasets permits analysis at global
(CQGI) and population-specific (1000G) levels.

The majority of FS indels were predicted to be gene-
damaging for both the 1000G and CGI datasets. In the
1000G dataset, 79% (2,259/2,852) were predicted to be
gene-damaging in Europeans, 80% (2,683/3,332) in Asians,
and 70% (1,585/2,278) in Africans. In the CGI dataset,
73% (973/1,334) of indels were predicted gene-damaging.
This high percentage can be explained by the fact that
most FS indels are rare. When binned by allele frequency,
the percentage of FS indels predicted to be deleterious is
negatively correlated with allele frequency (Figure 2),
which is the trend that has been previously observed for
nonsynonymous mutations [36]. However, the trend is
much more severe for FS indels. For rare indels (allele fre-
quency < 0.05), approximately 80% are predicted to affect
function (Figure 2), compared to 20 to 40% for nonsynon-
ymous variants that was previously reported [36]. For
common FS indels (allele frequencies > 0.20), 33 to 39%
are predicted deleterious in the different datasets, whereas
less than 5% of nonsynonymous variants are deleterious
[36]. This is consistent with the observation that indels are
under stronger purifying selection than nonsynonymous
variants [10]. Even for common indels with allele frequen-
cies between 0.10 and 0.20, a substantial proportion are
predicted gene-damaging, approximately 65% for the
Asian and European populations, 53% for Africans, and
40% for the CGI dataset. Geneticists typically use an allele
frequency cutoff of 0.05 for neutral SNPs but these results
indicate that a significant number of common FS indels
are gene-damaging and an allele frequency threshold of
0.05 for FS indels may be too low.

We questioned why there is a high proportion of
gene-damaging indels that have relatively high frequen-
cies in the human population. There are several possible
explanations for this. The first explanation is that com-
mon gene-damaging indels are in genes under relaxed
selection [14,17]. For example, genes with common
gene-damaging FS indels in humans (frequency > 0.10)
are overrepresented in the sensory perception of smell
by two-fold (P = 1.23 x 10°°). This is not surprising
since olfactory receptors are under relaxed selection in
humans [37].

The second explanation is that a higher proportion of
deleterious alleles accumulate in a bottlenecked popula-
tion [38]. When a population undergoes a bottleneck
and then expansion, deleterious variants can become
common because there is not enough time for purifying
selection. The European and Asian populations have
undergone bottlenecks [38,39], and as can be seen in
Figure 2, these two populations have a higher percen-
tage of predicted gene-damaging FS indels compared to
the African population and the CGI diversity panel.
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Figure 2 Allele frequency distribution for frameshifting indels predicted to affect protein function in Asian (ASN), European (EUR), and
African (AFR) populations from the 1000 Genomes Project (1000G) low-coverage sequencing project and Complete Genomics, Inc.

A third possible explanation for common gene-dama-
ging indels is positive or balancing selection for the var-
iant. Some of the genes with common gene-damaging
indels have supportive evidence for undergoing positive
selection. We found common gene-damaging indels in
the CYP3A gene cluster. The CYP3A cluster has been
shown to be under positive selection [40,41], and muta-
tions are favored according to the ‘sodium retention
hypothesis’ [42], which proposes that human popula-
tions living in hot, humid areas preferentially retain salt.
Our global analysis detected the CYP3A5*7 allele [43] as
a common damaging 1-bp insertion in the CYP3AS
gene; this gene is involved in sodium transport and has
been proposed to play a role in hypertension [41,44].
The gene-damaging indel allele CYP3A43*2A/B was also
detected in the analysis. Finally, there is a common
gene-damaging indel in HERC2, a gene that has been
found to be associated with blue eye color, and the asso-
ciation follows a north-south gradient distribution
across the European populations [45].

Fixed loss-of-function indels in other mammalian
genomes

In 1999, Maynard Olsen proposed the ‘less is more’
hypothesis, where gene loss (which can result from FS

indels) is advantageous for species’ survival [46]. For
example, a 32-bp deletion in the gene CCRS5 causes ‘less’
gene function, yet protects against HIV ('more’ fitness)
[47]. We concentrated on inter-species variation to
explore this hypothesis. We examined the genes with fixed
indels in the other mammalian genomes. These indels
were part of our neutral training dataset, where we had
assumed FS indels in mammalian genomes were function-
ally neutral. However, it is possible that some of these
indels do affect gene function, and have been advanta-
geously fixed due to positive selection. There were 679
genes in the mammalian species that contained FS indels
predicted to affect gene function. We looked at these 679
genes to see if they share the characteristics of genes
under positive selection. It has been previously shown that
genes under positive selection in mammals have functions
such as defense/immunity, chemosensory perception, and
extracellular space [48,49]. We found that the number of
genes with predicted gene-damaging FS indels was
enriched in defense function 1.76-fold (P = 0.012) and in
extracellular space by 1.36-fold (P = 0.0012) according to
Gene Ontology [50]. Interestingly, olfactory genes were
underrepresented almost four-fold (P = 0.005), and this
may be because the indels are derived from species where
the sense of smell is important (for example, rat and dog).
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According to Olson’s ‘less is more’ hypothesis [46],
‘once <a gene’s >function is lost - unless the lesion
involves a complete deletion of the gene - the mutated
gene will persist in the genome and may be available for
reversion if the selective environment shifts once more.’
If a FS indel happens in a gene, the gene’s function can
be restored if there is a second compensatory indel that
restores in-frame translation. In this scenario, while
both indels’ sizes are not divisible by three, the net size
of the two indels together is divisible by three. An
example is shown in Figure 3a; when the human and
dog protein sequences for FLJ43860 are aligned with
each other, the dog genome has a 1-bp deletion in the
gene, but 67 bp downstream of the deletion, an addi-
tional 2 bp are also deleted, so that in-frame translation
is restored. While it is unknown which event occurred
first (the 1-bp deletion or the 2-bp deletion), the first
event had to render the gene functionless, only to be
rescued by the second.

We provide two pieces of evidence to show that such
compensatory events occur more frequently than
expected in mammalian species. We analyzed the full
set of FS indels observed in mammalian genomes when
aligned to human. We demonstrate that FS indels near
each other are more likely to restore the translation
frame. We look at windows with at least two indels with
a certain distance from each other on the transcript. We
calculate the net size of FS indels in the window. If the
indels are within 20 bp of each other, there is more
than 70% chance that the multiple FS indels together
have a net length size that is divisible by three and the
translation frame is restored (Figure 3b). In comparison,
the same analysis on 10,000 intronic regions shows that
only 45% of indel clusters are divisible by three. The
intronic regions serve as a control for possible sequen-
cing and alignment artifacts. As the indels become more
distant, the restoration effect diminishes around 40 to
50 bp (approximately 15 amino acids). It is logical that a
compensatory FS indel would be preferentially located
near the first FS indel in order to minimize changes in
protein sequence. The second piece of evidence that
supports compensation is that when two indels occur in
the same exon, their net size is divisible by three more
often than expected by chance. We looked at exons that
contained two FS indels in mammalian genomes when
aligned to humans, and calculated the net size of the FS
indel pair. As a control, we performed the same calcula-
tion for introns (200-bp regions). When two FS indels
occur together in an exon, it is 1.3- to 1.9-fold more
likely that the net size of the two indels will be divisible
by three compared to introns containing two indels
(Table 2). This supports further evidence that there is
selection for compensation.
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Conclusions

We present here the SIFT Indel prediction algorithm for
ES indels that provides good separation between neutral
and gene-damaging with 90% sensitivity, 78% specificity,
81% precision and 84% overall accuracy. The accuracy
of a prediction algorithm is highly dependent on the
training datasets. For this algorithm, we trained on
indels found in patients and interspecies indels. Similar
training datasets were used by a popular amino acid
substitution prediction algorithm PolyPhen [3,51]. Pre-
diction algorithms have also used human polymorphic
variation as training datasets, and this can be used in
the future if the numbers are sufficiently large. If human
polymorphic indels are used for training prediction algo-
rithms, our results in Figure 2 indicate that it is best to
use indels from African or diverse genomes because
there are some common deleterious indels in bottle-
necked populations such as the Europeans and Asians.

Functionally neutral indels may be due to location or
gene annotation errors, or because the indels themselves
reside in pseudogenes or indispensable genes [14,17].
The four features in our final algorithm most likely cap-
ture location and gene annotation errors. For example,
the feature of ‘minimum distance to exon boundary’
may capture gene annotation errors for indels near
splice junctions that have not been correctly annotated.
Despite including gene-specific features, our final algo-
rithm did not incorporate any gene-specific features
such as K,/K that typically mark pseudogenes or indis-
pensable genes. This is likely due to our neutral indel
training dataset, where we purposely excluded genes
with more than one FS indel; thus, pseudogenes, indis-
pensable, and quickly evolving genes were not part of
the training dataset. Existing algorithms that rank gene
importance [52,53] could be used in combination with
our method to prioritize gene-damaging indels that also
have phenotypic consequence.

A high proportion of FS indels observed in humans
are predicted gene-damaging, but most of these FS
indels are rare. As expected, the percentage of deleter-
ious indels is negatively correlated with allele frequency.
Geneticists often use allele frequency to analyze genetic
variation, and it is often presumed that common var-
iants are neutral (for example, SNPs with minor allele
frequency > 0.05 considered neutral). Our results show
that a significant proportion of common indels are likely
to have an impact, especially in the European and Asian
populations that have undergone a bottleneck. Hence,
our study suggests that filtering out common FS indels
by allele frequency alone may lead to missed phenotypic
variation. SIFT Indel, in conjunction with allele fre-
quency and gene function, provides additional support
whether or not to filter out the indel. We suggest the



Hu and Ng Genome Biology 2012, 13:R9 Page 7 of 11
http://genomebiology.com/2012/13/2/R9

e N
a)
Wman R E Q@ P S @ L $ P L L @ R L VvV A P I @ R C H N @ V N
Rhesus R E E P S Q@ L 8 P L L Q@ R L vV A ® I @ R C H N Q@ V N
Muse R 'E- Q ‘@ $ ‘@ L N P L L ¥ G LV A K 1 Q@ T C H N @ V N
Dog W R G-TpOm K »8m Q b N sPm L ol Q #8% T sl F 0T 1 2@ K 2Cw Q oMW Q --GOR
Elephant ~ R "B E "R-§ '@ L ' P L L Q@ G LV A X 1 Q@ @ C H N Q@ V N
A
frameshifting frameshifting
deletion of 1 bp deletion of 2 bp

b)

0.9 1
0.8
-
2 0.7
£ . =4 Cow, Coding
>& 0° ~—4#— Dog, Coding
o
g % 0.5 «wte—Horse, Coding
> .
; o 0.4 - =@ Rat, Coding
- 9 :
£ 3 = &= Cow, Intron
53T 03 -
B -] = B~ Dog, Intron
E 0.2 7 = A= Horse, Intron
- 0.1 1 == @= Rat, Intron

<=10bp 10-20bp 20-30bp 30-40bp 40-50bp 50-60 bp 60-70 bp

Window size of indel cluster

Figure 3 Frameshifting coding indels close together tend to compensate for each other. (a)An example of compensatory FS indels. The
dog orthologue of human FLJ43860 contains two FS indels. Individually, they cause frameshifts, but together in-frame translation is restored. (b)
Multiple FS indels within a window size were clustered, and their net change in size was calculated. On the y-axis is the fraction of clusters with
indel net size divisible by three, where amino acids between the two FS indels would change, but ultimately in-frame translation is restored.
Solid lines are used for multiple FS indels in coding exons; dashed lines are for intron regions.

J
Table 2 Observed fractions for the net size of two nearby indels
Fraction of two indels in 200-bp intron that have Fraction of two indels in the same exon that  Enrichment (exon fraction/
net size divisible by 3 (control) have net size divisible by 3 intron fraction)
Cow 045 0.77 1.71
Dog 047 0.78 1.64
Horse 049 0.66 133
Rat 046 0.87 1.92

All enrichment ratios are statistically significant (P < 0.001) by Fisher's exact test.
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following criteria for FS indels. If the indel is found in
multiple populations and predicted to be neutral by the
prediction algorithm, then it should be given a lower
priority. Common indels should be considered high
priority if found in only one population, located in func-
tionally relevant genes, and predicted gene-damaging.
This rule holds especially true for variants detected in
bottlenecked populations.

We also show that a FS indel is not an evolutionary
dead end, but a gene with a FS mutation may eventually
revert back to a functional gene (Figure 4). Specifically,
we show that gene reversion with a second compensatory
ES indel is observed more often than expected by chance.
Compensation is much easier for coding indels than for
coding single nucleotide variants. Coding single nucleo-
tide mutations that cause amino acid substitutions may
not completely knock out gene function, and it would be
difficult to revert back to normal function because either
that same exact nucleotide has to mutate back or a com-
pensatory mutation at the amino acid level has to occur.
For single nucleotide changes that introduce pre-termi-
nation stop codons, the mutation space is more limited
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because only certain codons can mutate to a stop codon,
and reversion will only occur if that same exact nucleo-
tide mutates back. In contrast, a coding indel that occurs
almost anywhere in the gene will knock out gene func-
tion (with the exception of the rules identified in our
SIFT Indel classifier). In order to regain function, a
nearby compensatory FS indel can suffice. For example, a
1-bp deletion can be rescued by another 1-bp insertion
or a 2-bp deletion, and the second indel does not have to
be at the same exact location. Thus, indels are far more
flexible than single nucleotide variants in creating loss of
function, and subsequently rescuing itself. This would be
desirable in changing environments.

Materials and methods

Datasets

The SIFT Indel classifier was trained on two datasets:
(1) a set of disease-causing FS indels, and (2) function-
ally neutral indels.

Indel disease set

In this study, indels found in the disease genes of
affected patients were assumed to be gene-damaging

X 1 1) first
deleterious
mutation

causing
nonfunctional
gene

2) pseudogene
accumulates
mutations
under neutral
evolution

DEAD
END

Figure 4 The ‘less is more’ hypothesis by Maynard Olson proposes that compensatory mutations can restore gene function. In the
classical thinking of pseudogene evolution, once a gene has a deleterious mutation that becomes fixed, more mutations will accumulate
because there is no longer any selective pressure to retain gene function. In the ‘less is more’ model, while the first frameshifting indel causes
loss of function, it is possible for a subsequent frameshifting indel to restore gene function if it restores in-frame translation.

X L__ 1) frameshifting
indel renders
gene

nonfunctional

2) additional
indel restores
gene function

[ functional gene

L _ _ I nonfunctional gene
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and used for training and testing purposes. This disease-
causing set was obtained from HGMD version 2010.2
[21]. HGMD is a database of disease mutations found in
patients and it provides chromosomal coordinates for
each indel. There were 20,107 FS indels in this dataset
from 1,373 genes. We chose one indel per gene to avoid
over-training on certain genes. After removal of indels
from non-exon regions and from genes with invalid/
incomplete transcripts, there were 1,292 disease indels
in the final dataset used for the development of the
algorithm.

Neutral indel set

Indels with sizes not divisible by three were derived from
pairwise alignments from the UCSC genome browser of
human with cow, dog, horse, chimpanzee, rhesus maca-
que and rat [22] (designated as bosTau4, canFam2, equ-
Cab2, panTro2, rheMac2, and rn4, respectively). The
assembled genomes of these organisms were syntenically
aligned with human. Mouse/human alignments were not
used because mouse did not have quality sequencing
scores available. The multiple sequence alignment of
these species (UCSC multiz) was not used for training
because indel identification was confounded by regions
that had many gaps. Only indels in high-quality
sequences were kept: the 10-bp sequence surrounding
the indel was required to have quality scores of 9. In
order to prevent including indels from pseudogenes and
misalignments, only one FS indel per gene was allowed.
If more than one FS indel was observed, the gene was
assumed to be a pseudogene and all indels from that
gene for that organism were removed from the dataset.
We combined all the indels from the different species
together and randomly chose one indel per gene. After
removal of indels from genes with invalid/incomplete
transcripts, there were 2,602 neutral indels in the final
dataset used for the development of the algorithm.

In addition to the neutral indel dataset used for train-
ing as described above, two other neutral indel datasets
were constructed to assess algorithm performance.
Indels not divisible by three were derived from the
UCSC multiz alignment. To minimize erroneous indel
calls, we kept indels that were identically observed in at
least two species from the same lineage. For example,
an indel event unique to mouse and rat (rodent lineage)
would pass our filters, but an indel event observed in
mouse and dog but not rat would be discarded. For the
first indel dataset, any indel within 30 bp of another
indel was discarded. This removed indels that were
called due to misalignment or in regions evolving neu-
trally or quickly, and thus this dataset is composed of
indels that we have high confidence in. Because this
dataset was small (n = 167), we decreased the cutoff for
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neighboring indels from 30 bp to 5 bp to obtain a larger
but lower quality dataset (n = 2,960).

We used Ensembl build 37, v. p3 (Ensembl Genes 63)
for gene annotation [26]. Human indels from the 1000G
were based on the 4 August 2010 release; February 2011
Data Update. Human indels from the CGI diversity
panel were downloaded from [35].

Prediction algorithm

We used the J48 decision tree algorithm implemented in
WEKA [54]. Because the number of neutral indels is more
than twice the number of disease indels in the final data-
set, to avoid training bias toward neutral indels, we kept
all the disease indels and randomly picked an equal num-
ber of neutral indels for training and testing of the
algorithm.

Performance measurement
Ten-fold cross-validation was used to evaluate the
method. The dataset was divided into ten subsets. In
each round of the experiment, nine subsets were used
as the training set, and the remaining subset was used
as the test set. This procedure was repeated ten times,
with each subset being used as the test set once.
Performances are measured using sensitivity, specifi-
city, precision, and accuracy, which are defined as:

sensitivity = TP/(TP + FN)
specificity = TN/(TN + FP)
precision = TP/(TP + FP)

accuracy = (TP + TN)/(TP + FN + TN + FP)

where TP is the number of true positives (that is, the
number of disease-causing indels predicted as gene-dama-
ging); TN is the number of true negatives (that is, the
number of neutral indels predicted as neutral); FN is the
number of false negatives (that is, the number of disease-
causing indels predicted as neutral); and FP is the number
false positives (that is, the number of neutral indels pre-
dicted as gene-damaging).

Feature selection

There were 20 features extracted describing each indel
and its influences on the gene product (Table S1 in
Additional file 1). We applied a greedy feature selection
method to select the most relevant features by adding
one feature at a time. This feature selection method has
been used previously [25]. Let S be the set of the
selected features, A be the set of available features, and
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N be the size of A. Initially, S is empty and N = 20. Fea-
tures were added into S incrementally using the follow-
ing procedure:

1. Pick one feature f from A.

2. Build the decision tree using the union of feature f

and all features in S, and then evaluate the classifier
using ten-fold cross validation by optimizing for
accuracy.

3. Repeat steps 1 and 2 N times, so that every feature
in A is tested once. The feature that brings the biggest
improvement in classification performance is removed
from A and added into S. The size of S is increased by
1 whereas the value of N is decreased by 1.

To avoid over-fitting, the procedure continued until
including more features into S does not increase the
performance significantly (that is, accuracy improves
less than 0.1%). In the end, four features were added to
S and chosen.

Additional material

[ Additional file 1: Supplemental tables and figures. ]
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