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Abstract

Flux balance analysis is a common method for predicting steady-state flux distributions within metabolic networks, 
accounting for the growth demand for the synthesis of a predefined set of essential biomass precursors. Ignoring the 
growth demand for the synthesis of intermediate metabolites required for balancing their dilution leads flux balance 
analysis to false predictions in some cases. Here, we present metabolite dilution flux balance analysis, which addresses 
this problem, resulting in improved metabolic phenotype predictions.

Background
A practical approach to gaining biological understanding of 
complex metabolic networks requires the development of 
mathematical modeling, simulation, and analysis tech-
niques. Traditional modeling techniques are based on math-
ematical approaches that require detailed and accurate 
information regarding reaction kinetics as well as enzyme 
and metabolite concentrations [1,2]. The lack of sufficient 
data limits the current applicability of such methods to 
small-scale systems. This hurdle is surpassed through the 
use of constraint-based modeling (CBM), which serves to 
analyze the functionality of genome-scale metabolic net-
works by relying solely on simple physical-chemical con-
straints [3,4]. Genome-scale CBM models have already 
been constructed for more than 50 organisms [5], including 
common model microorganisms [6,7], industrially relevant 
microbes [8-11], various pathogens [12-15], and recently 
for human cellular metabolism [16]. Flux balance analysis 
(FBA) is a key computational approach within the CBM 
modeling framework [17-19] and is frequently used to suc-
cessfully predict various phenotypes of microorganisms, 
such as their growth rates, uptake rates, by-product secre-
tion, and knockout lethality (see [3,5,20] for reviews).
Traditional kinetic models of cellular metabolism are for-
mulated as a set of differential equations that compute the 
time derivative of metabolite concentrations (denoted by 

) as dependent on reaction rates (denoted by ; which, in 
turn, depend on metabolic concentration and kinetic con-

stants, denoted by ) and metabolite dilution due to cellu-
lar growth (with μ denoting the growth rate) [21]:

where S is an m × n stoichiometric matrix, m is the number 
of metabolites, n is the number of reactions, and Sij repre-
sents the stoichiometric coefficient of metabolite i in reac-
tion j. A precise solution to Equation 1 requires 

determination of the kinetic parameters , which are gen-
erally unavailable, resulting in the development of the alter-
native CBM approach. In CBM, an entire space of possible 
solutions for the flux distribution  is postulated, consider-
ing that the metabolic system is constrained by physico-
chemical, environmental and regulatory constraints. In 
FBA, this solution space is constrained by the assumption 
of a quasi steady-state, under which stoichiometric mass-
balance constraints enforce constant concentrations of 
intermediate metabolites over time:

The uptake and secretion of a pre-defined set of metabolites 
from and to the environment is facilitated via the definition 
of exchange reactions in the stoichiometric matrix S [3]. A 
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pseudo growth reaction is defined to simulate the utilization 
of metabolites during growth, consuming the most abun-
dant biomass constituents based on experimentally deter-
mined concentrations (that is, the j-th component in 

 denotes the steady-state concentration of metabo-
lite j). The objective of FBA is to find a steady-state flux 
distribution, , satisfying Equation 2 alongside additional 
enzymatic directionality and capacity constraints [3], 
together permitting a maximal growth rate μ. Accounting 
only for linear constraints, the resulting space of feasible 
flux distribution described by FBA is convex (forming a 
high-dimensional polytope), in which optimal biomass pro-
ducing solutions can be efficiently searched for via linear 
programming (LP).
The employment of a pseudo growth reaction in FBA to 
represent the utilization of metabolites as part of growth 
poses two fundamental problems. First, the metabolite com-
position of cellular biomass significantly varies across dif-
ferent growth media, genetic backgrounds and growth rates 
[22-24]. Indeed, previous work by Pramanik and Keasling 
[22,23] has shown that using the correct experimentally 
measured biomass composition of Escherichia coli under 
different growth media and growth rates significantly 
improves FBA flux predictions. However, as FBA is com-
monly applied to probe metabolic behavior under diverse 
genetic and environmental conditions for which no metabo-
lite concentration data are available, it has become common 
practice to employ a constant biomass composition across 
all conditions [25]. Second, the growth reaction in various 
CBM models commonly accounts for no more than a few 
dozen metabolites, for which measured concentrations are 
available under a specific condition [23]. Ignoring the 
growth-associated dilution of the remaining metabolites 
(those not included in the biomass composition in use; 
required by Equation 1) may result in the prediction of bio-
logically implausible flux distributions, leading to false pre-
dictions of gene essentiality and growth rates, as shown in 
the Results. This problem has been recently addressed by 
Kruse and Ebenhöh [26], who suggested a method that is 
based on network expansion to compute the set of produc-
ible metabolites under a given growth medium. This 
method, however, does not enable the prediction of feasible 
flux distributions that account for the growth-associated 
dilution of all intermediate metabolites. Another approach, 
recently suggested by Martelli et al. [27], predicts meta-
bolic fluxes based on Von Neumann's model, which maxi-
mizes the growth rate in a metabolic network without 
assuming mass-balance nor utilizing prior knowledge of a 
biomass composition. However, similarly to FBA, flux dis-
tributions predicted by this method do not fully account for 
the growth-associated dilution of all intermediate metabo-
lites.

In this paper we describe a variant of FBA, metabolite dilu-
tion flux balance analysis (MD-FBA), which aims to pre-
dict metabolic flux distributions by accounting for the 
dilution of all intermediate metabolites that are synthesized 
under a given condition. As shown below, accounting for 
growth dilution of intermediate metabolites is especially 
important for metabolites that participate in catalytic 
cycles, many of them being metabolic co-factors. Since 
CBM assumes a steady-state flux distribution and does not 
predict the actual concentration of the intermediate metabo-
lites, we consider a uniform minimal dilution rate for all 
intermediate metabolites produced via a non-zero flux 
through some reaction (assuming a uniform concentration 
for all intermediate metabolites, following [28]).
Figure 1 demonstrates an example network for which FBA 
and MD-FBA predict different flux distributions, leading to 
different growth rate and gene essentiality predictions. The 
biomass in this network is metabolite B, while the input 
metabolites available in the growth medium are A and X in 
Figure 1a, and only A in Figure 1b. The synthesis of the 
biomass precursor B is facilitated via two alternative path-
ways: through an efficient pathway via v4, producing one 
molecule of B per molecule of A; or through an inefficient 
pathway via reactions v2 and v3, producing one molecule of 
B per two molecules of A. Reaction v4 requires the presence 
of a co-factor metabolite C, which is recycled via reaction 
v8 and synthesized via reactions v6 and v7. Thus, in MD-
FBA, the activation of the efficient pathway for synthesiz-
ing B via v4 enforces de novo synthesis of co-factor C via v6 
and v7 to balance the dilution of this co-factor (Figure 1a, 
red solid arrows). By contrast, since FBA does not account 
for metabolite dilution, it would predict a biologically 
implausible flux distribution in which the steady-state con-
centration of the co-factor C is maintained via reaction v8, 
without predicting the growth-associated demand for de 
novo synthesis of this co-factor (Figure 1a, b, blue dot-dash 
arrows). The different flux distributions predicted by FBA 
and by MD-FBA under the two growth media yield differ-
ent growth rate and enzyme essentiality predictions. FBA 
predicts the activation of the efficient biosynthetic pathway 
for synthesizing metabolite B under both growth media, 
resulting in the same growth rate prediction under the two 
media. MD-FBA, on the other hand, predicts the activation 
of the efficient biosynthetic pathway when metabolite X is 
present in the growth medium (with a growth rate predic-
tion similar to that of FBA; Figure 1a) and the activation of 
the inefficient pathway when metabolite X is absent (result-
ing in a lower growth rate; Figure 1b). When metabolite X 
is present in the growth medium, MD-FBA, unlike FBA, 
predicts that the biosynthetic pathway for the production of 
co-factor C is activated, with the reactions v6 and v7 being 
essential for achieving maximal growth rate (Figure 1a). 
When X is absent from the growth medium, FBA predicts 
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the activity of the efficient pathway through v4 and v8, with 
the corresponding enzymes essential for obtaining a maxi-
mal growth rate. MD-FBA, however, predicts the inactiva-
tion of this efficient pathway and hence the inessentiality of 
v4 and v8, while predicting the enzymes in the less efficient 
pathway v2 and v3 to be essential for growth (Figure 1b).
Next, we describe the implementation of MD-FBA as a 
mixed-integer linear programming (MILP) optimization 
problem and demonstrate its applicability in predicting met-

abolic phenotypes, outperforming the commonly used FBA 
method.

Results
MD-FBA - accounting for growth-associated dilution of all 
intermediate metabolites
Our method, MD-FBA, aims to predict a feasible flux dis-
tribution through a metabolic network under a given envi-
ronmental and genetic condition, by maximizing the 
production rate of the biomass (that is, the flux through the 
biomass reaction) while satisfying a stoichiometric mass-
balance constraint, accounting for the growth-associated 
dilution of all produced intermediate metabolites, and satis-
fying enzymatic directionality and capacity constraints 
embedded in the model (similarly to FBA). MD-FBA is 
formulated as a MILP problem as defined in the Materials 
and methods.

Applying MD-FBA to predict metabolic phenotypes in 
Escherichia coli
As a benchmark for the prediction performance of MD-
FBA, we applied it to the genome-scale metabolic network 
model of E. coli [6] to predict growth rates and gene essen-
tiality under a diverse set of growth media and gene knock-
outs. The model of Feist et al. [6] accounts for 1,260 
metabolic genes, 2,382 reactions and 1,668 metabolites.
As an initial validation, we applied both MD-FBA and FBA 
to predict E. coli's growth rate for 91 gene knockout strains 
under 125 different media, yielding a total of 11,375 growth 
conditions for which measured optical density (OD) data 
are available via a phenotypic array in the ASAP database 
[29]. Each medium included a fixed set of metabolites 
(oxygen, phosphate, water, sulfate, carbon dioxide, hydro-
gen and metal ions) and alternating carbon and nitrogen 
sources (the full list of growth conditions (media and gene 
knockouts) as well as the experimental OD values are avail-
able in Additional files 1 and 2, respectively). Different 
gene knockouts were modeled by forcing a zero flux 
through the corresponding enzyme-catalyzed reactions 
[28]; different growth media were modeled by changing the 
bounds on metabolite uptake from the environment based 
on specification of the available metabolic nutrients in each 
medium [28]. Both FBA and MD-FBA predicted no growth 
for the wild-type strain under 13 growth media and hence 
these media were removed from further analysis. In an 
additional 16 growth media the correlation between the 
growth rates predicted by FBA and MD-FBA across all 
knockout strains was significantly high (Spearman r > 0.7) 
and hence these media were also removed from further 
comparison of the two methods (the results presented below 
are insensitive to specific choice of a Spearman correlation 
threshold). For each deletion strain, a Spearman correlation 
was calculated between the predicted growth rates and the 
measured OD values across the remaining 96 different 

Figure 1 An example network featuring the difference in predict-
ed flux distributions between FBA and MD-FBA. Thick arrows rep-
resent metabolic reactions and circular nodes represent metabolites. 
Narrow arrows represent the growth-associated dilution of their at-
tached metabolites. Note that the stoichiometric coefficients for reac-
tion v2 are two molecules of A per one molecule of D. v1 and v6 

represent the uptake for metabolites A and X, respectively. B is the sole 
metabolite within the biomass, and hence the flux through v5 repre-
sents the growth rate. Blue (dash-dot) and red (solid) arrows represent 
reactions predicted to be active by MD-FBA and FBA, respectively, 
while black (dashed) arrows represent all other reactions. The figure il-
lustrates growth on two media: (a) growth on a medium in which both 
A and X are present; (b) growth on a medium including only metabo-
lite A. FBA predicts the same growth rate, which is equal to v1 under 
both media, while MD-FBA predicts a growth rate equal to v1 when 
both A and X are present in the medium and a growth rate equal to 
0.5v1 when only A is included in the medium. The latter is due to the 
fact that when X is absent from the growth medium, MD-FBA cannot 
activate reactions v4 and v8, since the dilution of metabolites C and C* 

cannot be satisfied under this medium. The different flux distributions 
predicted by the two methods lead to different predictions of enzyme 
essentiality, as detailed in the main text.
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growth media. For 10 of the 91 gene deletion strains, both 
FBA and MD-FBA falsely predicted zero growth across all 
media and these strains were removed from further analy-
sis. The median Spearman correlation obtained by MD-
FBA was found to be slightly higher than that obtained via 
FBA (Wilcoxon test P-value = 0.0145; Figure 2). Several 
limitations of the MD-FBA method currently restrict its 
ability to markedly improve the growth rate predictions, as 
discussed below. Still, in some interesting specific cases 
MD-FBA outperforms FBA; for example, we examined 
two minimal growth media, N-acetyl-D-mannosamine and 
N-acetyl-D-glucosamine, under which the latter yields a 
higher measured growth rate across all knockout strains, 
while FBA predicted identical growth rates for all 81 
knockout strains under both media. MD-FBA, on the other 
hand, predicted different growth rates for 67 of the knock-
out strains under the two growth media, correctly predicting 
a higher growth rate in N-acetyl-D-glucosamine in 87% of 
these cases.
Extending the gene essentiality analysis under these media 
for other genes, not included in the ASAP dataset, revealed 
several additional scenarios in which MD-FBA and FBA 
predictions significantly differ. We found that, generally, 
MD-FBA predicts the activation of reactions involved in 
co-factor biosynthesis that are not activated by FBA (the 
distribution of reactions whose predicted activity pattern 
differ between MD-FBA and FBA across various metabolic 
subsystems is shown in Additional file 3). For example, 
under succinate minimal medium, MD-FBA predicts that 
genes in the ubiquinone-8 biosynthetic pathway are essen-
tial for growth, whereas FBA predicts these genes to be 
nonessential (Figure 3). Specifically, both methods predict 

that the first part of this pathway, leading to the production 
of the biomass metabolite 2-octaprenyl-6-hydroxyphenol 
(black solid edges), is essential under succinate minimal 
medium, while only MD-FBA predicts that the remaining 
part of the pathway, leading to ubiquinone-8, is activated. 
Ubiquinone-8 is an important redox co-factor in E. coli's 
aerobic respiration, switching between a reduced (q8h2) 
state and an oxidized (q8) state. While both FBA and MD-
FBA predict the cycling of ubiquinone-8 between the 
reduced and oxidized states under succinate minimal 
medium (as part of aerobic respiration), only MD-FBA pre-
dicts the corresponding requirement for de novo synthesis 
of this metabolite to accommodate for its growth-associated 
dilution. Notably, this scenario is similar to that described 
in the toy model in Figure 1a, where q8 and q8h2 corre-
spond to co-factor metabolites C and C*. As a testimony to 
the correctness of these predictions, we found that a gene 

Figure 2 Histograms of Spearman correlation values between 
measured and predicted growth rates. The histograms show the ac-
curacy of FBA (blue, dash-dot line) and MD-FBA growth rate predic-
tions (red, solid line) for 81 gene deletion strains across 96 growth 
media. The median Spearman correlation for MD-FBA is significantly 
higher than that of FBA (Wilcoxon test P-value = 0.0145).
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for the co-factor ubiquinone-8 (q8h2). Edges represent reactions, 
circular nodes represent metabolites. Black (thin) edges represent re-
actions predicted to be active both by FBA and by MD-FBA and green 
(thick) edges represent reactions predicted to be inactive by FBA and 
active by MD-FBA. MD-FBA correctly predicts the pathway to be acti-
vated under succinate minimal medium (where q8h2 is used in aero-
bic respiration) and to be inactivated under other media. FBA falsely 
predicts the inactivity of the pathway (downstream to 2ohph), as it 
does not account for the dilution demand for the production of q8h2, 
which is not included in its biomass reaction (as it is used only under 
some environments). 2ohph, 2-octaprenyl-6-hydroxyphenol; 2ombzl, 
2-octaprenyl-6-methoxy-1,4-benzoquinol; 2omhmbl, 2-octaprenyl-3-
methyl-5-hydroxy-6-methoxy-1,4-benzoquinol; 2ommbl, 2-octapre-
nyl-3-methyl-6-methoxy-1,4-benzoquinol; 2omph, 2-octaprenyl-6-
methoxyphenol; 2oph, 2-octaprenylphenol; 3ophb, 3-octaprenyl-4-
hydroxybenzoate; ahcys, s-adenosyl-l-homocysteine; amet, s-adeno-
syl-l-methionine; atp, adenosine-3-phosphate; co2, carbon dioxide; h, 
hydrogen; h2o, water; nad, nicotinamide-adenine-dinucleotide; nadh, 
nicotinamide-adenine-dinucleotide-reduced; o2, oxygen; pi, phos-
phate; q8h2, ubiquinone-8-reduced.
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coding for an enzyme catalyzing two reactions in the 
ubiquinone-8 biosynthetic pathway, ubiG, was experimen-
tally validated to be essential for E. coli growing under suc-
cinate minimal medium [30,31]. Adding ubiquinone-8 to 
the biomass reaction would indeed solve the false essential-
ity prediction of ubiG under succinate minimal medium, 
but would lead to a false essentiality prediction under glu-
cose medium, where ubiG was shown to be nonessential for 
growth [32] - further emphasizing the advantage of 
accounting for metabolite dilution in FBA.
As an additional validation, we applied MD-FBA to predict 
gene essentiality for 1,117 genes under glucose and glyc-
erol minimal media, based on measurements from [32] and 
[33], respectively. Each gene in the dataset was experimen-
tally determined to be either essential or non-essential and 
the accuracy of the essentiality predictions obtained by 
FBA and MD-FBA was assessed via an area under curve 
(AUC) score of the receiver operating characteristic (ROC) 
curve [34]. This curve represents the true positive and false 
positive rates as a function of the threshold on the predicted 
growth rate used to determine gene essentiality (experimen-
tal and predicted datasets are available in Additional file 4). 
Initially, we applied MD-FBA, utilizing the same definition 
of a biomass as in FBA (as performed above), obtaining 
very similar AUC scores of 0.888/0.873 and 0.873/0.875 
for MD-FBA and FBA, respectively, under glucose/glyc-
erol. However, following further inspection, we found that 
15 of the 63 metabolic precursors that make up the biomass 
are actually designated as co-factors by Feist et al. [6]; 
hence, MD-FBA is likely to be able to predict the growth-
associated demand for their synthesis specifically under the 
conditions in which they are required, without accounting 
for them explicitly in the biomass definition. For example, 
in Figure 1, the dilution of co-factor C is correctly predicted 
by MD-FBA in a context-dependent manner only when 
metabolite X is present in the medium, as C is not fixed to 
be included in the biomass. Falsely including metabolite C 
in the biomass, although it is required in only some media, 
would lead to a false prediction of lethality when metabolite 
X is absent from the growth medium. Given that such an 
inclusion of co-factors in the biomass may lead to false 
gene essentiality predictions, their removal from the bio-
mass is likely to improve prediction performance. In order 
to remove these co-factors from the biomass, we performed 
the following pre-processing step: in each growth condition 
examined, each co-factor was in turn removed from the bio-
mass and MD-FBA was then applied to test whether a dilu-
tion is predicted for the co-factor under a subset of the gene 
knockout strains. The analysis revealed three co-factors 
(10-formyltetrahydrofolate, 2-octaprenyl-6-hydroxyphe-
nol, flavin adenine dinucleotide oxidized (FAD)) whose 
dilution is dynamically predicted by MD-FBA and they 
were subsequently removed from MD-FBA's biomass 
(dilution analysis results are available in Additional file 5). 

Repeating the gene essentiality analysis with the reduced 
biomass considerably improved the prediction performance 
of MD-FBA (Figure 4). Specifically, the AUC scores 
achieved by MD-FBA and FBA under glucose medium are 
0.910 and 0.873, respectively, and under glycerol medium 
are 0.893 and 0.875, respectively. As further support for the 
assertion that the improved prediction performance is not a 
mere consequence of removing unnecessary biomass pre-
cursors, we re-applied FBA using the same reduced bio-
mass (labeled FBA-r in Figure 4), which showed no 
improvement over FBA's original performance. These 
results clearly demonstrate the added-value of considering 
the context-dependent nature of co-factor requirements, 
which can change depending on both genetic and environ-
mental factors.

Discussion
This study presents MD-FBA, a variant of FBA for predict-
ing metabolic flux distributions by accounting for growth-
associated dilution of all metabolites in a context-dependent 
manner. The method predicts feasible flux distributions 
maximizing the production rate of a predefined biomass 
while accounting for the dilution of all intermediate metab-
olites, and most importantly, for all metabolic co-factors 
involved in the process. MD-FBA was shown to success-
fully predict E. coli's gene essentiality under a variety of 
growth media and knockout strains, displaying a significant 
improvement upon the prediction performance of the com-
monly used FBA method.
MD-FBA has two notable limitations, which may contrib-
ute to the relatively low improvement in growth rate predic-
tion accuracy (compared to the marked advantage in 
predicting gene knockout lethality). First, MD-FBA 
employs a uniform lower bound on the dilution rate of 
intermediate metabolites which, along with the absence of 
reactions outside the scope of the network model that 
degrade intermediate metabolites, implicitly reflects the 
assumption of a uniform concentration of all intermediate 
metabolites. A natural extension of MD-FBA would be to 
consider different lower and upper bounds on concentra-
tions of different metabolites, based on concentration statis-
tics gathered via metabolomic measurements across a 
variety of conditions (for example, [24]). Notably though, 
changing the lower bound employed here to a range of pos-
sible values and incorporating an upper bound on dilution 
rates across all metabolites did not improve the prediction 
performance (data not shown). Second, MD-FBA, similarly 
to FBA, is based on the assumption that microbial species 
aim to maximize their growth rate and hence search for fea-
sible flux distributions that maximize biomass synthesis 
rate. However, previous studies have questioned this 
hypothesis, suggesting alternative possible optimization 
criteria. Future studies should investigate the potential 
usage of such optimization criteria with MD-FBA [35]. 
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More generally, CBM methods that do not rely on optimi-
zation may also benefit from variants that account for 
metabolite dilution during growth.
A marked disadvantage of MD-FBA is its dependence on 
MILP, which is computationally more demanding than LP, 
utilized by FBA. To improve the run-time of MD-FBA, the 
amount of integer variables in the MD-FBA formulation 
may be reduced by employing a previous method to iden-
tify the metabolic 'scope' of the medium nutrients. Specifi-
cally, Handorf et al. [36] investigated the capacity to 
produce metabolites from available medium nutrients by 
applying FBA and a network expansion algorithm, result-
ing in a production scope for each set of medium metabo-
lites. A potential improvement in run-time may be achieved 
by calculating the scope of the input growth medium and 
assigning integer variables only for metabolites in that 
derived scope, as all the other metabolites will never be 
able to satisfy their dilution demand. Speeding up the run-
time may be of importance when applying MD-FBA to 
larger networks, such as the recently published human 
model [16], or when probing the network under multiple 
knockout configurations [37,38].
An interesting comparison can be made between MD-FBA 
and a method developed by Price et al. [39] for eliminating 
futile cycles via the identification of type III extreme path-
ways (that is, a unique set of convex basis vectors of the 
flux distribution solution space that do not include 
exchange reactions). While the extreme pathways method 
enables the elimination of thermodynamically impossible 
loops, MD-FBA removes infeasible solutions due to dilu-

tion demands. Notably, the latter method also implicitly 
eliminates type III extreme pathways since these pathways 
do not satisfy dilution demands of the participating metabo-
lites. Additionally, MD-FBA eliminates solutions that do 
not involve type III extreme pathways as demonstrated in 
Figure 1b: when metabolite X is absent from the growth 
medium, the cycle involving reactions v4 and v8 cannot be 
activated based on MD-FBA, since the dilution of co-factor 
C cannot be satisfied, although this cycle is not part of a 
type III extreme pathway.
Another appealing application of MD-FBA could be the 
identification of missing reactions in the model by compar-
ing predicted phenotypes with measured ones, in line with 
previous works using FBA for this purpose [40]. For exam-
ple, suppose that in Figure 1a the biosynthetic pathway for 
metabolite C, through reactions v6 and v7, was not included 
in the model. In this case, MD-FBA would predict meta-
bolic flow through reactions v2 and v3, such that the 
enzymes catalyzing these reactions are essential, contrary 
to experimental essentiality data. Utilizing a method similar 
to that used by Reed et al. [40], using MD-FBA can infer 
the missing reactions, v6 and v7. Employing FBA for this 
purpose would not work since FBA predicts v2 and v3 to be 
non-essential, as the activity of reactions v4 and v8 do not 
depend on the presence of reactions v6 and v7.
While this work applied MD-FBA to predict metabolic phe-
notypes in E. coli, for which a comprehensive and accurate 
metabolic network model exists, the method can also be 
applied to any one of a growing number of reconstructed 

Figure 4 ROC curves of gene essentiality predictions. ROC curves of gene essentiality predictions under (a) glucose and (b) glycerol minimal me-
dia. Predictions were made by FBA, FBA-reduced biomass (FBA-r; utilizing the reduced biomass definition) and MD-FBA, where MD-FBA is shown to 
outperform both FBA and FBA-r under both growth media. FP, false positive; TP, true positive.
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network models [20]. Importantly, the application of MD-
FBA to other network models is straightforward and 
requires no model-specific data curation. To facilitate sim-
ple usage of MD-FBA, we provide an implementation of 
the method in the supplemental website [41]. A particularly 
interesting potential application of MD-FBA would be for 
modeling malignant proliferating cells in human cancer, 
potentially revealing the activity of biosynthetic pathways 
for various co-factors required to balance their growth-
associated dilution. The latter may utilize the recently pub-
lished model of human cellular metabolism by [16] or [42]. 
Overall, we expect that future use of MD-FBA will pro-
mote improved metabolic phenotypic predictions across a 
variety of organisms, growth conditions and genetic altera-
tions.

Materials and methods
Metabolite dilution flux balance analysis
To formulate a mass-balance constraint while accounting 
for metabolite growth dilution, we assume that each metab-
olite j that is produced by a certain reaction at a rate greater 
than zero (referred to as an 'active metabolite') has a non-
zero concentration and should hence be diluted with a rate 
greater than zero (denoted by dj). To compute a feasible 
flux distribution, , and a corresponding vector of dilution 

rates, , we employ the following optimization problem:

subject to

where a mass-balance constraint, accounting for the dilu-
tion of all active metabolites, is formulated in Equation 3. 
Equation 4 assigns a positive dilution rate above a pre-
defined threshold (denoted by ε) for active metabolites, pro-
duced in some non-zero rate in the flux distribution . In 
our application of the method for E. coli we set ε = 10-4 

μmol/mg, which represents a common concentration of 

intermediate metabolites [6]. Notably, the model's predic-
tions were robust to different choices of ε values (data not 
shown). Enzyme directionality and capacity constraints are 
formulated in Equation 5 by imposing  and  as 
lower and upper bounds on flux values.
The above optimization problem is solved by formulating it 
as a MILP problem, replacing the Equation 4 constraint 
with the linear equations specified below: for each metabo-
lite j in the model, we define an integer variable yj that 
denotes whether the metabolite is active (that is, being pro-
duced by some non-zero reaction in the model), via the fol-
lowing linear constraints:

where Rj denotes the set of reactions in which metabolite j 
participates. Equation 6 is a linear formulation of the state-
ment 'if νi ≥ ε then yj = 1' and Equation 7 is the symmetric 
for negative fluxes (that is, νi ≤ -ε). Given the  variables, 
Equation 4 can be formulated via the following constraints:

which can be represented in linear form (since εμ < 1) as:

A simplified formulation assuming a constant growth rate 
of μ = 1 in Equation 8 (for calculating the dilution rate of 
intermediate metabolites) gave qualitatively similar results 
to the above linear formulation (data not shown). The com-
mercial solver CPLEX running on 64-bit Linux machines 
was used for solving LP and MILP problems within a few 
dozens of seconds per problem.

Additional material

v

d

max ,v d μ

Sv r dbiomass− − =μ 0 (3)

If metabolite active j S v Then d j( _ ( , , )) ≥ με (4)

v v vmin max≤ ≤ (5)

d ≥ 0

v

Additional file 1 ASAP growth conditions. Excel file including the 
growth conditions used to model the ASAP experiments used by both FBA 
and MD-FBA.
Additional file 2 ASAP experimental optical density values. Excel file 
including the experimentally measured OD values taken from the ASAP 
database.

vmin vmax

v y v i Ri j i jmax, ≥ − ∀ ∈ε (6)

− ≥ − − ∀ ∈v y v i Ri j i jmin, ε (7)

y m∈ { , }0 1

y

d y≥ με (8)

d y− ≥ − +εμ 1

http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r43-S1.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r43-S2.xlsx
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