Decock et al. Genome Biology 2012, 13:R95
http://genomebiology.com/2012/13/10/R95

Genome Biology

RESEARCH Open Access

Genome-wide promoter methylation analysis in
neuroblastoma identifies prognostic methylation

biomarkers

Anneleen Decock'!, Maté Ongenaert'", Jasmien Hoebeeck'”, Katleen De Preter', Gert Van Peer’,
Wim Van Criekinge***, Ruth Ladenstein®, Johannes H Schulte’, Rosa Noguera®, Raymond L Stallings”',
An Van Damme'", Geneviéve Laureys'? Joélle Vermeulen'?, Tom Van Maerken''”, Frank Speleman’ and

Jo Vandesompele'

Abstract

identify prognostic tumor DNA methylation biomarkers.

neuroblastoma.

Background: Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of
risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study aimed to

Results: To identify genes silenced by promoter methylation, we first applied two independent genome-wide
methylation screening methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression
profiling upon 5-aza-2-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a
methyl-CpG-binding domain (MBD-seq). Putative methylation markers were selected from DAC-upregulated genes
through a literature search and an upfront methylation-specific PCR on 20 primary neuroblastoma tumors, as well
as through MBD- seq in combination with publicly available neuroblastoma tumor gene expression data. This
yielded 43 candidate biomarkers that were subsequently tested by high-throughput methylation-specific PCR on
an independent cohort of 89 primary neuroblastoma tumors that had been selected for risk classification and
survival. Based on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HISTTH3C, ACSS3 and GRB10 was
found to be associated with at least one of the classical risk factors, namely age, stage or MYCN status. Importantly,
HISTTH3C and GNAS methylation was associated with overall and/or event-free survival.

Conclusions: This study combines two genome-wide methylation discovery methodologies and is the most
extensive validation study in neuroblastoma performed thus far. We identified several novel prognostic DNA
methylation markers and provide a basis for the development of a DNA methylation-based prognostic classifier in

Background

Neuroblastoma (NB) is a neuroectodermal tumor that ori-
ginates from precursor cells of the sympathetic nervous
system and represents the most common extra-cranial
solid tumor of early childhood. NB displays a highly vari-
able clinical course, ranging from spontaneous regression
to life-threatening disease [1].
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Despite advances in multimodal anti-cancer therapies,
survival rates for children with aggressive NB remain dis-
appointingly low. Survival rates vary widely, depending
on clinical features, such as age at diagnosis and tumor
stage, as well as biological characteristics of the tumor.
Amongst the latter, MYCN amplification has been used
for many years as a genetic marker for therapy stratifica-
tion [1]. More recently, a subset of high-risk tumors with
non-amplified MYCN and 11q deletions was identified,
while absence of segmental aberrations upon genome-
wide DNA copy number analysis was found to be asso-
ciated with excellent survival [2,3]. In order to facilitate
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the comparison of risk-based clinical trials, a new con-
sensus approach for pretreatment risk classification has
been designed including genetic parameters [1,4]. Despite
this progress, additional markers for therapeutic stratifi-
cation are warranted in order to avoid under- or over-
treatment and to improve selection of ultra-high-risk
patients for new experimental therapies. Recently, prog-
nostic mRNA and microRNA (miRNA) signatures were
developed to accommodate this need [5-7]. Here, we pro-
pose that the use of DNA methylation markers is a new
and promising method for prognostic classification.

DNA methylation is the addition of a methyl group to
carbon 5 of the cytosine within the dinucleotide CpG.
Dense clusters of CpG dinucleotides, termed CpG islands,
are often present in gene promoters and methylation of
those regions typically results in transcriptional silencing
of the gene. As such, abnormal DNA methylation in cancer
cells leads to aberrant expression patterns [8]. In NB, the
most described epigenetic alterations are DNA methyla-
tion of CASP8 [9] and RASSFI1A [10], both associated with
risk factors, such as MYCN amplification (MNA), age at
diagnosis and tumor stage [11-15]. Recently, a few gen-
ome-wide methylation screening methodologies have been
applied in NB, including re-expression analysis after treat-
ment with 5-aza-2’-deoxycytidine (DAC), DNA methyla-
tion promoter arrays after capturing with methylated DNA
immunoprecipitation (MeDIP) and methylation microar-
rays. These studies indicate that aberrant DNA methyla-
tion makes an important contribution toward NB tumor
biology by downregulating specific genes and show the
potential of using DNA methylation in future patient ther-
apy stratification protocols [16-18]. Furthermore, the
power of DNA methylation as a non-invasive, sensitive and
specific biomarker has been demonstrated by measuring
DNA methylation of RASSFIA in serum of primary NB
patients [15] (for a detailed review see [19]). In order to
improve the outcome prediction of NB patients, this study
aims at establishing robust DNA methylation biomarkers
that can identify patients with unfavorable prognosis.

Results

Discovery and integrated analysis: genome-wide
methylation screening for selection of

candidate biomarkers

The experimental setup of the study is summarized in
Figure 1. In order to identify DNA methylation biomarkers
in NB, we first applied two genome-wide methylation
screening methodologies on eight NB cell lines: microarray
after re-expression analysis and massively parallel sequen-
cing after capturing with a methyl-CpG-binding domain
(MBD- seq). The genome-wide assessment of gene expres-
sion reactivation upon DAC treatment is an indirect
method to detect DNA methylation as the influence of the
demethylating effect is measured at the transcriptional
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level using oligonucleotide chips. Out of 54,675 probes, a
total of 3,624 were upregulated after DAC treatment com-
pared to untreated controls (RankProd false discovery rate
(FDR) <5%), of which 1,665 were upregulated at least two-
fold in at least one cell line. Using a cutoff of at least a
two-fold difference between the DAC-treated and the
untreated sample, 989 probes were re-expressed in at least
2 cell lines. In order to select specific and sensitive methy-
lation biomarkers from this high number of reactivated
probes, an integrated bioinformatics approach was applied.
The 1,665 upregulated probes identified by RankProd ana-
lysis were further filtered using a genome-wide promoter
alignment strategy, referred to as the ‘broad approach’ in
Hoque et al. [20]. This strategy consists of a genome-wide
multiple alignment of promoter regions, where similar
sequence regions thus cluster together and where the
‘distance’ (the number of nodes in the hierarchical align-
ment model) is shown to be able to predict novel biomar-
kers. Such approaches using DAC re-expression data have
previously been successfully applied to enrich towards
truly methylated genes [20,21]. We selected 150 genes that
were either in the ‘neighborhood’ (less than 8 nodes away)
of a known methylation marker or that clustered together
in the promoter sequence alignment with a high number
of reactivation events (at least two genes in the cluster
showed at least three reactivation events). Integration with
(NB) literature, using an in-house developed text-mining-
based approach (using NCBI E-Utils to query PubMed,
using all known gene aliases in combination with either
DNA methylation-related or NB-related search terms),
and selection for genes located in genomic regions
reported as recurrently affected by DNA copy number
changes in NB, eventually led to the selection of 120 can-
didate biomarkers, comprising 30 novel candidate markers
and 90 known methylation markers in other tumor types.
To obtain direct evidence for DNA methylation and to
further select prognostic biomarkers, the selected 120 can-
didate biomarkers were tested on the DAC-treated and
untreated NB cell lines CLB-GA, LAN-2, N206, SH-SY5Y
and SJNB-1, and primary NB samples (9 low-risk survivors
(LR-SURV) and 11 high-risk deceased (HR-DOD) patients;
for details see Material and methods), using high-through-
put methylation-specific PCR (MSP). In the NB cell lines,
the DAC-treated samples show less methylation calls in
comparison to untreated samples (130 MSP assays (64%)
are more frequently methylated in the untreated samples),
and taking all MSP assays into account the average num-
ber of methylated samples per assay is 0.39 for the DAC-
treated cell lines versus 1.47 for the untreated cell lines
(P = 0.0002), revealing dense methylation in genes upregu-
lated upon DAC treatment and efficient demethylation by
DAC (data not shown). The complete results of the initial
high-throughput MSP screening on the primary NB sam-
ples can be found in Additional file 1.
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Figure 1 Combining genome-wide methylation discovery and validation, several novel prognostic DNA methylation markers were
identified in neuroblastoma (NB). Starting points are a microarray based re-expression study after treatment with 5-aza-2'-deoxycytidine (DAC)
and a next-generation sequencing experiment using an enrichment strategy towards methylated DNA (methyl-CpG-binding domain (MBD)
capture). Both were performed on the same panel of eight NB cell lines. Applying a bioinformatics and text-mining-based approach on the
re-expression data, 120 candidate genes were selected and tested using an initial high-throughput methylation-specific PCR (MSP) screen. The
MBD-seq data were combined with public mRNA expression studies to enrich for potential prognostic biomarkers. Using a rank-based scoring
system, a final selection of 43 candidates was made, which were then tested using MSP on 89 primary NB samples (in the following subgroups:
LR-SURV, low-risk patients with long follow-up; HR-DOD, high-risk patients that die of disease; HR-SURV, high-risk patients with long follow-up).
Finally, mRNA expression levels of seven DNA methylation biomarkers were determined. gPCR, quantitative PCR.

The second genome-wide DNA methylation screening
methodology we applied, to the same eight NB cell lines,
was MBD-seq: massively parallel sequencing of methyla-
tion-enriched DNA fragments, whereby the enrichment
is based on the capture of methylated sheared DNA
using the high affinity of the methyl-CpG-binding
domain () of the protein MBD2 towards methylated cyto-
sines. Sequencing yielded 4.4 to 8.6 million paired-end
reads, depending on the cell line, and after peak calling
70,816 to 112,412 peaks were detected, representing
genomic regions methylated in the corresponding cell

line. Between 7,612 and 11,178 of these peaks (around
10% of all identified peaks) are located in promoter
regions of annotated genes (-1,500 bp to +1,000 bp
around the transcriptional start site (TSS)). These
‘methylation peaks’ were visualized in the Integrative
Genomic Viewer [22], showing that promoter regions
that are well known to be heavily methylated in NB were
confirmed - for example, the protocadherin § (PCDHB)
family cluster (Additional file 2) [23,24]. In some regions
(for example, in the promoter regions of HIST1H3C and
ACSS3) it was also possible to distinguish different DNA
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methylation profiles between MNA (IMR-32, LAN-2 and
N206) and MYCN single copy (SH-SY5Y, SK-N-AS,
CLB-GA and SJNB-1) NB cell lines (Additional file 2).
Using the R/BioC package DESeq [25], 510 regions were
identified as differentially methylated between MYCN
amplified and single copy cell lines, of which 95 are in
close proximity to an annotated TSS (-1,500 bp to +1,000
bp). Also, some miRNAs appeared to be methylated in
their promoter region.

After peak calling, we also performed gene set enrich-
ment analysis [26], using a custom, ranked list of genes
with at least one MBD peak present in a region -1,500 bp
to +500 bp around its TSS, in order to explore whether
promoter regions that are enriched after MBD capture are
often re-expressed as well upon DAC treatment. This ana-
lysis clearly showed a high enrichment score for each cell
line (enrichment scores from 0.32 to 0.36; FDR g-value
<0.01), demonstrating that a large portion of methylated
regions (captured by MBD) are indeed reactivated upon
DAC treatment. The overlap between the two genome-
wide datasets can be further explored by intersecting
them. In total, 183 genes are both re-activated upon DAC
treatment (at least 1 log2 difference after and before treat-
ment) and have an MBD peak in their promoter regions
(-1,500 bp to +1,000 bp around the TSS) in at least 2 of
the 8 investigated NB cell lines. Of these 183 genes, 46 are
both re-expressed and methylated in 3 cell lines, 9 in 4 cell
lines and 5 in at least 5 cell lines.

As we feared that only using cell lines in the selection
phase of potential prognostic DNA methylation biomar-
kers would lead to the identification of methylated mar-
kers not necessarily related with prognosis, six publicly
available mRNA expression studies [27-34] were included
in the analysis. In these studies, which comprise mRNA
expression data of 380 primary NB tumors, identifying dif-
ferentially expressed probes (genes) between prognostic
groups would allow us to pinpoint potential prognostic
methylated promoter regions in our methylome maps.
Finally, a rank-based scoring system was used to prioritize
genes that show methylation, re-expression after DAC
treatment and differential expression (related with risk)
across the prognostic groups. This score scheme uses the
individual ranks of each analysis. In brief, DAC reactiva-
tion is ranked according to FDR rate (as determined by
RankProd analysis), MDB-seq data are ranked according
to peak P-values and expression data are ranked according
to FDR (determined by RankProd analysis). Each data
source is given the same weight and a combined rank is
calculated (for details, see Materials and methods). This
scoring system combined all generated data and allowed
us to select 43 top-ranking and thus strong prognostic
methylation candidate genes without the need to use
rather artificial threshold values for the different datasets.
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Validation: determining the prognostic power of DNA-
methylation biomarkers

For these 43 genes, 48 MSP assays were designed and
tested on 3 NB cell lines (IMR-32, SK-N-AS and SH-
SY5Y) and the HCT-116 DKO cell lines, along with an
independent cohort of 89 primary NB samples. Within
the 89 primary NB sample set all three prognostic groups
(LR-SURV, HR-DOD and high-risk survivors (HR-
SURV); for details see Material and methods) were
approximately equally represented. The complete matrix
with all MSP results of all samples and a global overview
of the MSP results per assay can be found in Additional
file 3. Over 60% of the designed assays indeed detected
methylation for the respective marker in at least 10% of
the selected NB tumors. Ten MSP assays (COL6A3, miR-
1225, miR-3177, PCDHA6, PLXNCI1, ANKRD43, ADRB2,
APOE, miR-671 and QPCT) revealed methylation in at
least 75% of the patient samples, and the MSP assays for
KCND2, PRPH, KRT19 (assay 83159) and TNFRSF10D
were methylated in 50% to 75% of the patient samples.
We could also detect DNA methylation in the promoter
region of miR-1225, miR-3177, miR-671 and miR-663,
methylated in 99%, 99%, 79% and 4% of the patient sam-
ples, respectively.

Unique in this study is the use of three discrete prognos-
tic patient groups, which allowed us to assess differential
methylation across all these prognostic groups. Therefore,
we performed hierarchical cluster analysis on the methyla-
tion data of all 48 MSP assays on the entire NB tumor
cohort, revealing two clusters with a separation between
high-risk (HR) and low-risk (LR) patients (heatmap in
Additional file 3). Furthermore, the overall methylation
pattern in the primary NB tumor samples was compared
by calculating the number of methylation events for each
sample. This indicates that HR patients show, on average,
more methylation events compared to LR patients (P <
0.001; HR-DOD, 17.21 methylation events (95% confi-
dence interval (CI) 15.62 to 18.81); HR-SURYV, 17.13
methylation events (95% CI 15.81 to 18.46); LR-SURYV,
13.00 methylation events (95% CI 11.86 to 14.14)). Also
on the individual marker level, some MSP assays are dif-
ferentially methylated across the prognostic patient
groups: KRT19 and ACSS3. These genes are more fre-
quently methylated in HR patients compared to LR
patients (Table 1). Within the HR group, HIST1H3C
shows a tendency to be more frequently methylated in
HR-DOD compared to HR-SURV samples (21% in HR-
DOD versus 7% in HR-SURV), while KRT19 (32% versus
48%) and ACSS3 (25% versus 47%) show the inverse
pattern.

Some individual MSP assays were also associated with
one or more NB risk factors (stage, MYCN status and age
at diagnosis), and are thus potential prognostic biomarkers



Table 1 Several individual markers are differentially methylated between the prognostic groups and neuroblastoma risk factors

KRT19

FAS

PRPH

CNR1

QPCT

HISTTH3C

ACSS3

GRB10

Type Subtype
Prognostic group LR-SURV
HR-SURV
HR-DOD
Stage Stage 1
Stage 2
Stage 3
Stage 4
MYCN MYCN single copy
MYCN amplified
Age Age at diagnosis > 12 months

Age at diagnosis < 12 months
Age at diagnosis > 18 months
Age at diagnosis < 18 months

Overall total

Statistics (Fisher's exact P-value)

Prognostic group

MYCN

Stage

Age cutoff 12 months

Age cutoff 18 months

0/31 (0%)
14/30 (48%)
9/28 (32%)
0/21 (0%)
1/12 (8%)
9/17 (53%)
13/39 (33%)
7/50 (14%)
16/39 (41%)
21/53 (40%)
2/36 (6%)
20/45 (44%)
3/44 (7%)
23/89 (26%)

<0.001
0.0594
0.007
0.008
0.002

1/31 (3%)
8/30 (27%)
6/28 (21%)
0/21 (0%)
2/12 (17%)
4/17 (24%)
9/39 (15%)
2/50 (4%)
13/39 (33%)
14/53 (26%)
1/36 (3%)
13/45 (29%)
2/44 (5%)
15/89 (17%)

0.151

0.008
0.287
0.045
0.045

14/31 (45%)
24/30 (80%)
19/28 (68%)
8/21 (38%)
8/12 (67%)
13/17 (77%)
28/39 (72%)
24/50 (48%)
33/39 (85%)
37/53 (69%)
20/396(56%)
33/45 (73%)
24/44 (55%)
57/89 (64%)

0.112
0.008
0.221

0579
0.326

2/3

1/21
2/12 (17%)
9/17 (53%)
10/39 (26%)
5/50 (10%)
17/39 (44%)
18/53 (34%)
4/36 (11%)
17/45 (38%)
5/44 (11%)
22/89 (25%)

0.068
0.008
0.059
0.138
0.059

18/31 (58%)
25/30 (83%)
(86%)
13/21 (62%)
8/12 (67%)
7 (88%)
(80%)
31/50 (62%)
36/39 (92%)
46/53 (87%)
21/36 (58%)
(89%)
27/44 (61%)
67/89 (75%)
0.165
0.017
0.683
0.059
0.045

0/31 (0%)
2/30 (7%)
6/28 (21%)
0/21 (0%)
0/12 (0%)
3/17 (18%)
5/39 (18%)
0/50 (0%)
8/39 (21%)
8/53 (15%)
0/36 (0%)
8/45 (18%)
0/44 (0%)
8/89 (9%)

0.0624
0.0146
0448
0.123
0.0594

0/31 (0%)
14/30 (47%)
7/28 (25%)
0/21 (0%)
1/12 (8%)
9/17 (58%)
11/39 (28%)
2/50 (4%)
19/39 (49%)
21/53 (40%)
0/36 (0%)

19/45 (49%)
2/44 (5%)

21/89 (24%)

<0.001
<0.001
0.008
<0.001
0.0015

6/31 (19%)
13/30 (43%)
11/28 (39%)
4/21 (19%)
3/12 (25%)
8/17 (47%)
15/39 (39%,
14/50 (28%,
16/39 (41%
24/53 (45%,
6/36 (17%)
23/45 (51%)
7/44 (16%)
30/89 (34%)

0405
0.708
0.700
0.059
0.012

The number (percentage) of methylated samples in each stratum is given. P-values according to the Fisher's exact test, corrected for multiple testing (Benjamini-Hochberg). HR-DOD, high-risk deceased patients; HR-
SURV, high-risk patients alive for at least 1,000 days follow-up; LR-SURV, low-risk patients alive for at least 1,000 days follow-up. P-values in bold indicate significant associations.
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in NB (Table 1). In this analysis, the age at diagnosis was
tested using two different age cutoffs. The 12 months cut-
off was chosen as it was used for therapy stratification and
as a criterion in the sample selection. The more recently
established cutoff of 18 months [1,35,36] was also taken
into account. Newly discovered methylated markers are
FAS, PRPH, CNRI, QPCT, HISTIH3C, ACSS3 and GRB10,
methylation of which is associated with at least one of the
NB risk factors. Table 1 further indicates that the differ-
ence in the methylation status of HISTIH3C and ACSS3
between MYCN single copy and MNA NB cell lines as
detected by MBD-seq is reflected in the MSP results of
the primary tumors as well, as HISTIH3C and ACSS3 are
almost exclusively methylated in MNA samples.

Survival analysis using the complete MSP data set indi-
cates that patients with less methylation events showed
better survival rates than patients with a high number of
methylation events (P = 0.01; Additional file 3), as this
analysis principally discriminates HR and LR patients. In
order to assess to what extent our MSP data set is able to
predict overall survival (OS) in HR-SURYV versus HR-
DOD patients, leave-one-out decision tree analysis was
performed and repeated 58 times (the number of HR
patients). For this analysis, we only included the data from
MSP assays (un)methylated in at least three samples.
Comparison of the 58 generated decision trees showed
that 4 DNA methylation biomarkers (CNRI, ACSS3,
HISTIH3C and PRPH) are included in at least 50% of the
resulting classifiers. Then, leave-one-out decision tree ana-
lysis was redone, but this time using only the methylation
data of CNRI, ACSS3, HISTIH3C and PRPH. Afterwards,
the predictions for all 58 HR samples were visualized in a
Kaplan-Meier plot (Figure 2). This analysis indicates that
the combined methylation status of CNRI1, ACSS3,
HIST1H3C and PRPH has the potential to discriminate
between HR-SURV and HR-DOD patients (P = 0.058).

Survival analysis was also performed on the individual
marker level. We first tested differences between the HR-
DOD and LR-SURYV groups using the univariate log-rank
test (with multiple testing correction). This first analysis
indicates that six genes (KRT19, FAS, CNR1, HISTIH3C,
ACSS3 and GNAS) are significantly related to survival
when comparing these patient groups. As we also want to
discriminate the HR patient groups (HR-DOD and HR-
SURV), we then used the entire dataset (all samples) to
assess which of these six genes were associated with survi-
val (in a specific stratum only, such as only in MYCN sin-
gle copy samples). These results are shown in Table 2.
According to log-rank tests, HIST1H3C methylation is
associated with both OS and event-free survival (EES),
while GNAS methylation is associated with EFS. As NB is
a heterogeneous disease, these biomarkers may be suited
to a specific subgroup of patients for predicting survival.
For example, HISTIH3C methylation only occurs in high-
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Figure 2 The combined methylation status of CNR7, ACSS3,
HISTTH3C and PRPH can potentially discriminate HR patients.
The Kaplan-Meier plot shows overall survival in the high-risk
samples of the high-throughput MSP screening according to their
predicted overall survival status based on leave-one-out decision
tree analysis using the methylation data of CNR1, ACSS3, HISTTH3C
and PRPH. Group 1 is predicted to survive, group 2 to die of
disease. The P-value is determined using log-rank test (Mantel-Cox).
Time is indicated in days, starting from diagnosis.

stage tumors with MNA (6/17 (35%) in HR-DOD patients
versus 2/22 (9%) in HR-SURYV patients). Figure 3 shows
the Kaplan-Meier plots for HISTIH3C and GNAS methy-
lation (OS or EFS and OS in specific strata related to one
of the risk factors).

mRNA expression profiling: determining transcriptional
silencing of DNA methylation biomarkers

As it is known that promoter methylation may cause
transcriptional silencing of the gene, we further measured
the mRNA expression levels of five promising DNA
methylation biomarkers that were methylated in a sub-
stantial fraction of HR patients (CNRI, GRB10, KRT19,
PRPH and QPCT). Quantitative RT-PCR assays were
developed and tested on 366 primary NB tumor samples.
Table 3 displays the results of the comparisons of the
expression levels of each DNA methylation biomarker
between the different NB tumor stages, MYCN single
copy and MNA tumors, the two age groups (using both
the 12 and 18 months cutoff), and surviving and deceased
patients. As an example, the mRNA expression levels of
these genes across the NB tumor stages are depicted in
Additional file 4. Out of the 366 primary NB tumors, 245
could be assigned to one of the prognostic groups
defined in this study (Additional file 5), which allowed us
to asses differential mRNA expression between these
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Table 2 Several individual DNA methylation markers are associated with survival

Statistics KRT19 FAS CNR1 HISTIH3C ACSS3 GNAS
HR-DOD versus LR-SURV (P-value OS) 0.037 0.028 0.043 0.002 0.002 0.012
HR-DOD versus LR-SURV (P-value EFS) 0.039 0.049 0.039 0.039 0.079 0.039
HR-DOD versus LR-SURV and HR-SURV (P-value OS) 0.687 0.639 0423 0.039 0.691 0.221
HR-DOD versus LR-SURV and HR-SURV (P-value EFS) 0.665 0.467 0414 0.041 0939 0.041
HR-DOD versus LR-SURV and HR-SURV (P-value OS Age < 12 months Stage 4 MYCN =0
(stratum)) 0.035 0.033 0.033
HR-DOD versus LR-SURV and HR-SURV (P-value EFS Age < 12 months MYCN =0
(stratum)) 0.014 0.001

Log-rank test statistics (Mantel-Cox) are given (multiple testing correction by Benjamini-Hochberg) for comparison between the ultra-high risk group (HR-DOD)
versus the low risk group (LR-SURV), and between the ultra-high risk group (HR-DOD) and all survivors (LR-SURV and HR-SURV). If a significant association (P <
0.05) was found in a particular stratum (associated with risk factors), this stratum is shown (multiple testing correction for the different comparisons by
Benjamini-Hochberg). MYCN = 0: MYCN single copy ; EFS, event-free survival; OS, overall survival. P-values in bold indicate significant associations.
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Figure 3 Methylation of HISTTH3C and GNAS is associated with worse survival outcome. Kaplan-Meier plots on the left show overall
survival or event-free survival for all 89 primary neuroblastoma samples, those on the right overall survival in a specific stratum based on one of
the risk factors only. Survival curves indicated with ‘M’ are the methylated samples, survival curves associated with the unmethylated assay are
indicated with ‘U’ The numbers of patients are indicated (n) and P-values are determined using a log-rank test (Mantel-Cox; multiple testing
correction by Benjamini-Hochberg). Time is indicated in days, starting from diagnosis and censored to 2,000 days (censored samples are
indicated with vertical lines crossing the overall survival curves). MYCN = 0: MYCN single copy.
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Table 3 mRNA expression level of several markers associates with neuroblastoma risk factors, prognostic groups and

survival

Grouping variable Statistics CNR1 GRB10 KRT19 PRPH QPCT
Stage Kruskal-Wallis P-value <0.001 0.008 0.118 0.010 <0.001
MYCN Mann-Whitney P-value <0.001 <0.001 <0.001 <0.001 <0.001
Age cutoff 12 months Mann-Whitney P-value <0.001 0.609 <0.001 0.005 <0.001
Age cutoff 18 months Mann-Whitney P-value <0.001 0.810 <0.001 0.003 0.006
Overall survival status Mann-Whitney P-value <0.001 0.003 0.023 <0.001 <0.001
Prognostic group Kruskal-Wallis P-value <0.001 0.002 0.005 <0.001 <0.001

The statistical test used is shown and P-values (corrected for multiple testing using Benjamini-Hochberg) are indicated. P-values in bold indicate significant

associations.

groups as well. For all genes mRNA expression levels
were significantly higher in the LR group compared to
the HR groups. As methylation of these genes was mainly
detected in the HR groups, this suggests that methylation
may contribute to the transcriptional silencing of these
genes.

Survival analysis using Cox proportional hazards further
shows that low mRNA expression levels of CNRI (hazard
ratio (HR) 0.768; 95% CI 0.619 to 0.953; P = 0.028),
GRB10 (HR 0.613; 95% CI 0.433 to 0.866; P = 0.015) and
PRPH (HR 0.714; 95% CI 0.566 to 0.922; P = 0.015) were
significantly associated with poor survival. After dichoto-
mization of the mRNA expression data, using the median
relative mRNA expression value as a cutoff, Kaplan-Meier
survival curves were plotted (log-rank test; Additional
file 5).

An interesting observation in our MBD-seq and MSP
data is the fact that HISTIH3C and ACSS3 are differen-
tially methylated between MYCN single copy and MNA
NB cell lines and primary tumors (Table 1; Additional
file 2). To further explore this finding, the HISTIH3C and
ACSS3 MSP assays were tested on 31 NB cell lines, of
which 10 were MYCN single copy and 21 MNA (Addi-
tional file 4). In addition, we also profiled HIST1H3C and
ACSS3 mRNA expression levels in these cell lines, in order
to assess the direct relationship between promoter methy-
lation and mRNA expression and to compare this relation-
ship between MYCN single copy and MNA cell lines. The
significant differential methylation status of HIST1IH3C
and ACSS3 between MYCN single copy and MNA samples
was confirmed in the NB cell lines (HISTIH3C, methy-
lated in 15/21 (71%) MNA cell lines and in 2/10 (20%)
MYCN single copy cell lines, P = 0.018; ACSS3, methylated
in 20/21 (95%) MNA cell lines and in 3/10 (30%) MYCN
single copy cell lines, P < 0.001). Moreover, expression of
HISTIH3C mRNA was significantly lower in methylated
samples compared to unmethylated samples, both in
MNA (P = 0.005) and MYCN single copy (P = 0.044) cell
lines (Figure 4). These data support the idea that
HIST1H3C promoter methylation contributes to transcrip-
tional silencing of the gene. Figure 4 further indicates that
the MYCN status itself is not significantly associated with

HISTIH3C mRNA expression levels (P = 0.204). As
ACSS3 is expressed at very low mRNA levels, we could
not correlate its mRNA expression data with the methyla-
tion data (data not shown).

Discussion

Thus far, most of the studies analyzing DNA methyla-
tion patterns in NB have been candidate gene-based,
with the methylation status of the promoter region for
only a limited number of genes being tested. These candi-
date genes were selected based either on prior knowledge
of NB tumor biology or on the fact of being methylated in
other tumor types. As a consequence, only few DNA
methylation biomarkers, such as KRT19, TNFRSF10D,
CASP8, ZMYNDI0 and RASSFIA, were previously related
with NB risk factors or survival [11,13-15,18,37-41]. In
order to identify new DNA methylation biomarkers in NB,
we applied a multilevel experimental approach. In the dis-
covery phase we established a genome-wide methylome
map of eight NB cell lines. These cell lines were profiled
using gene expression microarrays before and after DAC
treatment, and using MBD capture followed by next-gen-
eration sequencing (NGS). The combination of both
methodologies enabled the identification of regions that
are both methylated and undergo re-expression upon
DAC treatment. So far, only MeDIP chips were used in
whole promoter profiling studies on NB [9], making this
study the first one using NGS for unbiased and more sen-
sitive assessment of genome-wide DNA methylation pat-
terns in NB. Our results emphasize the potential of this
epigenetic sequencing technique, as it enables the investi-
gation of the methylome or epigenome of a sample in
great detail at a feasible cost.

Integration of these methylome maps with genome-wide
gene expression profiles led to a selection of 43 candidate
biomarkers that were tested on 89 primary NB patient
samples. All samples were assigned to one of three discrete
prognostic patient groups (low-risk survivors (LR-SURV),
high-risk deceased (HR-DOD) and high-risk survivors
(HR-SURYV)). While most NB methylation studies did not
discriminate between HR-SURV and HR-DOD patients,
we believe this is an important clinical question, as both
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Figure 4 HIST1H3C has lower mRNA expression levels in NB cell lines in which the HISTTH3C promoter is methylated. Thirty-one NB cell
lines were categorized according to their MYCN amplification and HISTTH3C methylation status. The relative HISTTH3C mRNA expression level of
each of these cell lines is indicated (MYCN single copy - Unmethylated, MYCN single copy - Methylated; MYCN amplified - Unmethylated, MYCN
amplified - Methylated). P-values according to the Mann-Whitney test are also indicated.
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prognostic groups are currently considered high-risk and
uniformly treated, making the present study unique in its
concept. As we make use of amplified bisulfite-converted
DNA, only limited amounts (100 to 200 ng) of tumor
DNA are required to test over 100 MSP assays. The
MBD-seq results greatly help in designing the assays in
the most informative regions, which is important as the
assay location is critically important, again confirmed in
this study for a number of genes for which multiple assays
were designed (for example, TGFBI and KRT19). The
combination of the number of samples and assays used in
this study further makes it the most comprehensive
methylation study in NB. Furthermore, the high-through-
put validation pipeline allows fast and accurate follow-up
validation of potential candidate DNA methylation bio-
markers for large numbers of patients. Indeed, PCR-based
detection methodologies are robust and can thus be used
in a wide range of laboratory settings for a low price with-
out the need of special equipment other than for qPCR
and (microfluidic) electrophoresis, both present in most
molecular laboratories. The presented DNA methylation
screening and validation methodology can thus easily be
adapted by (cancer) researchers addressing similar ques-
tions in other research fields.

In this study, several novel biomarkers were established
in addition to known DNA methylation biomarkers in NB,
such as KRT19, TGFBI, TNFRSF10D and TNFRSF10A
[14,18,37,42,43]. Interestingly, some of these novel genes
were previously reported to be important in NB biology
(without reference to their epigenetically altered status) or
were described as epigenetic biomarkers in other tumor
entities, such as FAS, which encodes a member of the
tumor necrosis factor receptor (TNFR) superfamily
[44-50]. Several other novel methylation biomarkers were
also shown to be differentially methylated between HR
and LR patients, and many of these were associated with
NB risk factors or with survival. However, discriminating
HR-DOD and HR-SURYV patients is challenging. While
only a few individual MSP designs (HISTIH3C, KRT19

and ACSS3) were moderately discriminatory between
these two HR subgroups, the combined methylation data
analysis of CNR1, ACSS3, HIST1H3C and PRPH indicates
the potential of DNA methylation biomarkers in stratifying
HR NB patients. In this study, the difficulty of identifying
individual biomarkers that differentiate between HR-DOD
and HR-SURYV patients may be explained by the fact that
NB cell lines were used in the discovery phase, thus
enriching for genes discriminating between HR and LR
patients as NB cell lines can be considered models for
aggressive HR tumors. To accommodate this, we plan to
perform a large-scale discovery using MBD capture fol-
lowed by NGS on primary NB tumors equally distributed
over the three prognostic groups used here.

PRPH is one of the novel biomarkers identified and is
differentially methylated across the prognostic patient
groups. This gene encodes the cytoskeletal protein periph-
erin found in neurons of the peripheral nervous system,
and is probably associated with maturation of the neuronal
phenotype and hence serves as a differentiation marker for
tumors derived from the neural crest [51]. In our study,
PRPH methylation was mainly detected in more advanced
tumor stages. Since promoter methylation may cause tran-
scriptional silencing of the gene and advanced NB tumor
stages are less differentiated [52], this is in line with the
idea that high levels of peripherin contribute to more dif-
ferentiated tumor stages. As demonstrated in this study,
this idea is further strengthened by the fact that PRPH
mRNA expression levels gradually decreased with increas-
ing aggressiveness of the tumor. As whole genome
sequence analysis recently showed that genes involved in
neuritogenesis are recurrently affected in high-stage NB
[53], the identification of PRPH methylation opens new
research perspectives regarding NB therapy.

Next to protein-coding genes, some MSP assays were
designed in the promoter region of miRNAs. Aberrant
miRNA expression contributes majorly to NB tumor
biology and has been extensively studied during the past
few years. Most of these studies used miRNA
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microarrays or high-throughput RT-qPCR to analyze the
miRNA expression patterns in primary NB tumor sam-
ples [54-56]. Although a broad deregulation of the
miRNA expression profile in NB has been described,
miRNA promoter hypermethylation is relatively unex-
plored. Up until now, the only miRNA for which the
promoter region is known to be methylated in NB is
miR-200b [57]. Interestingly, miR-1225, miR-3177 and
miR-671 were found to be methylated in their promoter
region in more than 75% of the NB tumors in our
study. Currently, little is known about the putative func-
tion of these miRNAs, as they are not well described or
not described at all in the literature [58,59].

Another interesting finding is that MYCN single copy
and MNA samples show differential promoter methylation
of HIST1H3C and ACSS3. Currently, little is known about
the association between MYCN and DNA methylation of
certain genes in NB, nor about the underlying molecular
mechanisms. Previously, Teitz et al. [9,60] showed that
DNA methylation of CASPS8 is almost exclusively asso-
ciated with MNA in both NB cell lines and primary
tumors. They further noticed that CASP8 was hemi-
methylated (only one allele) in stage 1, 2 and 3 NB, which
may indicate that complete methylation of CASP8 may be
coupled to another event, such as amplification of the
MYCN gene. While this suggests that MNA is functionally
linked to complete methylation of both CASPS alleles, it is
not clear if these two events occur concurrently, or if one
event leads to the other. Obviously, genes differentially
methylated between MNA and MYCN single copy samples
need to be further functionally characterized, as this may
lead to new insights into NB biology.

Conclusions

Although international collaboration in the field of NB has
invested tremendous effort in optimizing patient stratifica-
tion and therapy protocols, OS rates remain low. This
study shows that DNA methylation biomarkers have the
potential to refine current risk assessment schemes. In
contrast to most NB methylation studies that are candi-
date gene-based, we applied two genome-wide detection
methodologies to discover hypermethylated regions in NB:
re-expression analysis after demethylating DAC treatment
and NGS after MBD capture. Furthermore, we present a
high-throughput and semi-automated MSP pipeline,
which was used to test the candidate DNA methylation
markers on a large patient tumor cohort. We have identi-
fied novel aberrant promoter hypermethylation of protein
coding genes and miRNAs in NB. Some of these DNA
methylation biomarkers are associated with NB risk fac-
tors and/or survival, emphasizing the prognostic value of
these markers and their potential to be used in a DNA
methylation-based prognostic classifier in NB. The use of
such a DNA methylation signature, discriminating HR
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patients, is demonstrated here by the combined methyla-
tion data analysis of CNRI, ACSS3, HISTIH3C and PRPH.
Furthermore, some DNA methylation biomarkers showed
low levels of mRNA expression in patient groups with
high methylation levels. This suggests that promoter
methylation may contribute to transcriptional silencing of
these genes, which may be important in the pathogenesis
of NB. Encouraged by these results, we will now exten-
sively further validate these DNA methylation biomarkers
and refine the methylome map of different prognostic NB
patient groups.

Materials and methods

Neuroblastoma cell lines and primary tumors

In total, 33 well-characterized NB cell lines, authenticated
using array comparative genomic hybridization and short
tandem repeat genotyping, were included in this study
(Additional files 2 and 4). DNA was isolated using the
QIAamp DNA Mini Kit (Qiagen, Venlo, The Nether-
lands). In addition, 109 primary tumor samples of NB
patients were collected prior to therapy at the Ghent
University Hospital (Ghent, Belgium), the University
Children’s Hospital Essen (Essen, Germany), Our Lady’s
Children’s Hospital Dublin (Dublin, Ireland) or the Hospi-
tal Clinico Universitario (Valencia, Spain). Informed con-
sent was obtained from each patient’s guardian and the
study was approved by the ethical committee of the Ghent
University Hospital (approval number B67020109912).
Clinical characteristics of the patients are shown in Addi-
tional files 1 and 3. All NB patient samples were assigned
to one of three defined risk groups based on risk para-
meters (tumor stage, MYCN status and age at diagnosis)
and disease outcome. First, HR patients that died of dis-
ease (HR-DOD) as defined by stage 2/3, MNA, DOD;
stage 4, age at diagnosis <12 months, MNA, DOD; or
stage 4, age at diagnosis >12 months, DOD (n = 39).
Second, HR patients alive (HR-SURV) after follow-up time
>1,000 days (n = 30). Third, LR patients alive (LR-SURV)
defined by stage 1/2, MYCN single copy, follow-up time
>1,000 days; stage 3, MYCN single copy, age <12 months,
follow-up time >1,000 days (status at last known follow-up
is alive; n = 40). The clinical data of the 366 primary NB
tumors (SIOPEN/GPOH cDNA library [6]), used to test
the mRNA expression levels of the most promising DNA
methylation biomarkers, can be found in Additional file 5.

Microarray after re-expression analysis

Eight NB cell lines (CHP-902R, CLB-GA, IMR-32, LAN-2,
N206, SH-SY5Y, SK-N-AS and SJNB-1) were grown in the
presence of 3 pM DAC (Sigma, Bornem, Belgium)) for
3 days, as previously described, and untreated controls
were also prepared [61]. After harvesting, RNA was
extracted with the RNeasy Mini kit (Qiagen), accompanied
by RNase free DNase treatment on column (Qiagen).
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After RNA quality check on the Experion (Bio-Rad, Nazar-
eth, Belgium), sample preparation, hybridization to Affy-
metrix Human Genome U133 Plus 2.0 oligonucleotide
chips and scanning were carried out according to the
manufacturer’s protocol at the VIB MicroArray Facility.
Standard quality metrics (simpleaffy BioC package [62] -
boxplots, visual inspection of the slides, 5’-3” degradation
plot) demonstrated that the oligonucleotide chip data
were of good quality. The BioC affy package was used to
normalize (gc-RMA normalization) the expression levels
and to obtain present/absent (expression/no expression)
MAS 5.0 calls for each probe set. For all cell lines and for
each probe set, the number of reactivation events was
counted (absent in untreated cells and present in treated
cells). Expression data (before and after DAC treatment)
have been deposited into the Gene Expression Omnibus
[GEO: GSE31229], according to the MIAME guidelines.

MBD-seq

DNA samples (1 pg DNA) of the eight NB cell lines were
sheared (Covaris S2) to an average length of 200 bp. Frag-
ment distribution was determined by the Agilent 2100
Bioanalyzer and the concentration was determined using
the Quant-iT PicoGreen dsDNA HS Assay Kit (Invitrogen,
Ghent, Belgium). Starting from 200 ng sheared DNA, the
MethylCollector Kit (ActiveMotif, La Hulpe, Belgium) was
used to enrich for methylated fragments. Library prepara-
tion for multiplex Illumina sequencing was done by com-
bining the DNA Sample Prep Master Mix Set 1 (New
England Biolabs, Frankfurt am Main, Germany) and the
Multiplexing Sample Preparation Oligo Kit (Illumina). Size
selection of the library was done on a 2% agarose gel. Frag-
ments of around 300 bp (+50 bp) were excised and puri-
fied. Illumina library amplification (21 cycles) was
performed and concentration was determined. Paired-end
sequencing was used for high confidence mapping of cap-
tured fragments (2 x 45 bp sequencing - Illumina GAIIx,
NXTGNT). Paired-end reads were mapped on the human
reference genome (GRCh37) using Bowtie 0.12.7 and
peaks were called using MACS 1.4beta. For differential
methylation analysis, PCR duplicates were removed and
sequence tags counted by using the BioC packages Short-
Read and rtracklayer [63,64]. Sequence tag counts per
sample were used to compose a count matrix that could
be processed by the BioC package DESeq [25]. Sequencing
data (raw sequence files, WIG files for visualization of the
mapping results and the BED peak files as determined by
MACS) have been deposited into GEO [GEO:GSE31353].

Selection of candidate biomarkers

Initial high-throughput MSP

In total, 212 MSP assays (Additional file 1) were designed
in the promoter region of 120 corresponding genes re-
expressed after DAC treatment, and tested on both the
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DAC-treated and untreated NB cell lines, 9 LR-SURV
patients and 11 HR-DOD patients (Additional file 1). A
total of 500 to 1,000 ng DNA of these samples was bisul-
fite-treated (EZ DNA Methylation Kit, Zymo Research,
Irvine, CA, USA), eluted in 30 pl elution buffer and then
tested on the BioTrove OpenArray (Life Technologies,
Ghent, Belgium). Beta actin (ACTB) was used as a con-
trol and to normalize samples. The in vitro methylated
HCT-116 DKO cell line (treated with Sss/, Zymo
Research) was used as a positive control. The methylation
status for each MSP assay was determined, and called
methylated if the melting temperature (Tm) of the ampli-
con was within a specific interval as defined by the posi-
tive control sample. These methylation calls were further
analyzed by determining specificity and sensitivity of the
HR-DOD samples versus LR-SURV samples.

Publicly available mRNA expression studies

Six publicly available mRNA expression studies [27-34]
[GEO:GSE19274, GEO:GSE16237, GEO:GSE14880, GEO:
GSE12460, GEO:GSE13136, GEO:GSE3960] were ana-
lyzed using RankProd analysis (BioC package [18]), to
identify differentially expressed probes between prognostic
groups (high-risk versus low-risk, high-stage versus low-
stage, and MNA versus MYCN single copy).

Scoring system

Each analysis score of a promoter region (for example,
RankProd FDR value and P-value for differential expres-
sion between risk groups, and P-values of the peak after
MBD-seq) was ranked and given a score, ranging from tan
(1) to 0 according to their rank. These individual scores
were then summed and 43 top-ranking genes were
selected for further analysis.

High-throughput MSP

MSP assays were designed to only amplify the bisulfite-
converted target region of interest and do not anneal to
genomic DNA. As each primer contains at least two CpG
sites, this means that a PCR product will only be generated
if the template is methylated. We choose not to design the
according U primers (that would amplify the non-methy-
lated bisulfite-converted DNA) as we do not assess methy-
lation in a quantitative way. After in silico assay evaluation,
48 selected MSP primers (including the ACTB control;
Additional file 3) were empirically validated on the Roche
LightCycler 480 (LC480) using the in vitro methylated
HCT-116 DKO (positive control), the HCT-116 DKO
(negative control) and NB cell lines. Based on melting
curve and amplicon size analysis, all assays were consid-
ered amplicon specific. The MSP assays were tested on 89
samples, selected from the previously described patient
groups (31 LR-SURYV patients, 28 HR-DOD patients and
30 HR-SURYV patients; Additional file 3). A no template
control (NTC) sample was loaded as well. For all samples,
500 to 1,000 ng DNA was bisulfite-treated (EZ DNA
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Methylation Kit, Zymo Research) and eluted in 40 pl elu-
tion buffer. Prior to MSP, bisulfite-treated DNA (BT-
DNA) was amplified using the EpiTect Whole Bisulfitome
Kit (Qiagen), starting from 100 ng BT-DNA. After amplifi-
cation, the yield was determined by the Qubit 2.0 fluorom-
eter in combination with the Quant-iT PicoGreen dsDNA
BR Assay Kit (Invitrogen). The MSP was performed on the
LC480 and plates were prepared using the Tecan freedom
Evo robot, using a design that assures that all samples
were tested for the same assay in the same run [65]. MSP
amplifications were performed in 10 ul containing 5 pl
LC480 SYBR Green I Master Mix (2x; Roche, Vilvoorde,
Belgium), 1 mg/ml bovine serum albumin (Roche), 1 mM
MgCl, (Roche), 125 nM forward and reverse primer (IDT,
Leuven, Belgium), sample (20 ng amplified BT-DNA) and
nuclease-free water (Sigma). MSP conditions were as fol-
lows: activation for 10 minutes at 95°C, 45 amplification
cycles (10 s at 95°C, 30 s at 60°C and 5 s at 72°C), followed
by melting curve analysis (5 s at 95°C - melting curve from
60 to 95°C) and cool down to 45°C. Afterwards, the size of
the amplicons was determined using the Caliper LabChip
GX. A MSP assay was considered methylated if (1) its Cq
value <35 (calculated by the LC480 software using the sec-
ond derivative maximum method), (2) its melting tempera-
ture (Tm) differed no more than 2°C from that of the
positive control sample, and (3) the amplicon length dif-
fered no more than 10 bp from the band size of the posi-
tive control sample. In addition, the band height, as
determined by the LabChip GX software, was required to
be higher than 20.

mRNA expression profiling

The mRNA expression levels of CNRI, GRB10, KRT19,
PRPH and QPCT were profiled on the NB SIOPEN/
GPOH cDNA library generated from 366 primary NB
tumor samples (Additional file 5) [6]. For each DNA
methylation marker a qPCR mRNA assay was designed
and validated in silico and in vitro (Additional file 5) [66].
PCR plates were prepared as described in the previous sec-
tion and RT-qPCR was performed on the LC480 as
described in [6]. Relative gene expression levels were then
normalized using the geometric mean of five reference
sequences (HPRT1, SDHA, UBC, HMBS and AluSq) [67].
For HISTIH3C and ACSS3, a qPCR mRNA assay (Addi-
tional file 4) was designed and tested on 31 NB cell lines
on which the corresponding MSP assay was tested as well.
Here, qPCR amplifications were performed in 5 pl con-
taining 2.5 pl SsoAdvanced SYBR Green Supermix (2x;
Bio-Rad), 0.25 pl forward and reverse primer (5 uM each)
and 2 pl cDNA sample (corresponding to 5 ng cDNA).
Relative gene expression levels were normalized using the
geometric mean of the reference sequences SDHA, UBC
and AluSq. All RT-qPCR data analysis was done in gbase-
PLUS version 2.0 (Biogazelle, Ghent, Belgium) [65]. Logged
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and normalized qPCR data can be found in Additional
file 4 and 5.

Statistical analysis

Statistical analyses were performed using IBM SPSS soft-
ware version 19.0. All statistical tests were two-sided and
P-values <0.05 were considered statistically significant. Dif-
ferential methylation across the prognostic groups was
determined by the Chi square test. The relationship
between the methylation status and NB risk factors was
determined using Fisher’s exact test. Univariate survival
analysis was performed with the Kaplan-Meier method
and log-rank statistics (Mantel-Cox) to determine the
impact of methylation status on EFS and OS. EFS was
defined as the time between initial diagnosis and relapse or
death of disease, or time between diagnosis and last follow-
up if no event had occurred. OS is the time to disease-
related death or last follow-up. Hierarchical clustering and
leave-one-out decision tree analysis were performed using
R 2.13.0 (rpart package). The relationship between logged
mRNA expression levels and the prognostic groups, OS
status and NB risk factors was determined using the non-
parametric Kruskal-Wallis test or Mann-Whitney test.
Hazard ratios between logged mRNA expression data and
survival were estimated using the Cox proportional hazard
model. Kaplan-Meier curves were created by dichotomiz-
ing the logged mRNA expression data, using the median
mRNA expression value as a cutoff. For HIST1H3C, the
relationship between logged mRNA expression levels and
the methylation status of the gene, and the MYCN status,
was determined using the Mann-Whitney test. For all the
above mentioned statistical tests, multiple hypothesis test-
ing correction was performed (Benjamini-Hochberg
method by using the R function p.adjust).

Additional material

N
Additional file 1: Clinical patient annotation, MSP assays and results
on the BioTrove discovery platform.

Additional file 2: Visualization of the protocadherin beta gene
cluster and the HISTTH3C promoter region in the Integrative
Genomic Viewer. Eight neuroblastoma cell lines (SK-N-AS, CLB-GA, SH-
SY5Y, SINB-1, CHP-902R, IMR-32, LAN-2 and N206) and the MBD-seq
results are displayed.

Additional file 3: Clinical patient annotation, summary of clinical
characteristics, MSP assays, results and summarized results (per
clinical parameter) on the LC480 platform for 89 NB patient
samples. Assays differentially methylated between prognostic groups
and between neuroblastoma risk factors are discussed in detail, as well
as extended analyses on the MSP data (hierarchical clustering (heatmap)
and survival analysis according to the number of methylation events
(Kaplan-Meier plot)).

Additional file 4: Quantitative PCR and MSP assays for HISTTH3C
and ACSS3 and matched results (expression levels - methylation
call) for a panel of 31 NB cell lines.

Additional file 5: Clinical annotation, summary of clinical
characteristics, qPCR assays and results of gPCR experiments on
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366 NB patient samples (SIOPEN/GPOH cDNA library). Boxplots of
the expression levels for CNR1, GRB10, KRT19, PRPH and QPCT in each of
the five different NB stages (stages 1, 2, 3, 4 and 4S). A Kaplan-Meier plot
shows overall survival according to the relative mRNA expression levels
of CNR1, GRB10, KRT19, PRPH and QPCT.
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