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Deep sequencing on genome-wide scale reveals
the unique composition and expression patterns
of microRNAs in developing pollen of Oryza sativa
Li Qin Wei1,2†, Long Feng Yan1,2,3† and Tai Wang1,2*

Abstract

Background: Pollen development in flowering plants requires strict control of the gene expression program and
genetic information stability by mechanisms possibly including the miRNA pathway. However, our understanding
of the miRNA pathway in pollen development remains limited, and the dynamic profile of miRNAs in developing
pollen is unknown.

Results: Using next-generation sequencing technology, we pyrosequenced small RNA populations from rice
uninucleate microspores to tricellular pollen and control sporophytic tissues at the genome-wide level. We
identified 292 known miRNAs, including members of all 20 families conserved in plants, and 75 novel miRNAs. Of
the 292 known miRNAs, 202 were expressed, with 103 enriched, in developing pollen. More than half of these
novel miRNAs displayed pollen-or stage-specific expression. Furthermore, analyzing the 367 miRNAs and their
predicted targets indicated that correlation in expression profiles of pollen-enriched known miRNAs and their
targets significantly differs from that of sporophyte-enriched known miRNAs and their targets in some functional
terms, while novel miRNAs appeared to negatively regulate their targets. Importantly, gene ontology abundance
analysis demonstrated chromatin assembly and disassembly was important in the targets of bicellular pollen-
expressed novel miRNAs. Principal component analysis revealed pollen of all three stages was discriminated from
sporophytes, largely because of the novel and non-conserved known miRNAs.

Conclusions: Our study, for the first time, revealed the differences in composition and expression profiles of
miRNAs between developing pollen and sporophytes, with novel and non-conserved known miRNAs the main
contributors. Our results suggest the important roles of the miRNA pathway in pollen development.

Background
MicroRNAs (miRNAs) and small interfering RNAs (siR-
NAs) are two types of small non-coding RNAs (20 to 24
nucleotides in length) identified in nearly all eukaryotes.
The pool of small RNAs in plants is highly complex, con-
sisting primarily of many low-abundant siRNAs and a
small number of highly expressed 21-nucleotide sequences;
most of the latter are miRNAs [1,2]. Most miRNA loci are
encoded by independent transcriptional units in intergenic
regions that are transcribed by RNA polymerase II. In

plants, miRNAs are processed from stem-loop regions of
long primary transcripts by a Dicer-like enzyme and are
loaded into silencing complexes, where they generally
direct cleavage of complementary mRNAs. Although miR-
NAs were identified in plants just recently, studies have
revealed that miRNAs play crucial roles in each major
stage of plant development, often targeting the transcrip-
tion factors that mediate transition from one developmen-
tal stage to the next [3].
Haploid pollen (also called the gametophyte) is a key

regulator of sexual reproduction in flowering plants and is
produced from diploid pollen mother cells via meiosis. In
contrast to animals, in which products of meiosis directly
develop into sperm cells, in plants, the product of meiosis
undergoes a unique postmeiotic pollen development pro-
cess, finally giving rise to sperm cells. During this process,
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haploid uninucleate microspores (UNMs) generated from
meiosis first undergo asymmetric mitosis to generate
bicellular pollen (BCP) consisting of a large vegetative cell
and a small generative cell enclosed in the vegetative cell.
The two types of cells have different fates: the vegetative
cell exits the cell cycle and can develop into a polarly
growing pollen tube, whereas the generative cell under-
goes further mitosis to produce two sperm cells. This
postmeiotic pollen development is orderly and precisely
regulated [4]; however, the mechanism underlying the
main developmental events remains largely unknown.
Recent transcriptomics studies have revealed that the

number of genes expressed in pollen greatly decreases
from the UNM stage to the tricellular pollen (TCP) stage,
whereas stage-specific transcripts showed a ‘U-type’
change, with the lowest number at the BCP stage in
Oryza sativa and Arabidopsis thaliana [5]. These data
suggest that fine-tuned gene expression and function are
essential to guarantee pollen development. The miRNA
pathways in pollen are of interest because previous tran-
scriptomic analysis showed key transcripts involved in
miRNA pathway, such as those encoding Argonaute
(AGO)1, 2, 4 and 7, Dicer-like protein (DCL)1 to 3 and
RNA-dependent RNA polymerase 1, 2 and 6, were
turned off during pollen development [6]. However,
recent research demonstrated that several miRNA path-
way genes were expressed and some enriched in pollen
grains of Arabidopsis [7-10]. Many miRNAs known to
function in somatic development have been identified in
Arabidopsis mature pollen [9,11]. Using 454 sequencing,
Grant-Downton et al. [10] revealed diverse small RNAs
in mature pollen of Arabidopsis, some of which were
possibly specific to mature pollen. These studies indicate
the existence of an miRNA pathway in pollen. However,
mature pollen is terminally differentiated and at a devel-
opmental ‘standstill’, so the present studies could not
define the importance of miRNAs in pollen development.
Sequencing small RNAs from developing pollen of differ-
ent stages is necessary to obtain a global picture of the
temporal dynamics of small RNA diversity [10]. There-
fore, genome-wide knowledge about the composition of
miRNAs and dynamic changes in the miRNAs during
pollen development is important to understand the
mechanism of fine-tuned pollen development.
Rice (O. sativa) is one of the most important cereal

crops; it feeds half of the world’s population and has been
used as an excellent model system for studying monocots
after Arabidopsis. Besides the importance of rice, knowl-
edge of the molecular mechanisms underlying rice pollen
development is essential to manipulate male fertility for
heterosis utilization. In this study, we used Solexa high-
throughout sequencing technology to sequence the small
RNA population from developing rice pollen at the UNM,
BCP and TCP stages, with sporophytic tissues-roots,

leaves, and callus cells-used as controls. We obtained
millions of high-quality readouts from each sample.
Further analyses identified 292 known miRNAs, including
members of all 20 families conserved in plants, and 75
novel miRNAs. Most of the known miRNAs (hereafter
called kn-miRs) were expressed in developing pollen, and
most of the predicted novel miRNAs (nov-miRs) were
pollen specific. We also predicted 1,353 genes possibly
targeted by the 367 identified miRNAs and correlated the
expression profiles of miRNAs and their targets. We sup-
ply novel insights into the dynamic profiles of miRNAs in
developing pollen.

Results
Sequencing and data analysis
To investigate the miRNA component of small RNAs
and the dynamic changes of the miRNAs during pollen
development, we purified the cells of UNMs, BCP and
TCP from rice and sequenced their small RNAs using
Solexa high-throughput technology. As a control, small
RNAs of three sporophytic tissues (one-month-old cal-
lus and two-week-old roots and leaves) were sequenced
simultaneously. Sequencing of the UNM, BCP and TCP
libraries generated 6,450,464, 13,497,446 and 14,952,272
raw readouts, respectively. After removing sequences of
low quality, adaptor contaminants and RNAs smaller
than 18 nucleotides, we obtained 5,513,740, 10,256,852,
and 12,212,973 high-quality 18-to 30-nucleotide small
RNAs from UNMs, BCP and TCP, respectively,
10,884,533 from callus cells, 10,777,375 from leaves and
10,424,066 from roots (Table 1). These high-quality
small RNAs were used for further analysis.
Of the millions of high-quality small RNAs from the

individual libraries, 72.4% were 20 to 24 nucleotides in
length, which is the typical size range for Dicer-derived
products [12]. The major component of small RNAs in
UNMs was 24 nucleotides long. Throughout pollen
development, the proportion of 24-nucleotide small
RNAs decreased and the 21-nucleotide population
increased in BCP, while TCP contained mostly 21-
nucleotide small RNAs (Figure 1). In the sporophytic
samples, although two peaks occurred in all three
libraries, 24-nucleotide small RNAs were the most abun-
dant in callus cells and roots, and 21-nucleotide small
RNAs were the most abundant in leaves (Figure 1).
In general, the small RNA library generated by

sequencing was complex in composition. Besides the
miRNAs and siRNAs, the library includes large numbers
of degradation fragments derived from other coding and
noncoding transcripts [13,14]. Therefore, to annotate
small RNAs, we first mapped these small RNAs of 18 to
30 nucleotides to the rice genome using SOAP [15].
More than 80% of the small RNAs mapped perfectly to
the genome (Table 1). Furthermore, we removed
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sequences corresponding to known non-coding RNAs
(for example, rRNAs, tRNAs, small nuclear RNAs
(snRNAs) and small nucleolar RNAs (snoRNAs); Table
1) and possibly degraded species of mRNAs. Finally, we
obtained 1,825,534, 3,383,556 and 1,082,758 small RNAs
from UNMs, BCP and TCP, respectively, and 3,866,888,
1,862,254 and 3,044,145 from callus cells, leaves and
roots, respectively, which were candidates for identifying
miRNAs (including the kn-miRs, repeat-associated small
RNAs and un-annotated small RNAs in Table 1).
By mapping these candidates to their precursor

sequences in the rice miRNA database available in miR-
Base [16-18], we identified 292 kn-miRs in pollen and/
or sporophytic samples (Additional files 1 and 2); 202 of
these kn-miRs were expressed in pollen samples, with
141 in UNMs, 152 in BCP and 143 in TCP; 281 were

expressed in sporophytic tissues, with 210 in callus cells,
239 in roots and 223 in leaves. In addition, we detected
20 conserved kn-miR families in these libraries, and 16
of the families, apart from miR394, miR395, miR398 and
miR408, were sequenced in developing rice pollen
(Additional files 1 and 2). Thus, to a certain extent, our
sequencing depth was sufficient to reflect the expression
profiles of miRNAs during pollen development, and
most of the conserved miRNAs were also expressed in
the developing pollen.
Recent studies have revealed that some small RNAs

derived from highly repeated elements bind with differ-
ent AGO proteins and are involved in important biolo-
gical processes, such as chromatin maintenance and
transposon control [19,20]. We used RepeatMasker soft-
ware to identify small RNAs positioned at repeat loci
and annotated them as repeat-associated small RNAs
(Table 1). The remaining un-annotated small RNAs
were further used to predict nov-miRs.

Prediction of nov-miRs
miRNAs are derived from hairpin-like precursors, origi-
nating from a single-stranded RNA transcript through
sequential processing by Dicer or Dicer-like (DCL) pro-
teins [21,22]. miRNA precursors have a characteristic fold-
back structure, which is the primary criterion to annotate
nov-miRs [23]. Therefore, we predicted nov-miRs as fol-
lows. First, by folding the flanking genome sequence of the
above un-annotated small RNAs, followed by analysis of
structural features, we excluded small RNAs that cannot
form the characteristic fold-back structure. Second,
recently evolved/evolving miRNAs have a single locus in
the genome [24-26], so small RNAs with multiple loci in

Table 1 Statistics of small RNA sequences from the individual libraries

UNM (%) BCP (%) TCP (%) Callus (%) Leaf (%) Root (%)

Total reads 6,450,464 (100) 13,497,446 (100) 14,952,272 (100) 14,009,265 (100) 13,636,372 (100) 12,663,429 (100)

High quality readsa 5,982,567
(92.75)

12,037,307
(89.18)

13,573,834
(90.78)

12,447,058
(88.85)

12,323,660
(90.37)

11,328,710
(89.46)

Sequences of 18 to 30 nucleotidesa 5,513,740
(85.48)

10,256,852
(75.99)

12,212,973
(81.68)

10,884,533
(77.70)

10,777,375
(79.03)

10,424,066
(82.32)

Sequences matched to the
genomeb

4,415,708
(80.09)

8,857,467 (86.36) 10,855,875
(88.89)

9,007,545 (82.76) 9,576,588 (88.86) 8,563,670 (82.15)

rRNA etc.b 3,302,769
(59.90)

6,424,472 (62.64) 10,721,753
(87.79)

6,752,856 (62.04) 8,556,637 (79.39) 7,154,132 (68.63)

Exon_antisenseb 31,248 (0.57) 56,456 (0.55) 15,122 (0.12) 42,744 (0.39) 22,426 (0.21) 18,385 (0.18)

Exon_senseb 317,700 (5.76) 343,714 (3.35) 374,377 (3.07) 144,997 (1.33) 294,639 (2.73) 164,069 (1.57)

Intron_antisenseb 12,444 (0.23) 34,657 (0.34) 5,858 (0.05) 34,376 (0.32) 10,330 (0.10) 16,897 (0.16)

Intron_senseb 24,045 (0.44) 13,997 (0.14) 13,105 (0.11) 42,672 (0.39) 31,089 (0.29) 26,438 (0.25)

Kn-miRsb 34,930 (0.63) 73,567 (0.72) 23,574 (0.19) 920,584 (8.46) 438,823 (4.07) 383,694 (3.68)

Repeat-associated small RNAsb 651,296 (11.81) 1,665,020 (16.23) 177,549 (1.45) 1,113,638 (10.23) 428,592 (3.98) 912,267 (8.75)

Un-annotated small RNAsb 1,139,308
(20.66)

1,644,969 (16.04) 881,635 (7.22) 1,832,666 (16.84) 994,839 (9.23) 1,748,184 (16.77)

aThe percentage to the total reads. bThe percentage to the sequences of 18 to 30 nucleotides.
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Figure 1 Size distribution of small RNAs in the different
libraries. Nt, nucleotides.
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the rice genome were excluded. Third, to minimize noise,
we also eliminated small RNAs of low abundance (with
total number of reads fewer than five) and those originat-
ing from both strands, which would generate siRNA-like
small RNAs. Fourth, all the remaining un-annotated small
RNA sequences were subjected to ‘MIREAP’, which
recovers most kn-miRs with only a few exceptions whose
structures cannot satisfy the common features of an
miRNA gene [27]. Finally, to distinguish miRNAs from
miniature inverted repeat transposable elements (MITEs),
we blasted the precursor and mature sequences of the
small RNAs with characteristic fold-back structure against
the Oryza Repeat Database [28], and the homologs of
repetitive sequences were discarded. From the above ana-
lyses, our predicated nov-miRs satisfied the following cri-
teria: precursors had a characteristic fold-back structure,
contained no repetitive sequences, and matched the gen-
ome only once, and most were located in the intergenic
region; lengths of mature miRNA ranged from 20 to 24
nucleotides, and the number of reads was greater than
five; the mature sequences could be sequenced in two or
more libraries, or the miRNA* sequence could be identi-
fied in at least one library; and the targets of predicted
miRNAs could be predicted using an upgraded version of
miRU [29].
In total, we obtained 75 predicted nov-miRs (Addi-

tional file 3). Of these, 30 were expressed in UNMs, 39
in BCP, and 18 in TCP, and only 14, 18 and 12 in callus
cells, leaves and roots, respectively (Additional file 4).
Compared with the increased number of kn-miRs
expressed in sporophytic tissues, more nov-miRs were
identified in developing rice pollen, so more miRNAs
still remain to be revealed in gametophytes.

Expression profiles of miRNAs during pollen development
To directly compare the expression patterns of these miR-
NAs in the developing pollen and in sporophytes, we nor-
malized the counts to 1 million, and the abundance of
each miRNA was expressed as transcripts per million
(TPM). Using Z-score transformation [5], with ratio > 2.0
and Z-score > 2.0 cutoffs, we identified 103 kn-miRs
expressed preferentially in developing pollen and 122 pre-
ferentially in sporophytic tissues (Additional file 1). Clus-
tering analysis revealed a high proportion of kn-miRs
expressed constitutively in all samples (clusters 4, 5 and 9
in Figure 2a) or preferentially in sporophytic tissues (clus-
ters 1 and 10 in Figure 2a), and most of the conserved kn-
miRs were in these clusters (Additional file 1). However,
this analysis also showed some kn-miRs accumulated to a
large extent in developing rice pollen or at individual
stages of pollen development. For example, the members
of clusters 8, 3 and 13 (Figure 2a) displayed UNM-, BCP-
and TCP-enriched expression, respectively; and those in
cluster 18 (Figure 2a) accumulated to a greater extent in

pollen than in sporophytic tissues. Moreover, some
conserved kn-miRs, such as osa-miR160e, osa-miR162b,
osa-miR169e and n/o, osa-miR171a, osa-miR396a/b and
osa-miR399h, were also present in pollen-enriched clusters
(Additional file 1).
The expression features of these nov-miRs differ from

those of kn-miRs (Additional files 5 and 6). More than
half of the nov-miRs were expressed only in pollen
libraries and some of them only in one pollen library
(clusters 1 to 3 and 6 to 8 in Figure 2b). Nov-miRs in
clusters 6, 7 and 8 (Figure 2b) displayed UNM-, BCP-
and TCP-specific expression, respectively. These should
represent a set of pollen-or stage-specific miRNAs.
Therefore, in contrast to more kn-miRs being expressed
constitutively or preferentially in sporophytic tissues,
more nov-miRs were expressed preferentially and even
specifically in pollen.
Furthermore, we compared the expression profiles of

all miRNAs identified in pollen and sporophytic tissues
using principal component analysis. The six samples
were clustered into two groups (Figure 3a) that sepa-
rated pollen from sporophytic tissues. As shown in the
score contribution plot (Figure 3b), nov-miRs and non-
conserved kn-miRs were the major contributors for dif-
ferentiating the pollen from the sporophytes with regard
to miRNA regulation. The miRNAs represented by the
positive bars (Figure 3b; including miR3, miR1, miR5,
miR4, miR14, miR29 and osa-miR820, osa-miR1881,
osa-miR1871, osa-miR1874-3p, osa-miR2106, and osa-
miR810b.1) contributed to pollen properties, while the
negative-score miRNAs (Figure 3b; including miR35,
miR36, miR6, miR8, miR30, miR22 and osa-miR166i/j,
osa-miR156l, osa-miR1432, osa-miR1318, osa-miR169h-
m, and osa-miR397a and b) contributed to sporophyte
properties. Among the developing pollen samples, BCP
was clustered with UNMs instead of TCP, which indi-
cates that BCP is more similar to UNMs with regard to
expression pattern of miRNAs. Also, miRNAs enriched
in UNMs and BCP represented by the positive bars and
miRNAs enriched in TCP represented by the negative
bars (Figure 3c) might help to discriminate UNMs and
BCP from TCP.
To validate the predicted nov-miRs and confirm the

expression profile determined using Solexa sequencing, we
performed stem-loop real-time quantification RT-PCR, a
gold standard for accurate identification and quantification
of miRNAs because of its high sensitivity, specificity and
precision [29-31]. Because of the difficulty of cloning miR-
NAs with lower abundance, we selected nine predicted
nov-miRs with relatively high expression and seven kn-
miRs to validate. Of these, three were sequenced in only
one library and the others in two or more libraries. The
expression profiles of all were the same as those detected
by Solexa sequencing (Figure 4; Additional file 7). This

Wei et al. Genome Biology 2011, 12:R53
http://genomebiology.com/2011/12/6/R53

Page 4 of 16



Cluster 4 Cluster 5 Cluster 9

Cluster 1 Cluster 10 Cluster 18

Cluster 8 Cluster 3 Cluster 13

Cluster 1 Cluster 2 Cluster 3

Cluster 6 Cluster 7 Cluster 

(a)

(b)

Figure 2 Representive clusters of kn-miRs and nov-miRs by K-means support. (a) Kn-miRs; (b) nov-miRs. The complete sets of clusters are
available in Additional file 5 (kn-miRs) and Additional file 6 (nov-miRs). The six points from left to right in the x-axis represent UNMs, BCP, TCP,
callus cells, root and leaf, respectively; the y-axis represents the log2 value of TPM.
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high confirmation rate indicates the reliability of our data
and that our computational filters were strict enough for
predicting nov-miRs.

Target prediction and function analysis
Finding regulatory mRNA targets is essential for under-
standing the biological functions of miRNAs. We predicted
targets of all identified miRNAs using the psRNATarget
web service [29] and found 1,068 targets for 292 kn-miRs
(Additional file 8a) and 285 targets for 75 nov-miRs (Addi-
tional file 8b). In total, we predicted 1,353 genes possibly
targeted by the identified 367 miRNAs, with an average of

3.7 targets per miRNA, and each kn-miR (292 versus 1,068
targets) and nov-miR (75 versus 285) appeared to have
similar numbers of targets on average.
The analysis of kn-miR targets showed that a high

proportion of the targets were transcription factors
(Additional file 8a). Besides transcription factor targets,
targets involving defense response, hormone regulation
and other metabolic pathways were overrepresented
(Additional file 8a). This result echoes previous research
on kn-miRs and their targets in sporophytic tissues
[3,30]. Furthermore, Gene Ontology (GO) abundance
analysis of targets of both pollen-and sporophyte-

Figure 3 Principal component analysis of all kn-miRs and nov-miRs from the six examined samples. (a) Principal component analysis
plot. The first (x-axis) and second principal component (y-axis) accounted for 44.9% and 17.2%, respectively, of the total variation in the data. (b,
c) Score contributor plot for the first (b) and second (c) principal components. miRNAs with score contribution more than the absolute value of
2 are illustrated in the plot.
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enriched kn-miRs revealed terms related to transcription
regulation, transcription factor activity and metabolic
regulation that were all statistically significant (false
discovery rate P < 0.01; Additional file 9). However, hor-
mone-signaling-related genes were overrepresented in
pollen-enriched kn-miR targets, whereas lignin metabo-
lism-related genes were overrepresented in sporophyte-
enriched kn-miR targets (Additional file 9).
Furthermore, we compared the expression profiles of

miRNAs and their targets using recently published tran-
scriptome data for developing rice pollen [5] and found
that the expression profiles of most of the kn-miRs were
negatively correlated with those of their targets (Addi-
tional file 10a). In accordance with this result, the
expression of most pollen-enriched kn-miRs was nega-
tively related to that of their targets involved in tran-
scription, hormone regulation, chromatin remodeling

and defense response (Figure 5a), but the expression of
about 30% of genes involved in these functions was
positively related to their corresponding kn-miRs
enriched in sporophytes (Figure 5c). Among targets
involved in encoding pentatricopeptide repeat (PPR)-
containing proteins and ubiquitin system members and
in DNA repair, the expression of about 30% of them
was positively correlated with that of corresponding pol-
len-enriched kn-miRs (Figure 5b), but the expression of
almost all genes involved in these terms was negatively
related to that of their sporophyte-enriched kn-miRs
(Figure 5d). These data demonstrate the differential cor-
relation of expression profiles of sporophyte-enriched
and pollen-enriched kn-miRs with their targets for sev-
eral GO terms.
However, targets of the nov-miRs were more versatile,
with very few transcription factors but more

(a)                                                 (b)

Figure 4 Validation of expression profiles of miRNAs. (a) Heatmap of stem-loop real-time RT-PCR and sequencing data. The bar represents
the scale of the expression levels of miRNAs (log 2). P denotes expression detected by PCR and S that by Solexa sequencing. (b) Stem-loop
semi-quantitative PCR of miRNAs with U6 as an internal control.
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transposable elements and functionally unknown tran-
scripts (Additional file 8b) in contrast to the functional
terms of targets of kn-miRs (Additional file 8a). Further-
more, the expression of most nov-miRs was negatively
associated with that of their targets (Additional file 10b);
the expression of only a small proportion positively cor-
related with that of their targets. Statistical analysis of
GO terms demonstrated that terms related to chromatin
assembly and disassembly were significant for targets of
BCP-expressed nov-miRs (Figure 6), but there were no

significant GO terms associated with targets of UNM-
and TCP-expressed nov-miRs. This finding suggests that
pollen-expressed nov-miRs may have different roles
from pollen-expressed kn-miRs in developing pollen.

miRNA-induced cleavage of predicted targets
Our observation that most of nov-miRs and their targets
had negatively correlated expression (Additional file
10b) implies that these nov-miRs have potential cleavage
activity. To validate the cleavage events of nov-miRs, we

(a)                            (b)                             (c)

(d)

Figure 5 Correlation of expression of miRNAs and their targets. (a) Pollen-enriched miRNAs negatively associated with their targets. (b) A
proportion of pollen-enriched miRNAs positively associated with their targets. (c) A proportion of sporophyte-enriched miRNAs positively
associated with their targets. (d) Sporophyte-enriched miRNAs negatively associated with their targets. The bar represents the scale of relative
expression levels of miRNAs and targets (log 2).
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amplified their predicted target genes using rapid ampli-
fication of 5’ cDNA ends (5’ RACE).
miR52, whose pre-miRNA sequence could form a

characteristic fold-back structure and produced the
complementary miRNA* sequence, was capable of

cleaving its target Os03g19480 (encoding polycomb pro-
tein EZ3, namely OsiEZ1/OsSET1; see Discussion; Figure
7). Among ten sequenced clones (Figure 7c), eight were
detected to have the target sequence in their coding
sequence and were cleaved between nucleotides 10 and
11 relative to the 5’ end of the complementary miR52
(Figure 7b). Transient co-expression of miR52 and
OsSET1 in Nicotiana benthamiana leaves showed that
the level of OsSET1 was reduced by miR52 (Figure 7d).
Although, to date, the canonical cleavage site of

almost all of the kn-miRs was between nucleotides 10
and 11, we unexpectedly found that miR56 and miR58
cleaved targets with high frequency (10 of 10 for miR56,
5 of 16 for miR58) between nucleotides 18 and 19 and 5
and 6, respectively (Additional file 11). These cleavage
events were validated by transient co-expression in N.
benthamiana leaves (Additional file 11). Furthermore,
cleavage of the non-conserved kn-miR osa-miR820
occurred primarily at the canonical position with a fre-
quency of nine out of ten in a cDNA pool from seedling
and inflorescence [31] or seven out of eight in a mixture
of cDNA from panicle and embryogenic calli [32] but
infrequently (one of ten) between nucleotides 11 and 12
from the complementary 5’ end of osa-miR820 [31].
However, we found that osa-miR820-mediated cleavage
of Os03g02010 was predominantly at nucleotide 7 from
the paired 3’ end (5 of 14) from the mixed cDNA pool
from developmental pollen, and no other degradation
fragments were detected with the targeted sequence
(data not show). As indicated in a study of Arabidopsis,
the cleavage frequency and cleavage sites of targets for
several conserved kn-miRs differed between pollen and

(a)                   (b)

(c)

Figure 6 Gene Ontology term ‘enrichment status’ for targets of
BCP-expressed nov-miRs. (a-c) Targets with GO term ‘enrichment
status’ and ‘hierarchy’ for (a) biological process, (b) molecular function
and (c) cellular component branches. The classification terms and
their serial numbers are represented as boxes. For significant terms,
the box includes the GO term, adjusted P-value (in parentheses), item
number mapping the GO term in the query list and background, and
total number of items in the query list and background. The color
scale shows the P-value cutoff levels for each biological process; the
more statistically significant, the darker and redder the color.

(a)

(b)

(c) (d)

Figure 7 Target cleavage validation of miRNA52. (a) The miRNA
hairpin of miR52 shown in bracket notation format. Mature miRNA
is in red and miRNA* in blue. (b) Cleavage pattern of OsSET1 by
miR52. (c) Gel image showing 5’ RACE reaction to detect the
miRNA-directed cleavage. (d) Transient co-expression of miR52 and
OsSET1 in Nicotiana benthamiana leaves.
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vegetative tissues [9], which suggests that the differences
might account for subtle regulatory mechanism.
Recently developed degradome sequencing is a useful and

powerful tool to discover new targets for conserved and
non-conserved miRNAs and to validate putative targets of
predicted nov-miRs [33-37]. We searched degradome data
for 3-week-old seedlings and young inflorescences of rice
[36,37] and starBase (sRNA target Base) [38] to identify the
cleavage products of nov-miRs. From the degradome data,
we found eight predicted targets with only one count each
for eight different nov-miRs (Additional file 12), and from
starBase, three predicted target fragments for three differ-
ent nov-miRs were identified. Among the eleven nov-miRs,
three were expressed only in sporophytic tissues and eight
were enriched in developing pollen (two in UNMs, two in
TCP) or in two successive stages (two in UNMs and BCP),
or in both sporophytic tissues and pollen (two of five exam-
ined samples except TCP) (Additional file 12). Because of
the extremely low frequency of degradation products of the
targets mentioned above, detecting them by 5’ RACE is
almost impossible; indeed, we detected no products for
them.

Discussion
Using next-generation high-throughout sequencing tech-
nology, we have analyzed small RNAs in developing rice
pollen from the UNM to TCP stages at the genome-wide
level. This analysis revealed dynamic features of small
RNA populations in the developing pollen and expression
patterns of pollen-expressed miRNAs. We also revealed a
set of target genes of pollen-expressed miRNAs and the
possible relationship between pollen-expressed miRNAs
and their targets by analysis of their expression patterns.
These results provide novel insights into molecular regula-
tion mediated by miRNAs of pollen development.

Dynamic changes in small RNA populations in developing
pollen
In plants, transcriptional and post-transcriptional gene
silencing is directed by genome-encoded 21-to 24-
nucleotide small RNAs. miRNAs of 21 nucleotides and
trans-acting siRNAs of 21 nucleotides function in post-
transcriptional gene silencing by guiding mRNA degra-
dation or translational repression [1,39-41]. siRNAs of
24 nucleotides are implicated in DNA and histone mod-
ifications leading to transcriptional gene silencing
[40-43], and 24-nucleotide miRNAs involved in DNA
methylation were also reported recently [44]. Recent
studies have revealed that the size distribution of small
RNAs is tissue-specific in maize [45]. Mature pollen of
Arabidopsis loses most 24-nucleotide siRNAs and gains
some 21-nucleotide siRNAs, which target silencing
in the pollen [7]. Using high-throughout Solexa

sequencing, we obtained more than 5 million high-qual-
ity small RNAs from pollen samples at three develop-
mental stages and from sporophytic tissues. The size
distribution of small RNAs varied with pollen develop-
ment. The number of small RNAs of 24 nucleotides,
which would be mainly siRNAs, peaked in UNMs and
BCP, with more 20-and 21-nucleotide small RNAs
(mainly miRNAs) in TCP (Figure 1). This finding sug-
gests that the shift in small RNA populations in the
developing pollen may represent a mechanism regulat-
ing the gene expression program and finally pollen
development. Also, transcriptional regulation would be
an important mechanism in the early phase, but post-
transcription regulation would be prevalent in the late
phase of pollen development in rice.

Developing pollen has a unique expression pattern of
miRNAs
miRNAs are a highly diverse class of small RNAs; hun-
dreds of mature sequences have been registered in miR-
Base [16-18]. However, almost all of them, if not all, were
identified originally from sporophytes. We knew little
about the miRNAs in pollen. miR164 and miR171 were
first discovered to be expressed in pollen of Nicotiana by
northern blot analysis [46], and miR164 was further identi-
fied in pollen of Arabidopsis [47]. Recent studies of Arabi-
dopsis revealed the expression of some kn-miRs in mature
pollen [11] and the expression of critical components of
small RNA pathways in developing pollen [9-11]. Our
study revealed 292 kn-miRs from pollen and sporophytic
tissue libraries, 202 of which were expressed in developing
pollen. Among the 202 pollen-expressed kn-miRs, many
(103) were even pollen enriched (see Results for details).
These results indicate that most of the kn-miRs originally
identified from sporophytes were also expressed or even
enriched in developing pollen. In contrast, most kn-miRs
detected in Arabidposis mature pollen were in low abun-
dance [11], possibly because the mature pollen is in a
terminal development status ready for fertilization and
needs no more miRNAs for regulation. Therefore, the
existence and high expression of kn-miRs in developing
rice pollen demonstrates their importance during pollen
development.
Impressively, among 20 miRNA families now recog-

nized to be conserved in diverse plant species [48,49],
16 were identified in developing pollen and sporophytic
tissues in this study, and 6 (miR156, miR159, miR164,
miR166, miR167 and miR396) were accumulated highly
throughout all examined samples (clusters 4, 5 and 9 in
Figure 2a), which implies that these conserved miRNAs
are conserved among species and among sporophytes
and pollen, and among developmental stages of pollen.
These conserved miRNAs may be integral regulators of
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both sporophytic and gametophytic development, and
some have house-keeping functions in plant cells.
Although most studies focus on the more conserved

and nonspecific miRNA families in plants, given the fast
evolution of miRNA sequences, several studies have
demonstrated the presence of recently evolved plant
species-specific miRNAs [50]. Our work revealed 75
nov-miRs in the 6 libraries. Unexpectedly, more than
half of these nov-miRs were expressed only in develop-
ing rice pollen (clusters 1 to 3 and 6 to 8 in Figure 2b),
and many (clusters 6 to 8 in Figure 2b) were detected
only in pollen samples at individual developmental
stages, which demonstrates the existence of pollen-spe-
cific miRNAs at one or more stages, at least in rice.
Vascular plants evolved increasingly complex sporo-
phytes with reduced gametophyte complexity and size,
and ultimately loss of independence [51], and the game-
tophyte in flowering plants has been reduced to just a
few cells in pollen grains. The high proportion of nov-
miRs specific to pollen may be due to the need for this
evolved development of the gametophyte.
Furthermore, we found differential expression of miR-

NAs in developing pollen and sporophytic tissues. Prin-
cipal component analysis revealed gametophytes are
distinct from sporophytes with regard to the expression
profiles of miRNAs, with nov-miRs and non-conserved
kn-miRs as the major contributors to this distinction
(Figure 3). Therefore, miRNA expression features in pol-
len differ significantly from those in sporophytic tissues,
which suggest a unique regulation program in develop-
ing pollen. Consistent with animal sperm cells, plant
gametophytes function to faithfully maintain selfish
genetic information and developmental potential in
establishing the subsequent generation of an individual.
Several studies of mammalian organisms have demon-
strated that miRNAs enriched in sperm cells are crucial
for global regulation of the germ cell developmental
program and for keeping selfish genetic elements under
strict surveillance [52]. Together, these data demonstrate
the involvement of miRNA-mediated gene expression
regulation in pollen development.

Roles of miRNAs in pollen development
Post-meiotic pollen development involves a series of
fine-tuned, coordinated cellular events associated with
unique transcriptomic profiles, along with differential
expression of a complex set of transcription factors
[5,53], which indicates crucial roles of gene expression
regulation in the development. Recent studies have
shown the key function of small RNAs, particularly
miRNAs and siRNAs, in regulating gene expression in
both plant and animal species [1,3,41] and their crucial
roles in regulating sperm cell development and main-
taining stability of the genetic element of the cell in

mammalian organisms [52]. Many predicted targets
encode transcription factors, suggesting that plant miR-
NAs are master regulators. Our present work found
BCP expressed more miRNAs, including known and
novel miRNAs (152 kn-miRs and 39 nov-miRs) than
UNMs (141 kn-miRs and 30 nov-miRs) and TCP (143
kn-miRs and 18 nov-miRs), and previous research
showed that BCP expressed the smallest number of
transcription factors [5], indicating that miRNAs coop-
erate with transcription factors to achieve the trait of
gene expression during pollen development, with BCP
having the smallest number of stage-enriched transcripts
during rice pollen development [5].
Furthermore, a growing number of miRNA-target

pairs have been confirmed experimentally (reviewed by
[3,41]) and play crucial roles in plant development. For
example, overexpression of miR159 repressed mRNA
levels of MYB33 and MYB65 and induced male sterility
as well as delayed flowering under short days [54,55];
expression of miR167-resistant ARF6 leads to arrested
ovule development and indehiscent anthers [56]; NAC1-
miR164 pair mediates auxin signaling in lateral root
emergence [57]; TIR1, encoding an auxin receptor, and
related F-box genes are regulated by miR393 [58]. Our
study identified all of these miRNAs and found some of
them were enriched in developing pollen (Additional file
1), and the corresponding targets have already been pre-
dicted. We also found that hormone-signaling-related
genes were overrepresented in a set of targets of pollen-
enriched kn-miRs (Additional file 8a). Hormone signal-
ing in pollen plays crucial roles in coordinating pollen
development and maturation [59-63]. Numerous studies
have revealed crucial roles of PPR proteins and F-box
proteins in pollen development and the importance of
chromatin remodeling and DNA repair in maintaining
genetic element stability [5,64-67]. Genes associated
with these functions were also predicted to be targets of
pollen-enriched kn-miRs, suggesting their important
roles possibly during pollen development. However, the
correlation of expression profiles of pollen-enriched kn-
miRs with their corresponding targets was significantly
different from that of sporophyte-enriched kn-miRs with
their targets (Figure 5). It is possible, therefore, that
some sporophyte-originated kn-miRs have roles in dif-
ferent mechanisms when expressed preferentially in
pollen.
In contrast to kn-miRs, more than half of the identi-

fied nov-miRs were expressed only in developing pollen,
with several being stage-specific, and their targets were
more versatile. Impressively, GO abundance analysis
revealed that terms related to chromatin assembly and
disassembly were over-represented in the set of targets
of BCP-expressed nov-miRs (Figure 6). Chromatin
assembly and disassembly are fundamentally important
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processes that are tightly linked to DNA replication and
transcription, thus ensuring that cells faithfully duplicate
chromosomes. This process is essential for developing
pollen to coordinate germ cell development and strict
maintenance of genome integrity and stability.
Several mechanisms involve chromatin assembly and

disassembly, including chromatin remodeling and modifi-
cation of core histones or cytosines in CpG-rich regions of
the genome. Recent studies revealed histone remodeling-
related genes targeted by miRNAs expressed in mature
pollen of Arabidopsis, such as miR778, which targets tran-
scripts of two histone methyltransferase genes, SUVH5
and SUVH6 [10,68]. A gene encoding the SET domain
protein OsSET1/OsiEZ1 was verified to be the target of
BCP-specific miR52 and was negatively regulated by this
miRNA (Figure 7). SET-domain proteins, chiefly responsi-
ble for lysine methylation of histone H3, such as SDG4/
ASHR3, are involved in pollen development [69]. Further-
more, our 5’ RACE analysis, in combination with several
previous reports [31,32,44], confirmed that osa-miR820,
which is enriched in pollen, targeted a DNA cytosine
methyltransferase gene (Os03g02010). Our study also
revealed that osa-miR827, which is highly expressed in
pollen, targeted Os04g11510, which encodes a methyl-
CpG binding domain protein (Additional file 11). Both of
these proteins are important to regulate the methylation
of a genome [70-73]. The epigenetic modification of his-
tones and cytosines in the genome of mammalian germ
lines is essential for sperm cell development and plays
roles in parental imprinting [74,75]. These results indicate
that epigenetic regulation of chromatin assembly and dis-
assembly may be an important mechanism underlying pol-
len development and may involve parental imprinting.
Further function studies of genes are needed to clarify
these roles.

Conclusions
Using Solexa high-throughout sequencing technology, we
sequenced the small RNA population of rice pollen at
three sequential developmental stages from microspores
to tricellular pollen, with sporophytic tissues-roots,
leaves, and callus cells-as controls. We obtained millions
of high-quality readouts from each sample and identified
292 kn-miRs and 75 nov-miRs. The miRNA composition
and expression pattern of developing pollen were
obviously different from those of sporophytes, with more
nov-miRs enriched/specifically expressed in pollen while
more kn-miRs were enriched/specifically expressed in
sporophytes. Principal component analysis revealed that
pollen could be differentiated from sporophytes with
regard to miRNA expression profiles, with novel and
non-conserved known miRNAs the main contributors to
this. Furthermore, 1,068 targets were predicted for 292
known miRNAs; although no obvious differences were

found by GO abundance analysis of those targets
between pollen-enriched and sporophyte-enriched kn-
miRs, correlation of expression profiles of pollen-
enriched kn-miRs with their targets significantly differs
from that of sporophyte-enriched kn-miRs with their cor-
responding targets in terms of transcription, hormone
signaling and chromatin remodeling. We identified 285
targets for the 75 nov-miRs, which appeared to be nega-
tively regulated. GO terms for chromatin assembly and
disassembly were statistically significantly associated with
the targets of BCP-expressed nov-miRs, implying that
BCP would be the key point of miRNA regulation. Our
data reveal for the first time comprehensive and dynamic
features of miRNAs in developing pollen.

Materials and methods
Plant materials
Rice cultivar Zhonghua 10 (O. sativa L. ssp. japonica)
was planted in a climate chamber under a 12-hour
light/12-hour dark cycle at 28°C for 2 weeks, then the
roots and leaves were collected. One-month-old callus
cells were generated from rice embryos on N6 solid
medium containing 2, 4-Dichlorophenoxyacetic acid (2
mg/l) in the dark at 25°C. Pollen at UNM, BCP and
TCP stages was obtained as described previously [5].

Small RNA extraction
Total RNA was extracted from sporophytic tissues and
pollen at each developmental stage by use of RNAplant
reagents (Tiangen Biotech, Beijing, China) according to
the manufacturer’s instructions. Total RNA was resolved
on a denatured 15% polyacrylamide gel, then the frac-
tion from 18 to 30 nucleotides was collected.

Solexa sequencing
The sequencing was performed as described [76]. In
brief, purified small RNA molecules were ligated to a
pair of Solexa adaptors at the 5’ and 3’ ends and ampli-
fied by use of adaptor primers for 15 cycles to produce
sequencing libraries. PCR products were purified and
small RNA libraries were sequenced by use of Solexa.

Computational analysis of sequencing data
Small RNA reads were produced by use of the Illumina 1
G Genome Analyzer (Illumina, San Diego, CA, USA). Our
raw data have been deposited in the European Nucleotide
Archive by ArrayExpress [77] [ArrayExpress: E-MTAB-
689]. After filtering the low quality reads, and trimming
adaptor sequences by a modified dynamic programming
algorithm [78], we collected short RNAs ranging from 18
to 30 nucleotides and drew size distributions. Sequences
of 18 or more nucleotides were mapped to the rice gen-
ome (TIGR version 5.0) by SOAP v1.11 [15]. Sequences
perfectly matching the genome along their entire length
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were considered for subsequent analyses. Sequences
matching known rice rRNAs, tRNAs, snRNAs and snoR-
NAs in the Rfam RNA family database [79-81] and NCBI
GenBank database [82] were discarded. With the available
annotation of repeat sequences in the rice genome (TIGR
Oryza Repeat Database version 3.3) and use of a parallel
overlap finding algorithm, small RNAs positioned at repeat
loci were identified and annotated as repeat-associated
small RNAs. Degraded species of mRNAs can also be
sampled out by Solexa technology, and sequences overlap-
ping with gene regions were excluded.
Sequences mapped to miRNA precursors found by

BLAST search of the miRBase miRNA Database (v16.0)
[16-18] were identified as kn-miRs, with a manual check to
delete the false miRNAs. miRNA precursors have a charac-
teristic fold-back structure, which can be used to predict
nov-miRs. By folding the flanking genome sequence of
small RNAs, then analyzing its structural features, we
could identify novel miRNA candidates by use of MIREAP
[27]. Good candidate sequences were then submitted to a
target prediction web server containing plant miRNAs [29].

Principal component analysis of miRNAs
The normalized reads (TPM) of all miRNAs detected and
predicted in this study were transformed with use of the
log2 scale and analyzed by SIMCA-P+ 12.0 with PCA-X
(Ctr scaling) following the PLS-DA model to obtain the
principal components. miRNAs with a score contribution
more than the absolute value of 2 were illustrated by
comparing different samples or tissue types.

Quantitative RT-PCR of miRNAs
Total RNA was isolated from pollen at each developmen-
tal stage and from sporophytic tissues. To prepare small
RNA, 0.5 M NaCl and 5% PEG8000 were used to precipi-
tate and remove high-molecular-weight RNA. Small
RNA in the resulting supernatant was pelleted with a 1/
10 volume of 3 M sodium acetate and 3 volumes of etha-
nol [36]. The concentration of small RNAs was deter-
mined by use of the Beckman Coulter DU730 Nucleic
Acid/Protein Analyzer (Fullerton, CA, USA). cDNA was
synthesized in a 10-μl reverse transcription (RT) reaction
using of 100 ng purified small RNA, 1 U ReverTra Ace
reverse transcriptase (Toyobo, Osaka, Japan), 2 μl of 5 ×
RT buffer, 1 mM dNTPs and 2.4 U Ribnuclease inhibitor
(TAKARA SHIZU CO., LTD, Tokyo, Japan), and 50 nM
miRNA-specific stem-loop primers (Additional file 13)
designed according to Chen et al. [83]. U6 snRNA was
chosen as a reference and was reverse-transcribed with
reverse primer OsU6R [84,85]. A pulsed RT procedure
was used to increase the reaction specification [86]. In
brief, the RT reaction mixture was incubated at 16°C for
30 minutes, then 60 cycles for 30 s at 30°C, 30 s at 42°C,
and 1 s at 50°C, finally at 95°C for 5 minutes. No RNA or

RT primers or RT controls were set at the same time.
SYBR® Green Realtime PCR Master Mix (Toyobo) was
used to detect miRNA expression by a Stratagene Max
3000p Detection System (La Jolla, CA, USA). Briefly,
cDNAs were diluted 5 times and 1 μl diluted product
was used as a template in a 10-μl PCR reaction, which
contained 5 μl 2 × SYBR Green Realtime PCR Master
Mix and 0.25 μM of an miRNA-specific forward primer
and universal reverse primer. The quantitative PCR was
conducted in duplicate for 90 s at 95°C, then 40 cycles of
15 s at 95°C and 10 s at 60°C. For each PCR, dissociation
curve analysis was carried out to discriminate the specific
products from the primer dimers. The fold changes of
miRNA in different samples were calculated by the 2Δ
ΔCt method as described [5].

5’ RACE of miRNA cleavage
Total RNA (1 μg) from pollen of equally mixed UNMs,
BCP and TCP was used to synthesize 5’-RACE-ready
cDNAs with N-15 random primer mix and BD Smart
RACE cDNA Amplification Kit (Clontech, Palo Alto, CA,
USA) according to the manufacturer’s instruction. The
first round of PCR involved 10 × UPM, outer gene-specific
primers and Advantage 2 Polymerase Mix (Clontech). The
product was diluted 50 times and then used as a template
for the second round of PCR, which involved NUP and
outer/inner gene-specific primers. Amplicons were sepa-
rated on the gel, cloned into pMD 19-T vector (Takara)
and sequenced. The outer and inner gene-specific primers
were listed in Additional file 13.

Transient co-expression of miRNAs and their targets in
N. benthamiana leaves
Rice genomic fragments forming fold-back structure for
precursors of miR52, miR56, miR58 and osa-miR827a car-
rying the miRNA and/or miRNA* duplex were amplified
with the primers listed in Additional file 13 and cloned
into a binary vector (pTCK303) driven by the maize ubi-
quitin promoter. Their corresponding target fragments
obtained with primers listed in Additional file 13 were
inserted into the same vector. The plasmids carrying pre-
cursors of miRNAs and targets were infiltrated with sepa-
rate or mixed cells as described [37,87]. The total RNA of
infiltrated leaves was isolated after 4-day growth and used
to synthesize the first cDNA as templates of semi-quanti-
tative real-time PCR as mentioned above.

Additional material

Additional file 1: All identified known miRNAs.

Additional file 2: Small RNA sequences perfectly matching known
miRNA hairpins.

Additional file 3: Small RNA sequences perfectly matching
predicted novel miRNA hairpins.
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Additional file 4: All predicted novel miRNAs.

Additional file 5: Clustering of all known miRNAs by k-means
support. The six points from the left to the right in the x-axis represent
uninucleate microspores (UNMs), bicellular pollen (BCP), tricellular pollen
(TCP), callus cell, root and leaf, respectively; the y-axis represents the log2
value of transcripts per million.

Additional file 6: Clustering of all novel miRNAs by k-means
support. The six points from the left to the right in the x-axis represent
UNM, BCP, TCP, callus cell, root and leaf, respectively; the y-axis
represents the log2 value of transcripts per million.

Additional file 7: Validation of miRNAs by stem-loop real-time
quantitative RT-PCR.

Additional file 8: Targets of all known miRNAs and novel miRNAs.
(a) Kn-miRs; (b) nov-miRs.

Additional file 9: Gene ontology term ‘enrichment status’ for
targets of pollen-enriched and sporophyte-enriched known miRNAs.

Additional file 10: Expression profiles of known miRNAs and novel
miRNAs and their targets. (a) Kn-miRs and targets; (b) nov-miRs and
targets.

Additional file 11: Targets cleavage by miRNAs. (a) The predicted
fold-back structures of miR56 and miR58. Mature miRNA is in red. (b)
Cleavage pattern of targets by corresponding novel miRNAs. (c) Gel
image showing 5’ RACE reaction to detect the miRNA-directed cleavage.
(d) Transient co-expression of miRNAs and their predicted targets in N.
benthamiana leaves. As a positive known miRNA, the co-expression of
osa-miR827a and its target LOC_Os04g11510 is also shown.

Additional file 12: Predicted target fragments of novel miRNAs
from degradome data.

Additional file 13: Primers used in this study.
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