
In the past few years, the availability of improved sequen-
cing methods, including pyrosequencing [1], has revo-
lution ized what we know about the microbes that inhabit 
our bodies. Although it has been known for decades that 
our microbial symbionts outnumber our own cells by 
about a factor of 10 [2], the differences in the repertoires 
of symbionts harbored by different healthy individuals, 
different sites within the individual, and by individuals 
over time are only now coming to light. Initially, it was 
assumed that a ‘core microbiome’ existed; that is, that a 
substantial number of microbial species was shared in 
each body habitat in all or most humans, and that the 
genomes of these core species could be used as scaffolds 
to assemble fragmentary data from short-read shotgun 
sequencing of microbial community DNA [3].

�e first three individuals whose gut microbiomes were 
surveyed using substantial numbers of 16S rRNA gene 
sequences shared few of their species, however [4]. 
Similarly, observations that a person’s left and right hands 
have only 17% of bacterial species in common, and that 
two different people’s hands share only 13% [5], cast 
doubt on the concept of a substantial core set of microbial 
species shared by all or most people. �is doubt has been 
reinforced by recent work that redefines core lineages or 
genes as ‘core’ even if shared by relatively few people 

[6,7]. In fact, on the basis of 16S rRNA gene analyses we 
can rule out the possibility that, even within relatively 
homogeneous small populations of fewer than 100 
individuals, everyone’s skin-surface communities or gut 
communities share more than a tiny fraction of species 
[6-8]. �is unanticipated variability in shared community 
membership, and also in other important aspects of the 
human microbiome, poses substantial conceptual and 
compu tational challenges.

Of particular importance for microbiome studies is the 
following question: what is the effect size? �at is, using 
standard terminology from statistics, how distinguishable 
are two communities or groups of communities? Obtain-
ing an answer is essential for addressing many practical 
concerns with experimental design. For example, the 
effect size determines how many individuals need to be 
recruited for a given study, and how many sequences 
need to be collected per sample to observe differences if 
they exist. �ese considerations are particularly impor-
tant for the study of systemic disorders such as diabetes 
or some autoimmune disorders, which are expected to 
influence the microbiome in multiple body habitats. We 
need a sense of how much variation exists among 
different body habitats, how much variation is observed 
among healthy individuals for the same body habitat, and 
how much of a shift occurs due to a pathophysiologic 
state. It is also important to define the most appropriate 
method for determining the magnitude of similarity or 
difference between communities, as the choice of method 
has a large influence on the results of community com-
parisons [9-12]. A general discussion of the pros and cons 
of different metrics of community overlap is beyond the 
scope of this paper (see [9-12] for reviews). Here, we 
summarize the types and sizes of effects found in studies 
that used various methods of comparing groups of 
samples, and look for large-scale patterns that can give 
information on the number of individuals and sequences 
that are needed to observe different types of effects 
(Figure 1).

A variety of interrelated features differentiate microbial 
communities. �ese features include the the relative 
abundance of specific taxa (the proportion of the bacteria 
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in the sample that are Firmicutes, for example), the level 
of species richness or diversity observed within a com
mu nity (alpha diversity), and the degree to which differ
ent communities share membership or structure (beta 
diversity). A major challenge in comparing studies is that 
there is no consistent way in which the size of community 
differences is reported, as the type of difference that is 
relevant depends on the study. For example, lean and 
obese mice and humans differ in their ratios of prominent 
bacterial phyla (Bacteroidetes (which include the common 
gut commensal Bacteroides), Firmicutes (Grampositive 
bacteria, including Lactobacillus and Clostri dium), and 
Actinobacteria (which include Corynebacteria and 
Mycobacteria) [1315]); men’s and women’s hands differ 
in the number of specieslevel phylotypes (defined as 

organisms with 16S sequence identity >97%) observed on 
average [5]; and samples from the same or similar sites on 
the bodies of different individuals cluster together using 
UniFracbased principal coordinates analysis [4,16,17]. 
UniFrac is a metric for comparing microbial communities 
using phylogenetic information, which has been imple
mented in several tools.

Because of the diverse ways in which microbial 
communities respond to various environmental factors, 
it is difficult to compare effect sizes across different 
studies or systems, as an analysis that highlights differ
ences in one system may obscure them in another. Thus, 
in what follows, we review effect types and sizes as 
reported by the authors of individual studies. We focus 
on variation in humanassociated microbial community 

Figure 1. The problem of distinguishing between sequences. (a) An investigator contemplating the problem of distinguishing between 
sequences from the gut of Equus asinus and the volar forearm of humans. (b) Our solution; guess the effect size based on the effect sizes reported 
in published studies; perform simulations based on these effect sizes as shown in Figure 2, and then acquire sufficient sequences to resolve 
microbial community differences of the expected magnitude. (c) When comparing the Equus asinus gut (white point) to human forearms (red and 
green points represent left and right arms, respectively), 100 or even 10 sequences per sample provide sufficient resolution, but one sequence per 
sample does not.provide sufficient resolution, but one sequence per sample does not.
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(b)
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diversity as assessed by 16S rRNA gene sequence surveys 
of abundant lineages, using various measures of both 
within and betweensample diversity (alpha and beta 
diversity, respectively). We review comparisons of 
microbial communities in relationship to both sampling 
depth (that is, number of sequences per sample) and 
breadth (that is, number of samples or individuals). We 
then perform simulations using an atlas of microbes 
associated with different sites in the human body to ask 
how many sequences per sample are needed in order to 
detect differences across individuals, time, and locations 
within the body.

Reported effect sizes between and within different 
body habitats
Table 1a provides an illustrative (though not exhaustive) 
overview of the literature regarding differences observed 
in different body habitats and locations in healthy 
individuals, and the number of subjects and sequences 
that were used to identify these differences. Although 
metagenomic studies that examine all the genes in the 
genome are also of immense interest, shotgun meta
genomic data are so far available only from the gut and 
for a relatively few samples, and so the range of questions 
that can be addressed at present is substantially more 
limited than for 16S rRNAbased surveys, the type of 
survey we consider here. One robust finding that exem
plifies relative effect sizes is that there appears to be a 
greater degree of variation in microbial community 
compo sition between individuals than within the same 
individual over time (Table 1a). This has been found to be 
true in multiple studies and over a wide range of body 
habitats. For example, gut community composition is 
relatively stable in the same individual across a period of 
months when diet is consistent [6,16], and even to a 
certain degree when diet is altered. (Changes in the 
Firmicutes:Bacteroidetes ratio have been reported in 
individuals who lost weight, whether they were con sum
ing lowcalorie fat or carbohydraterestricted diets, but 
despite these shifts in relative abundance, interpersonal 
variation was the largest effect observed using phylo
genetic comparisons of the communities [14].) Likewise, 
skin community composition is more similar within a 
subject than between subjects over a period of months 
[16,18], as are oral, nasal and external auditory canal 
communities [16]. These results indicate that you are 
likely to be more similar to yourself in 3 months time than 
to your friend today in terms of the bacteria you harbor.

Microbial community changes in human disease 
and environmental samples
Although a wide range of studies in healthy subjects have 
identified substantial interpersonal variation in overall 
microbial community composition, how do these effect 

sizes compare with differences correlated with disease, or 
in response to treatments of various environmental 
samples? To address this question, we reviewed culture
independent, 16S rRNA genebased surveys associated 
with different physiological conditions (Table 1b) and 
associated with experimental manipulations in non
human environments (which were surprisingly scarce; 
Table 1c).

One of the bestcharacterized effects of health status 
on the gut microbiome is the association between obesity 
and the proportional representation of Bacteroidetes, 
Firmicutes and Actinobacteria [6,1315]. Studies in mice 
indicate that the microbiota contributes to the obese 
state by providing the host with a greater amount of 
energy from the diet compared with the microbiota of a 
lean host [15], as well as by manipulating host genes that 
regulate the deposition of energy in adipocytes [19]. The 
obesityassociated microbiomes of humans (and mice) 
are enriched in functional genes for certain types of 
carbohydrate metabolism, and this is directly attributable 
to the reduction in the numbers of genomes of members 
of the Bacteroidetes [6,15].

However, even the size of the differences in gut 
bacterial community composition of obese versus lean 
hosts is debated, as different studies using different 
methodologies have returned varied results [20]. The 
impact of methodology is particularly evident in a study 
of twins concordant for obesity or leanness, in which the 
observed relative abundances of Bacteroidetes, Actino
bacteria and Firmicutes, as judged by sequencing of 
differ ent regions of 16S rRNA clones, depended on the 
sequencing approach  pyrosequencing of PCR products, 
Sanger sequencing of 16S rRNA clones, or shotgun 
sequencing and phylogenetic classification of reads [6]. 
However, the direction of the effect was consistent across 
methodologies, and detectable with as few as a couple of 
hundred sequences per sample.

Observable phenotypes such as obesity may be caused 
by a variety of underlying factors, and which of those 
factors is responsible for shifts in the host’s microbiota is 
difficult to address in such correlative studies. Experi
mental manipulations of microbial communities, however, 
allow determination of the relative effects of specific 
variables on overall community composition or the abun
dance of particular taxa, and as such, allow researchers to 
draw conclusions regarding cause and effect. Examples of 
experimental manipulations of nonhuman environments 
that used 16S rRNA gene sequencing approaches (either 
clone libraries or pyrosequencing) and that were well 
enough replicated to allow statistical analysis are shown 
in Table 1c. For soil samples, three to four replicates with 
70 to 100 sequences were sufficient to observe differences 
in microbial communities due to land use and moisture 
regimes [21,22]. For piglet gut microbiota, the effects of 
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Table 1. Variations observed among different types of microbial communities, and the extent of sequencing and 
sampling used

   Total  
   number Average 
  Number of 16S number of 
 Number of sequences sequences 
 of samples in final per 
Topic subjects sequenced  analysis sample Study conclusions Reference

(a) Microbial communities associated with healthy humans
Oral 120 120 14,115 118 Collected saliva from 10 individuals at each of 12 globally widespread  [38] 
(saliva)     locations. They attributed approximately 13.5% of the total variation in the  
     distribution of genera to differences between individuals and found little  
     evidence for geographic structure: 11.7% of the variation was among  
     individuals from the same location while just 1.8% was among individuals  
     from different locations
Oral  3 29 298,261 10,285 Collected samples from various oral niches of three individuals; 26% of the [39] 
(tooth, tongue,      unique sequences and 47% of species-level phylotypes found in the study 
buccal mucosa,      were found in all three subjects. Bacterial community composition was 
palate)      shaped primarily by oral niche: principal components analysis differentiated  
     communities from shedding (tongue, cheek, palate) versus tooth surfaces
Skin  6 20 2,038 102 Sampled the superficial left and right volar forearms of six healthy subjects [40]
(right and left      (four of whom were sampled again 8 to 10 months later). Samples from 
volar forearm)      the same subject at the same time point (left versus right) were not  
     significantly different, whereas samples from the same subject at different  
     time points could be significantly different
Skin  51 102 351,630 3,251 Collected skin swabs from the left and right palms of 51 volunteers. On [5] 
(right and      average, individuals shared only 17% of species-level phylotypes between 
left palms)      their right and left palms, while only 13% of species-level phylotypes were  
     shared between different individuals. (UniFrac similarity between hands from  
     different individuals = 0.30, and the same individual = 0.36 to 0.38.) Palm  
     surface bacterial community structure was determined by handedness, time  
     since washing, and the individual’s sex
Skin  10 300 112,283 374 Obtained samples from 20 skin sites on each of 10 individuals (half of whom [18] 
(20 skin sites,      were sampled twice). They found that interpersonal variation in community 
including moist,      membership and structure depended on skin site, and that subjects were 
dry, and      more similar to themselves (site-to-site) than to others. Four of the five 
sebaceous sites)      re-sampled subjects were also more similar to themselves over time than they  
     were to other volunteers. Bacterial community composition was shaped by  
     microhabitat: sebaceous, moist, or dry
Gut 3 18 11,831 657 Interpersonal and site-to-site variation in three subjects at six sites.  [4] 
     Between subject dissimilarity was greater than within subject dissimilarity
Gut 154 281 1,947,381 6,930 Interpersonal variation was found to be largest between unrelated individuals,  [6] 
     smaller between children and their mothers, still smaller between twins, and  
     dramatically smaller in the same individual over time. (Average UniFrac distance  
     over time within-individual = 0.69 and between unrelated individuals = 0.80)
(b) Microbial communities and human disease
Obesity 12 subjects 50 18,348  367 Obese people have fewer Bacteroidetes (5%; P < 0.001) and more Firmicutes  [14]
 2 controls    (85%; P = 0.002) than lean controls (25% Bacteroidetes and 75% Firmicutes). 
     During the diet, the relative abundance of Bacteroidetes increased from 5 to 20%  
     (P < 0.001) and the abundance of Firmicutes decreased from 85 to 75% (P = 0.002). 
     Increased abundance of Bacteroidetes correlated with percentage loss of body  
     weight (R2 = 0.8 for the CARB-R diet and 0.5 for the FAT-R diet, P < 0.05), and not 
     with changes in dietary calorie content over time (R2 = 0.06 for the CARB-R diet 
     and 0.09 for the FAT-R diet)
Diabetes 10 Diabetic patients  20 382,229  37,001 The proportion of Firmicutes was significantly higher (P = 0.03) in the controls  [41]
 10 healthy subjects*  357,782  (mean 56.4%) compared to the diabetic group (mean 36.8%). Accordingly, phyla  
     Bacteroidetes and Proteobacteria were somewhat but not significantly enriched  
     in the diabetic group (50.4 and 4.1% in the diabetic group compared with 35.1  
     and 2.7% in the healthy group, respectively)
Crohn’s  6 CD patients 16 1,590 207 Proteobacteria were significantly (P = 0.0007) increased in CD patients (13%)  [42]
disease  5 UC patients  678  versus UC patients (9.4%) or healthy subjects (8.5%). Bacteroidetes were far 
(CD) and  5 healthy subjects  1,037  less diverse than Firmicutes, containing only 32 phylotypes, versus 87 species- 
ulcerative      level phylotypes in the latter phylum, but were nevertheless the most abundant,  
colitis (UC)     representing over 70% of total clones. Bacteroidetes were significantly increased  
     (75%) in CD patients versus UC patients (64.3%) or healthy subjects (67.4%) The  
     increase in Bacteroidetes and Proteobacteria was accompanied by a significant  
     (P = 0.0001) decrease in Firmicutes (CD,10%; UC, 25.8%; healthy subjects, 24%), all 
     belonging to the class Clostridia in the CD group

Continued overleaf
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Table 1. Continued

   Total  
   number Average 
  Number of 16S number of 
 Number of sequences sequences 
 of samples in final per 
Topic subjects sequenced  analysis sample Study conclusions Reference

CD and  20 CD patients 49  809  35  The results obtained from CD and healthy subject samples did not differ  [43] 
UC 15 UC patients   691  (P > 0.05). Bacterial numbers associated with non-inflamed and inflamed
 14 healthy subjects   235  mucosa within CD and UC groups did not differ (P > 0.05). The ratio of 
     Actinobacteria:Bacteroidetes:Firmicutes: Proteobacteria differed between  
     healthy (approximately 1:27:53:6%), UC (approximately 0.3:34:48:7%) and CD  
     subjects (approximately 0.5:34:40.5:6%) 
CD and  190 CD, UC or 190  15,172  80  Bacteroidetes (10%, P = 0.001) and Firmicutes (20%, P = 0.001) were greatly [44]
UC healthy patients     depleted while Actinobacteria (10%, P = 0.001) and Proteobacteria (50%, 
 (around equal     P = 0.001) were substantially more abundant in the inflammatory bowel 
 numbers)     disease (IBD) subset samples, relative to control subset samples (approximately  
     20% Bacteroidetes, approximately 50% Firmicutes, approximately  
     5% Actinobacteria, approximately 10% Proteobacteria) 
Necrotizing  10 infants 21 5,354  255  For the control infants four phyla were present: Proteobacteria, (34.97% relative [45] 
enterocolitis  with NEC and     abundance), Firmicutes (57.79%), Bacteroidetes (2.45%) and Fusobacteria (0.54%)  
(NEC) 10 healthy infants     with 4.25% unclassified bacteria. However, NEC patients had only two phyla,  
     Proteobacteria (90.72%) and Firmicutes (9.12%) with 0.16% unclassified bacteria.  
     The average proportion of Proteobacteria was significantly increased and the  
     average proportion of Firmicutes was significantly decreased compared to  
     controls (P = 0.001)
Clostridium  4 ICD patients 10 581 143 Using rarefaction curves, species richness in the patients with ICD (initial [46]
difficile- 3 RCD patients  447  episode of antibiotic-associated diarrhea due to C. difficile) was similar to that
associated  3 healthy subjects  399  in the control subjects, with the shape of the curve revealing that the total 
diarrhea      richness of the microbial community had not been completely sampled 
(CDAD)      (minimum of 20 phylotypes). However, the species richness in the patients  
     with RCD (recurrent antibiotic associated diarrhea due to C. difficile ) was 
     consistently lower (around ten phylotypes) than both that in the patients with  
     ICD and that in the control subjects
Gastric  10 non-cardia 15  140  9  No significant differences in microbial compositions were found between  [47] 
cancer gastric cancer patients     cancer patients and controls 
 5 control patients    
Helicobacter  19 H. pylori (+)  23 1,833  80 Subjects negative for H. pylori had twice as many Fusobacteria as H. pylori- [48]
pylori  subjects    positive subjects (10% compared to 5%, respectively). Twenty percent of the
colonization 4 H. pylori (-)     clone libraries derived from H. pylori-positive patients were non-H. pylori
 subjects    Proteobacteria compared with 10% in the control subjects; this was also the  
     case for Bacteroidetes (20% compared with 10% in the control)
(c) Experimentally manipulated microbial communities
Restoration  3 agriculture 13 1,235 95 A significant difference in the Proteobacteria:Acidobacteria ratio from around [22] 
of wetland  wetlands,     0.6 to around 0.4 was observed between agricultural and reference wetlands,  
soils 3 restored     respectively (P < 0.001). A difference was also found in the relative abundance
 wetlands and     of β-Proteobacteria from 14 to 3% in the same soils (P < 0.001)
 3 reference wetlands     
Soil  4 wet and 8 665 83 The relative abundance of Proteobacteria decreased from 48 to 36% in wet [21] 
moisture  4 dry soils     versus dry plots (P < 0.05). Acidobacteria increased in relative abundance from 
     7 to 23% in the same soils (P < 0.01) 
Antibiotic  6 control pigs 12 1,900 171 An effect of antibiotics was seen on the overall community composition [23] 
effects on  and 6 pigs    (P < 0.03)
piglet gut  treated with 
microbiota chlor-tetracycline 
Effects of a  4 to 5 fasted 38 145,428 3,827 The fast resulted in a significant increase in the proportion of Bacteroidetes [49]
24-hour fast  and control mice    (approximately 21 to approximately 42%, P = 0.01) and a significant decrease
on mouse gut      in the fraction of Firmicutes (approximately 77 to around 53%, P = 0.007) within
microbiota      the gut microbial community
Effects of diet  5 individuals 20 25,790 1,290 The relative abundance of Bacteroidetes decreased (around 90% versus [50]
and  from 2 genotypes    around 40%) in animals fed the high-fat diet regardless of genotype (P < 0.001). 
genotype on  fed standard    Likewise, mice fed the standard chow diet showed a lower relative abundance of 
murine gut  or low-fat chow    Firmicutes (around 7 versus around 42) independent of genotype (P < 0.001)
microbiota 
Antibiotic  5 dogs 15 44,096 2,940 Enterococcus-like organisms, Pasteurella species, and Dietzia species all [51] 
effects on  sampled    increased significantly (P < 0.05) following tylosin treatment
canine gut  three times 
microbiota 

*The entire study consisted of 36 subjects of which only 20 were selected for pyrosequencing.

Kuczynski et al. Genome Biology 2010, 11:210 
http://genomebiology.com/2010/11/5/210

Page 5 of 9



Box 1: How many sequences does it take...?

Costello et al. [16] found that variation in membership of bacterial communities was primarily explained by body habitat, secondarily 
by host individual (within habitats), and finally by time (within habitats and individuals). Specifically, variation in species composition 
measured using the unweighted UniFrac metric was 1.19 times larger between habitats than within habitats. Within habitats, interpersonal 
variation was 1.15 times larger than variation within individuals over time. Within habitats and individuals, variation over 3 months was 
1.06 times larger than variation over 24 hours. Thus, the smallest effect size observed showed that samples collected 24 hours apart were 
significantly more similar to each other than to those collected 3 months apart.

The influence of sequencing depth on the ability to recapture these differences can be conveniently tested by simulating the effects 
of sampling fewer sequences and then performing comparisons of bacterial community membership using the unweighted UniFrac 
metric [26]. The UniFrac metric measures the difference between two communities in terms of the amount of evolutionary history that 
is unique to either of the two: for a pair of communities, the sum of the lengths of the branches on a phylogenetic tree that leads only 
to members of one community divided by the sum of the lengths of the branches that lead to members of either community yields 
the UniFrac distance between the communities [26]. Using the QIIME (Quantitative Insights Into Microbial Ecology) software package, 
we randomly drew sequences from samples at various depths below the original study’s 1,315 ± 420 (standard deviation) sequences 
per sample, then calculated UniFrac distance between all pairs of samples. Using only ten sequences per sample, the main results of the 
original study were recovered: variation between samples was most prominent for samples from different body habitats; and for the same 
body habitat, samples originating from different individuals varied more than samples originating from the same indivdual over time. 
The original study [16] also found that among samples from the same body habitat on the same individual, samples varied more when 
separated by 3 months than when separated by only 24 hours; our reanalysis using only 10 sequences per sample only suggested this 
result (Figure 2a,b).

These same UniFrac distances can be used with the program PRIMER v6 [27] to assess the partitioning of the variability in distances in 
multivariate space using nested models and PERMANOVA [28], a technique that uses label permutations to estimate the distribution of 
their test statistics under the null hypothesis that within-group distances are not significantly different from between-group distances. 
In this analysis, PERMANOVA uses the UniFrac distances to compute a test statistic similar to an F-ratio, and then reports both the 
significance of the statistic and the portion of variation explained by each nested level of factor. Figure 2c shows the portion of variation 
explained in PERMANOVA in response to sequencing depth when run with the default settings using the nested experimental design 
Month(Person(Habitat)), featuring Habitat as the highest hierarchical level. Remarkably, this analysis shows that a relatively low sequencing 
depth is sufficient to allow us to partition variability in bacterial community membership among the various factors in our experimental 
design, and to rank correctly the relative importance of these factors. For example, the observation that bacterial community composition 
varied less over 24 hours than over 3 months became significant when 50 or more sequences per sample were obtained (PERMANOVA 
Monte Carlo P < 0.001). These results are consistent with previous work from several groups showing that broad-scale trends in microbial 
community analysis can be recaptured with samples consisting of only a few dozen sequences [29-32].

Related techniques can be used to address the potential of using a deeply sequenced reference dataset to classify sparsely sequenced 
microbial samples. This approach is likely to be increasingly relevant as sequence-based microbial ecology studies grow both in number 
and in extent, and as reference databases become more extensive and user friendly. In this analysis, each narrowly defined body site from 
Costello et al. [16] (for example, volar forearm, forehead, and so on) is compared with each other site. For each pair of sites, one sample 
was selected: how many sequences from that sample were required to identify which of the two body sites it came from? A given depth 
of sequencing (‘Seqs for 95% cluster accuracy’ in Figure 2d) was considered sufficient for discrimination when it placed the test sample 
closer to samples from the same body site than to samples from the other body sites under consideration more than 95% of the time. As 
expected, correct discrimination in this manner requires deeper sequencing when the differences between body sites are more subtle. 
For example, body sites within the broader skin habitat, such as palm and knee, often required well over 100 sequences for discrimination, 
whereas dissimilar habitats such as the oral cavity and hair rarely required more than 100 sequences for discrimination.

The effect sizes in this type of analysis can be quantified using an adaptation of the population-genetics statistic known as the ‘fixation 
index’, or FST. FST was originally used to detect genetically based population subdivision (also known as genetic differentiation) among 
populations of animals or plants within a species [33], but can easily be adapted to measure the degree of differentiation between clusters 
(or categories) of microbial communities [12]. Values of FST typically range from 0 to 1, where 0 indicates no differentiation and 1 indicates 
complete differentiation. Hudson et al. [34], following Slatkin [35], provide a simple definition of FST that is easily adapted to microbial 
community distance metrics such as Unifrac distances: FST = (PBetween - PWithin)/PBetween, where PBetween and PWithin represent the average Unifrac 
distances between and within samples, respectively, from two categories. The FST is reported as the abscissa in Figure 2d. For many pairs of 
body habitats, surprisingly few sequences (often fewer than ten) are required to classify a new habitat, although with smaller effect sizes 
more sequences are frequently required. It is important to note that, as with any assessment of beta diversity, these patterns are due to 
differences in the most abundant species in each sample; the effects of the rare biosphere [36] will inherently be lost as sampling depth 
decreases. However, the importance of rare species (that is, alpha diversity) in human body habitats generally has yet to be shown. If rare 
species do turn out to correlate better with physiological states than does overall community composition, deeper sequencing will be 
required. However, overall patterns can be recovered with surprisingly few reads, and a focus on the common species that make up most 
of the biomass has been useful in many other ecosystems as well.
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antibiotics on overall community composition were evident 
with as few as 96 sequences per sample [23]. It would be 
fascinating to test whether similar antibioticinduced effects 
in outbred populations of humans with diverse diets [24] can 
be found with relatively few sequences. Similarly, it would be 
important to consider sampling depth under human 
physiological conditions in cases where the effect size is 

known to be large, for example, in the development of the 
infant gut microbiota [25].

Has the depth of sequencing used up to now really 
been necessary?
The literature reviewed in Table 1 reports how many 
sequences were used to reveal a variety of different 

Figure 2. Variation in human body habitats within and between people. (a) The full dataset (approximately 1,500 sequences per sample); 
(b) the dataset sampled at only 10 sequences per sample, showing the same pattern; (c) the relationship between sequencing depth and the 
PERMANOVA component of variation. The amount of variation explained by the factors plateaus at relatively shallow sequencing depths. Note 
that the proportion of variation captured by differences between the samples (that is, residual variation) is still highest despite the explanatory 
values of the three factors examined. (d) Effect size determines the number of sequences required for sample identification. Each point in the 
figure represents a specific sample selected from a pair of body sites, and the number of sequences required to correctly distinguish which site the 
sample originated from. The point is colored according to the two body sites under consideration, the center’s color represents the broad category 
the selected sample originated from, the border color represents the other broad category under consideration. Many body sites share the same 
broad category, and thus some points have the same border and center coloring. Red, external ear canal; yellow, hair; green, oral cavity; blue, gut; 
magenta, skin; gray, nostril. ns, not significant.
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effects. Could the same results have been achieved with 
less sequencing? To begin to address this question, we 
carried out a limited reanalysis of a study of multiple 
body habitats by Costello et al. [16], which encompasses 
variability explained by nested factors with different effect 
sizes (Box 1).

In conclusion, the results described here, and pre
viously reported [8,37], show that arbitrarily choosing to 
generate large numbers of sequences may not be the 
most costeffective way to identify changes in microbial 
communities associated with different physiological or 
pathophysiological states. Instead, we call for a few stan
dard ized methods to assess differences among microbial 
communities, which will allow for effect size and power 
calculations, and therefore a considered assessment of 
the number of individuals and sequences required to 
differentiate among given communities. The following 
four methods have been successful in a range of studies: 
differences in alpha diversity (number of phylotypes 
observed or extrapolated); differences in abundance of 
specific lineages; differences in location on a principal 
coordinates plot obtained from UniFrac distances or 
other metrics; and the FST measure described in the 
previous section.

The rapid increase in sequencing capacity provides a 
spectacular opportunity to advance the field in ways 
that were unimaginable even 3 years ago. How can 
individual investigators, or groups of investigators, use 
these resources most wisely at this unique moment of 
democratization of the ability to perform sequence
based studies? The data summarized here suggest that 
study designs consisting of tens of thousands of samples 
sequenced at shallow coverage will be highly informative 
(depending on the effect size), and such studies are 
possible with the instruments available today. Given 
recent observations that interhabitat and inter
personal variations are large effects, we believe that 
individual researchers can and should sieze the 
opportunity provided by these findings to analyze vast 
numbers of samples at lowcoverage (for example, 100 
to 1,000 sequences). At this number of samples, detailed 
explora tion of spatial and temporal dynamics of 
microbial communities will be possible, as will 
comparisons of large patient populations. In addition, 
replicate samples can be acquired and analyzed without 
too strongly impairing the breadth of an investigation, 
allowing more robust experimental designs to be 
implemented. One can envisage that perhaps within the 
next few years, a group of motivated highschool 
students might, for a sciencefair project, be able to 
track movements in microbes between humans and 
their pets and livestock across the planet. These studies, 
especially when combined with hypothesisdriven 
approches to understanding the effects of factors such 

as diet and antibiotic exposure, could go far beyond 
even the largest purely observational studies being 
contemplated today.

Such studies will yield an overall map of variation 
within the human microbial ecosystem, and relate 
differences to specific physiological states within and 
between individuals in a manner that is replicated across 
individuals. These studies will serve as a framework to 
identify and compare the shifts that take place in the 
microbial community that are related to specific disorders.
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