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Drug target predictionThe relationship between co-fitness and co-inhibition of genes in chemicogenomic yeast screens provides insights into gene function and drug target prediction.
Abstract
We systematically analyzed the relationships between gene fitness profiles (co-fitness) and drug inhibition profiles (co-
inhibition) from several hundred chemogenomic screens in yeast. Co-fitness predicted gene functions distinct from 
those derived from other assays and identified conditionally dependent protein complexes. Co-inhibitory compounds 
were weakly correlated by structure and therapeutic class. We developed an algorithm predicting protein targets of 
chemical compounds and verified its accuracy with experimental testing. Fitness data provide a novel, systems-level 
perspective on the cell.

Background
Yeast competitive fitness data constitute a unique,
genome-wide assay of the cellular response to environ-
mental and chemical perturbations [1-8]. Here, we sys-
tematically analyzed the largest fitness dataset available,
comprising measurements of the growth rates of bar-
coded, pooled deletion strains in the presence of over 400
unique perturbations [1] and show that the dataset
reveals novel aspects of cellular physiology and provides a
valuable resource for systems biology. In the haploinsuffi-
ciency profiling (HIP) assay consisting of all 6,000
heterozygous deletions (where one copy of each gene is
deleted), most strains (97%) grow at the rate of wild type
[9] when assayed in parallel. In the presence of a drug, the
strain deleted for the drug target is specifically sensitized
(as measured by a decrease in growth rate) as a result of a
further decrease in 'functional' gene dosage by the drug
binding to the target protein. In this way, fitness data
allow identification of the potential drug target [3,4,10].
In the homozygous profiling (HOP) assay (applied to
non-essential genes), both copies of the gene are deleted
in a diploid strain to produce a complete loss-of-function
allele. This assay identifies genes required for growth in
the presence of compound, often identifying functions
that buffer the drug target pathway [5-8].

The field of functional genomics aims to predict gene
functions using high-throughput datasets that interro-
gate functional genetic relationships. To address the value
of fitness data as a resource for functional genomics, we
asked how well co-fitness (correlated growth of gene
deletion strains in compounds) predicts gene function
compared to other large-scale datasets, including co-
expression, protein-protein interactions, and synthetic
lethality [11-13]. Interestingly, co-fitness predicts cellular
functions not evident in these other datasets. We also
investigated the theory that genes are essential because
they belong to essential complexes [14,15], and find that
conditional essentiality in a given chemical condition is
often a property of a protein complex, and we identify
several protein complexes that are essential only in cer-
tain conditions.

Previous small-scale studies have indicated that drugs
that inhibit similar genes (co-inhibition) tend to share
chemical structure and mechanism of action in the cell
[3]. If this trend holds true on a large scale, then co-inhi-
bition could be used for predicting mechanism of action
and would therefore be a useful tool for identifying drug
targets or toxicities. Taking advantage of the unprece-
dented size of our dataset, we were able to perform a sys-
tematic assessment of the relationship between chemical
structure and drug inhibition profile, an essential first
step for using yeast fitness data to predict protein-drug
interactions. This analysis revealed that pairs of co-inhib-
iting compounds tend to be structurally similar and to
belong to the same therapeutic class.
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With this comprehensive analysis of the chemogenomic
fitness assay results, we asked to what degree the assay
could systematically predict drug targets [2-4]. Target
prediction is an essential but difficult element of drug dis-
covery. Traditionally, predictive methods rely on compu-
tationally intensive algorithms that involve molecular
'docking' [16] and require that the three-dimensional
structure of the protein target be solved. This require-
ment greatly constrains the number of targets that can be
analyzed. More recently, high-throughput, indirect meth-
ods for predicting the protein target of a drug have shown
promise. Some approaches search for functional similari-
ties between a new drug and drugs whose targets have
been characterized. For example, one such approach [17]
looks for similarities in gene expression profiles in
response to the drug; whereas another [18] looks for sim-
ilarities in side effects. These and other related
approaches require that a similar drug whose target is
known is available for the comparison. These approaches
are thus limited in their ability to expand novel target
space, whereas the model we develop here is unbiased
and not constrained to known targets.

An alternative class of approaches to identify drug tar-
gets compares the response to a drug with the response to
genetic manipulation, with the assumption being that a
drug perturbation should produce a similar response to
genetically perturbing its target, that is, the chemical
should phenocopy the mutation. For example, one class
of methods [19,20] searches for similarity of RNA expres-
sion profiles after drug exposure to profiles resulting
from a conditional or complete gene deletion. A related
approach employs gene-deletion fitness profiling, where
the growth profiles of haploid deletion strains in the pres-
ence of drug are compared to growth profiles obtained in
the presence of a second deletion [5]. These approaches
are limited in their ability to interrogate all relevant pro-
tein targets, both because of scaling issues and because
they do not, in the majority of cases, interrogate essential
genes, most of which encode drug targets. Finally, over-
expression profiling is an approach to drug target identifi-
cation that relies on the concept that overexpression of a
drug target should confer resistance to a compound [21-
23].

Our machine-learning approach aims to predict drug-
target interactions in a systematic manner using the com-
pound-induced fitness defect of a heterozygous deletion
strain combined with features that exploit the 'wisdom of
the crowds' [24]; namely, that similar compounds should
inhibit similar targets. We designed this approach such
that it would effectively leverage the scale of our assay
and the size of the resulting datasets. The result is a pre-
dictor that infers drug targets from chemogenomic data,
and whose performance is sufficiently robust to suggest
hypotheses for experimental testing. While experimental

testing of direct binding of predicted targets to drugs is
beyond the scope of this paper, we accurately predicted
known drug target interactions in cross-validation, and
provide genetic evidence to verify two novel compound-
target predictions: nocodazole with Exo84 and clozapine
with Cox17. These results suggest that chemogenomic
profiling, combined with machine learning, can be an
effective means to prioritize drug target interactions for
further study.

Results
Co-fitness of related genes
We previously showed that strains deleted for genes of
similar function tend to cluster together [1]. Here we
greatly expand upon that analysis, quantify the degree to
which co-fitness can predict gene function and compare
its performance with other high-throughput datasets. To
generate a suitable metric, we defined the similarity of
gene fitness scores across experiments as a co-fitness
value (see Materials and methods). Several measures of
co-fitness were tested and we found that Pearson correla-
tion consistently exhibited the best performance in pre-
dicting gene function (Supplementary Figure 1 in
Additional file 1). Notably, converting the continuous val-
ues to ranks or discrete values decreased performance,
suggesting that even subtle differences in phenotypic
response contain valuable information regarding gene
function. Accordingly, Pearson correlation was used for
all subsequent analyses.

We calculated co-fitness separately for the heterozy-
gous and homozygous datasets and evaluated the extent
to which co-fitness predicted an expert-curated set of
protein pairs that share cellular function, which we refer
to as the 'reference network' [13]. Functional prediction
performance was compared using several types of func-
tional yeast assays: co-fitness; a unified protein-protein
interaction network [25] derived from two large-scale
affinity precipitation studies [26,27]; synthetic lethality
[28]; and co-expression over three microarray gene
expression studies [29-31]. For each of the datasets, we
compared the reference network to the predicted gene-
gene interactions, at a range of correlation cutoffs for
continuous scores (Figure 1a).

We divided our reference network into 32 sub-net-
works according to the 32 GO Slim biological processes
[13]. Each gene pair was assigned to the sub-network if
both genes were annotated to that process. The function-
specific predictive value of using these sub-networks was
assessed using the area under the precision-coverage
curve (Figure 1b). The different datasets predicted dis-
tinct processes. In particular, co-fitness provided good
predictions (relative to other datasets) for functions
including amino acid and lipid metabolism, meiosis, and
signal transduction (Figure 1c-f; Supplementary Figure 2
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Figure 1 Predicting shared gene functions using co-fitness and other datasets. (a) Precision-recall curve for each of four high-throughput data-
sets, illustrating the prediction accuracy of each dataset to expert-curated reference interactions [13]. The optimal dataset has both high precision and 
high coverage (a point in the upper right corner). TP is the number of true positive interactions captured by the dataset, FP is the number of false 
positives, and FN is the number of false negatives. Synthetic lethality networks have only one value for precision and coverage because their links are 
binary. Correlation-based networks, including co-fitness, co-expression, and physical interactions, use an adjustable correlation threshold to define 
interactions: each point corresponds to one threshold. (b) Each cell in the matrix summarizes the precision that each dataset achieved for each func-
tion, ranging from low (black) to high (red), hierarchically clustered on both axes. (c-f) Individual precision-recall curves for four of the gene categories, 
from which the values for (b) were calculated. The remaining 28 categories are shown in Supplementary Figure 2 in Additional file 1 in Additional file 1.
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in Additional file 1). This observation suggests the che-
mogenomic assay probes a distinct portion of 'functional
space' compared to the other datasets. In other functional
categories co-fitness performed less well in its ability to
predict gene function. These functions include, most
notably, ribosome biogenesis, cellular respiration and
carbohydrate metabolism (Supplementary Figure 2 in
Additional file 1). Regardless of the underlying reasons
why co-fitness performs better for certain functions, this
metric clearly provides distinct information that, when
integrated with diverse data sources, will aid the develop-
ment of tools designed to predict gene function [11,12].
Co-fitness interactions are available for visualization [32]
and download [33].

The preceding analysis demonstrates that co-fit genes
share function. Thus, co-fitness can be used to evaluate
the extent to which certain types of gene pairs share func-
tion. In an initial test we found that paralogous (dupli-
cated) gene pairs [34] tend to exhibit higher-than-average
co-fitness values (t-test P < 0.01; Supplementary Figure 3
in Additional file 1). This observation argues against a
strict redundancy of duplicated genes because if such
genes were fully buffered, they would not be expected to
exhibit a growth phenotype. Consistent with other recent
studies [35,36], our finding supports models that posit
that such genes are partially redundant, with deletion of
either duplicate resulting in a similar (that is, co-fit) phe-
notype. Notably, analysis of sequence similarity suggests
that paralog co-fitness is not correlated with degree of
homology (Supplementary Figure 4 in Additional file 1).

We also found that essential genes were co-fit with
other essential genes more frequently than expected. On
average, 40% of an essential gene's significantly co-fit
partners were also essential genes, compared to only 23%
for non-essential gene's co-fit partners (P < 6e-45; Sup-
plementary Figure 5a, b in Additional file 1). This obser-
vation is consistent with a recent analysis that suggests
essential genes tend to work together in 'essential pro-
cesses' [37,38]. As expected, pairs of co-complexed genes
(genes encoding subunits of a protein complex) also
exhibit increased co-fitness with other members of the
complex (see Materials and methods; Supplementary Fig-
ure 5c, d in Additional file 1). Recent analyses [14,15]
show that proteins that are essential in rich medium tend
to cluster into complexes, suggesting that essentiality is,
to a large extent, a property of the entire complex.
Indeed, if we define a complex as essential if >80% of its
members are essential, 68 of 312 complexes are essential
in rich medium, which is significantly greater than that
expected by chance [14]. Using our HOP assay (of non-
essential diploid deletion strains), we extended this analy-
sis to ask which nonessential proteins might be essential
for optimal growth in conditions other than rich media.
Using similar criteria (80% of a complex's members are

significantly sensitive in a condition), we identified
between 0 and 36 conditionally essential complexes over
multiple conditions. Overall, 40% of the tested conditions
exhibited significantly more essential complexes than
were observed in random permutations (P < 1e-4), sug-
gesting that condition-specific complexes are pervasive
(Supplementary Figure 6 in Additional file 1). For exam-
ple, in cisplatin (a DNA damaging agent), we observed
essential complexes containing Nucleotide-excision
repair factor 1, Nucleotide-excision repair factor 2, and
other DNA-repair complexes. In rapamycin, the TORC1
complex (a known target of rapamycin) was essential.
Several of the other conditionally essential complexes are
localized to particular cellular structures, such as the
mitochondria and ribosome. Still other condition-spe-
cific complexes function in vesicle transport and tran-
scription. For example, in wiskostatin, FK506, rapamycin,
and bleomycin, most of the conditionally essential com-
plexes function in vesicle transport. Indeed, vesicle trans-
port genes involved in complexes are, in general, sensitive
to a large number of diverse compounds, suggesting that
these complexes are required for the cellular response to
chemical stress. This finding supports and extends our
previous finding that many individual genes are involved
in multi-drug resistance [1].

Co-inhibition reflects structure and therapeutic class
To better understand how a compound's structure and
therapeutic mechanism correlates with its effect on yeast
fitness, we asked how well compound structure and ther-
apeutic action correlate with the corresponding inhibi-
tion profile. For this analysis, we define co-inhibition for a
compound pair as the Pearson correlation of the chemical
response across all gene deletion strains. Structural simi-
larity was defined as described in the Materials and
methods, and therapeutic use was defined using the
World Health Organization's (WHO) classification of
drug uses [39].

The results obtained from clustering compounds by co-
inhibition are summarized in Figure 2. One cluster in the
HIP dataset contained four related antifungals (micon-
azole, itraconazole, sulconazole, and econazole) that
exhibit high structural similarity. Each of these related
antifungals induced sensitivity in heterozygous strains
deleted for ERG11, the known target of these drugs [40].
Other genes required for uncompromised growth in
these antifungals include multi-drug resistance genes,
such as the drug transporter PDR5 (the yeast homolog of
human MDR1), the lipid transporter PDR16, and the
transcription factor PDR1, which regulates both PDR5
and PDR16 expression [41]. Interestingly, fluconazole did
not cluster with the four other azoles, despite evidence
that it also targets Erg11 [40,42]. Fluconazole's chemical
structure is similar to other azoles except that fluorine
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atoms are substituted for chlorine (Figure 2a, inset). Con-
sistent with our observation, an expression-based study
also detected differences between fluconazole and these
azoles [43]. The azole separation found in our clustering
analysis demonstrates that the chemogenomic assay can
discriminate similar but not identical compounds.

A second HIP cluster (Figure 2b) comprised psychoac-
tive compounds that are annotated as psycholeptics that
target dopamine, serotonin, and acetylcholine receptors
but do not share structural similarity. Because their neu-
rological targets do not exist in yeast, the sensitivity we
observe is likely a result of these compounds affecting
additional cellular targets in yeast [44]; these 'secondary'
targets, if conserved, may correspond to additional tar-

gets of these compounds in human cells. This observa-
tion underscores the point that clusters derived from the
heterozygous data can identify compounds with similar
therapeutic action despite the absence of the target in
yeast. In the homozygous data, several drugs with no
obvious structural similarity clustered together (Figure
2c): rapamycin, calyculin A and wiskostatin. The similar-
ity in these profiles resulted from inhibition of strains
deleted for genes involved in intracellular transport and
multidrug resistance [1].

The clusters highlighted in Figure 2 suggest that co-
inhibition can reveal both shared structure and common
therapeutic use. We observed a weak correlation between
structural similarity and co-inhibition (Figure 3), suggest-

Figure 2 Compound clusters, extracted from genome-wide two-way clustering on the complete dataset (using all genes and all com-
pounds). (a) Antifungal azoles in the heterozygous data, with high structural similarity. All induce sensitivity in strains deleted for ERG11, an azole tar-
get, and related pleiotropic drug resistance (PDR) transport-related genes; fluconazole (inset) did not appear in this cluster, though it is also thought 
to target Erg11. (b) Psychoactive compounds that target dopamine, serotonin, and acetylcholine receptors in human; these compounds cluster in 
the heterozygous dataset based on inhibition of small ribosomal subunit genes and Cox17, potential targets in both yeast and human. (c) Examples 
of drugs with similar homozygous fitness profiles; the similarity is due to shared sensitivity of strains deleted for multi-drug resistance (MDR) genes 
with roles in vesicle-mediated transport.
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ing that chemical structure may influence patterns of
inhibition, but further data on this topic are needed. We
note that the compounds used to collect the genome-
wide fitness data were chosen to be as diverse as possible;
a set of compounds that were more similar would be
expected to show a greater correlation between co-inhibi-
tion and structural similarity. We also found significant
relationships between shared Anatomical Therapeutic
Chemical (ATC) therapeutic class [39] and co-fitness
profiles, especially for the homozygous dataset (P < 3e-9;
Figure 4). This finding suggests that a drug's behavior in
the yeast chemogenomic assays can be predictive of its
therapeutic potential in humans. We noted a correlation
between chemical structure and therapeutic class, but a
compound's structure alone did not explain the therapeu-
tic relation to co-inhibition. For pairs of compounds that
both were positively co-inhibiting (correlation >0) and
shared a therapeutic class, more than 70% did not share
significant structural similarity (that is, Tanimoto simil-
iarity <0.2). This observation indicates that compounds
with very different structures can still produce similar
genome-wide effects. This finding can be attributed to
structurally diverse compounds that inhibit different pro-
teins within the same pathway, or to different compound
structures that inhibit the same target [45,46]. Co-inhibi-
tion interactions are available for visualization [32] and
download [33].

Yeast chemical genomic interactions identify drug targets
We extended our observations on the relation between
HIP-HOP sensitivities and chemical structure to con-
struct a novel method to address the difficult task of pre-
dicting drug targets. Our aim was to use the ensemble of
information within the chemical genomic data to better
predict the protein target(s) of a compound, and to dis-
tinguish which of the sensitive strains is the most likely
drug target. We developed a novel machine learning
approach to estimate an 'interaction score' between com-
pound c and gene g. Based on our original observation
that heterozygous deletion strains of the drug target are
often sensitive to the drug [2-4], we set as a key feature in
our model the fitness defect score of heterozygous strain
deleted for gene g in the presence of compound c. Using
the fitness defect in isolation, however, ignores poten-
tially useful knowledge about the properties of com-
pound-target interactions. We therefore added several
additional features described below (see also Materials
and methods).

First, to avoid false predictions involving promiscuous
compounds or genes, we included the frequency of signif-
icant fitness defects for the gene or compound across the
dataset. Second, because structurally similar compounds
often inhibit the same target (as in the case of Erg11 in
Figure 2a), we constructed features designed to exploit
this 'wisdom of the crowds' [24]. Specifically, in predict-
ing the interaction between c and g, we included features

Figure 3 The limited correlation between Tanimoto structural similarity and co-fitness in the heterozygous and homozygous datasets sug-
gests that chemical structure influences inhibition patterns but does not exclusively define them. Each point represents a pair of compounds; 
to allow for comparison between (a) heterozygous and (b) homozygous datasets, for this figure we used only pairs of compounds that were tested 
in both datasets.
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that quantify the structural similarity of a set of com-
pounds that inhibit g. For example, in Figure 2a, the aver-
age structural similarity (Tanimoto) of four compounds
predicted to bind Erg11 was 0.77, a feature that we
hypothesized would help identify true interactions.
Because co-inhibiting compounds may share targets, we
also included features representing the target g's fitness
defects relative to c's top ten co-inhibiting compounds.

One challenge in developing this approach was the lim-
ited amount of available high-quality data relating to drug
targets in yeast. We collected two high-quality training
sets: an expert-curated set of 83 yeast protein-compound
interactions, and yeast homologs of 180 human drug-pro-
tein pairs annotated as interacting in DrugBank [47] (see
Materials and methods). We constructed random nega-
tive interaction sets in two ways: balanced (equal number
of positive and negative examples), and unbalanced
(incorporating all possible negative interactions) (see
Materials and methods). With these known drug-target
interactions and features, we tested several algorithms
using cross-validation. Here the algorithm is trained on
one portion of the known drug-target interactions, and
tested on a held-out (unseen) portion of the known drug-
target interactions. We first tested a simple decision
stump algorithm, where the model chooses a single fea-
ture by which to classify the test interactions. Fitness
defect was found to be the most informative feature. We
next tested a variety of other algorithms (Supplementary
Figure 7 in Additional file 1) on both the balanced and
unbalanced training sets. Richer models (such as random

forest, logistic regression, and naïve Bayes) that incorpo-
rated all features out-performed the simple decision
stump model in both the balanced and unbalanced
regimes, highlighting the importance of including multi-
ple features. Of the tested algorithms, the random forest
algorithm typically yielded the best performance (Supple-
mentary Figure 7 in Additional file 1). This algorithm
builds several decision trees and selects the mode of the
outputs (see Materials and methods). We compared four
models: a simple threshold (decision stump) using fitness
defect alone, a random forest using fitness defect alone, a
random forest using only the chemical structure similar-
ity features, and a random forest using all features.

The random forest using fitness defect alone performed
considerably better than the decision stump (Figure 5),
showing that the relationship between fitness defect and
compound-target interaction is more complex than a sin-
gle threshold. Introducing the additional features
described above (such as compound structure similarity)
gave another considerable boost in performance, particu-
larly in the more challenging dataset of the human
homologs from DrugBank (Figure 5a). To quantify the
improvement derived from including the other features,
we removed features one at a time and re-analyzed the
prediction performance (Supplementary Figures 8 and 9
in Additional file 1). Although fitness defect was the most
valuable feature, all other features also contributed to the
improved performance. Particularly valuable were fea-
tures that measured shared chemical structure of co-
inhibiting ligands, and the median fitness defect of co-

Figure 4 The ability of co-inhibition to predict shared therapeutic use was higher for the homozygous than for the heterozygous dataset. 
As reference, we used a set of compound pairs with shared therapeutic use (WHO ATC level 3 code). As in Figure 3, we used only pairs of compounds 
that were tested in both the (a) heterozygous and (b) homozygous datasets.
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inhibiting ligands. However, using chemical structure fea-
tures alone yielded fairly poor performance (Figure 5).
These observations illustrate the usefulness of aggregat-
ing information across our genome-wide assay.

The predictive accuracy of our algorithm is of sufficient
quality to derive new candidate drug targets for experi-
mental testing. Intuitively, if the protein is a bona fide tar-
get of the compound, decreasing gene dosage should
increase sensitivity to compound (as in the HIP assay) by
decreasing the amount of target protein, and increasing
gene dosage should increase resistance to compound
through overexpression of the target protein [21]. To
genetically validate our algorithm's novel computational
predictions, we asked if the putative target identified in
the HIP assay (decreased gene dosage) confers resistance
to compound when overexpressed. It is important to
appreciate that the requirements to achieve overexpres-
sion rescue are quite stringent. First, the fitness defect
induced by compound must be measurable, but cannot
be so severe that cells cannot be restored to wild-type
growth - that is, the compound must induce a modest but
reproducible fitness defect. Second, the 'rescuing protein'
must be expressed at a level that can override the com-
pound effect, but not expressed to a level that will inhibit
yeast growth [48], which would therefore confound the
detection of growth rescue. Accordingly, these experi-

ments may have a high rate of false negatives, but when a
specific rescue event is observed, it is likely to be infor-
mative. This rationale has been used with success in a
study of 188 compounds [23].

We tested 4 of our top 12 novel predictions (see Materi-
als and methods; Supplementary Table 1 in Additional
file 1) and found pronounced gene-specific rescue of the
compound-induced growth defect in two cases. In the
first case, we tested our prediction that Exo84 is a target
of the microtubule-depolymerizing drug nocodazole
using the overexpression approach. We found that over-
expression of Exo84 does indeed confer resistance in the
presence of nocodazole (Figure 6). The overexpression
results were highly reproducible (Supplementary Figure
10 in Additional file 1). In a second experiment, we tested
the predicted interaction between clozapine, an FDA-
approved drug used primarily to treat schizophrenia, and
the yeast protein Cox17. Interestingly, we initially
observed robust rescue to clozapine both when yeast and
when human Cox17 were overexpressed in yeast, sug-
gesting that human Cox17 may be a target of clozapine
(Supplementary Figure 10 in Additional file 1). Subse-
quent testing of a large number of Cox17 overexpressing
clones revealed a more complex pattern: although all
overexpression clones conferred resistance, we occasion-
ally observed clozapine resistance in control strains car-

Figure 5 Drug target prediction accuracy (ten-fold cross validation) using one of four algorithms: log2 ratio fitness defect with a simple de-
cision stump model (red); log2 ratio fitness defect with a richer random forest model (green); the chemical structure similarity features with 
the random forest model (blue); and all features with the random forest model (purple). Each point represents a threshold for the algorithm. 
For the decision stump, each point represents a single log2 ratio value, and for the random forest, each point represents the algorithm's decision as a 
mode of decision trees that use the available features (see Materials and methods). The accuracies of other algorithms are shown in Supplementary 
Figure 7 in Additional file 1. (a) Performance on the expert-curated reference set of compounds and their known interacting yeast proteins. (b) Per-
formance on DrugBank protein-compound interactions (mostly human) mapped to yeast through protein homology.
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rying empty vector. The Cox17-independent rescue may
be due to the appearance of suppressors in the strain
background (data not shown). However, the fact that all
overexpression colonies tested showed a pronounced res-
cue to clozapine when overexpressing Cox17, and loss of
Cox17 function (in the HIP assay) conferred sensitivity,
strongly suggests an interaction. Detailed biochemical
characterization will be required to elucidate the exact
nature of this interaction which, based on renewed inter-
est in clozapine [49], is of great medical value.

Two other tested predictions were potential interac-
tions of Pop1 and Arc18 with the drug nystatin. Nystatin
is known to bind to membrane ergosterol, and it causes
cell death by creating pores in the plasma membrane [50].
For this reason, we did not expect any individual protein,
when overexpressed, to be able to rescue this drug-
induced defect. However, to avoid biasing our predic-
tions, we tested for nystatin rescue by overexpression of
Pop1 and Arc18. As expected, neither protein was able to
rescue sensitivity to nystatin when overexpressed.

Combining our overexpression rescue results with
those of Hoon et al. [23] and others in the literature
[23,51,52], we find that 5 of our 12 top compound-target
predictions were validated (Supplementary Table 1 in
Additional file 1). For the purposes of comparison, Hoon
et al. [23] found overexpression resistance for only 1% of
the compound-gene pairs tested in a competitive growth
format, making our validation result highly significant.

Discussion
Currently, most genome-wide datasets, including expres-
sion, protein-protein and synthetic genetic interaction
data, have been extensively analyzed to help illuminate

cell function. Data continue to be generated, which adds
predictive power to these large-scale approaches. In this
study, we present the first large-scale, systematic analysis
of co-fitness, highlighting its novelty and implications for
functional genomics. Specifically, these studies: quanti-
fied the ability of co-fitness (the correlation of fitness pro-
files of all genes across all drugs) to predict the functions
of genes not evident in other large-scale assays; quanti-
fied the degree to which co-inhibition (the correlation of
fitness profiles of all drugs across all genes) correlates
with both chemical structure and therapeutic action; and
demonstrated that a machine-learning model derived
from these data predicts drug-target interactions.

We first showed that, overall, co-fitness data identify
gene function better than co-expression data but not as
well as the physical interaction dataset when compared to
a gold standard [13]. When we examined the predictabil-
ity for specific functions, co-fitness predicts certain func-
tions much better than other large-scale datasets. These
functions (underrepresented in other large-scale data-
sets) include amino acid and lipid metabolism, meiosis,
and signal transduction (Figure 2c-f; Supplementary Fig-
ure 2 in Additional file 1). This interesting finding sug-
gests different biological processes are better suited to
different genome-wide approaches. The fact that signal
transduction is predicted relatively well by co-fitness, for
example, may be explained by the fact that signal trans-
duction is often a rapid response occurring on the order
of milliseconds, a time frame too short to allow expres-
sion and translation of required proteins [53,54]. It is not
surprising, therefore, that co-expression performed
poorly in this regard. Functions for which co-fitness per-
formed more poorly than either expression or protein-

Figure 6 Overexpression of Exo84 alleviates the sensitivity of the control to 27 μM nocodazole. The optical density at 595 nm over time for 
wild-type BY4743 cells harboring the Exo84 overexpression construct compared to that of controls (ctrl) transformed with plasmid lacking a gene in-
sert (for details, see Materials and methods, and for replicates, see Supplementary Figure 10 in Additional file 1).

0

2

4

6

8

10

12

0 5 10 15 20 25 30

h

5
9

5
n

m
o

p
ti
c

a
l

d
e

n
s

it
y

EXO84 27uM noc

ctrl 27uM noc

EXO84 2% DMSO

ctrl 2% DMSO



Hillenmeyer et al. Genome Biology 2010, 11:R30
http://genomebiology.com/2010/11/3/R30

Page 10 of 17
protein interaction data include ribosome biogenesis, cel-
lular respiration and carbohydrate metabolism. This
result may be due to a high degree of redundancy of these
functions or because these functions are not involved in
the response to drug perturbation.

Two other findings arose from the functional analysis.
First, duplicated genes were co-fit with their duplicate
partners and the degree of co-fitness for this set of genes
was independent of their sequence similarity. This find-
ing supports the hypothesis of partial, rather than strict,
redundancy [35]. Second, we demonstrated the preva-
lence of conditionally essential complexes, suggesting
that essentiality is often a property of complexes rather
than individual genes [37,38].

We also provide a first systematic analysis of co-inhibi-
tion, and show that we can identify both structural and
therapeutic relationships between compounds. While the
correlation of co-inhibition to co-structure was signifi-
cant, it was not very high. This may be due, in part, to the
fact that our library was chosen for maximum diversity.
The correlation of co-inhibition to therapeutic use was
somewhat surprising because the therapeutic classes of
the compounds reflect their human use while the co-inhi-
bition results are based on yeast fitness measurements.
The correlation between co-inhibition and therapeutic
use might, in fact, be an underestimate because our cur-
rent analysis is limited by the quality and quantity of the
therapeutic data available. Our representations of chemi-
cal structure and drug therapeutic use rely on public
databases, which will undoubtedly improve over time.

Importantly, we showed that fitness profiling can help
to identify the most likely target of a given compound
from a candidate group of sensitive yeast deletion strains.
Traditional drug discovery efforts often focus on the
activity of a purified protein target in isolation. These in
vitro approaches are useful for maximizing the potency of
a given inhibitor, but invariably ignore factors critical for
understanding drug action, including cell permeability
and the potential interaction/inhibition of other proteins
in a cellular context. In vivo chemical genomic assays
address these limitations, and can provide a more com-
prehensive view of drug-protein interactions. Such
results can play an invaluable role in understanding and
predicting a compound's clinical effects and in guiding its
use, including predicting secondary, unwanted drug tar-
gets. New methods for target identification are of enor-
mous value because the coverage of current methods is
limited. Traditional computational approaches to drug-
target prediction require three-dimensional structure of
the protein to predict binding, often by 'docking' the
ligand into the binding pocket of the protein [16,55]. The
success of these methods to date has been variable, with
some studies able to predict known interactions with sig-
nificant enrichment, and others performing worse than

random [55-57]. These methods are also limited to those
proteins that have solved three-dimensional structures.
Other computational methods utilize protein sequence
rather than chemical structure, but these methods are
only applicable to individual proteins or a small subset of
proteins that possess a high degree of similarity [58-60].
We compared our results to a sequence-based method,
testing our gold standard against the interaction model
built by [58], but the model was unable to make predic-
tions about any of these known interactions, presumably
due to the lack of sequence similarity to the available
training sets.

Thus, new sources of data and accompanying computa-
tional methods can be of significant value. Our study of
genome-wide fitness experiments suggests that fitness
profiling offers a new, complementary approach to gener-
ate quantitative, testable predictions of drug target inter-
actions, including predictions that may be outside the
scope of previous computational approaches. Using this
approach, we predicted both known and novel interac-
tions, and provide independent experimental evidence
for two novel interactions. Our algorithm predicted that
the Exo84 protein interacts with nocodazole and that the
Cox17 protein interacts with clozapine. Genetic gene-
dose modulation experiments supported these findings.
These genes, when overexpressed, rescued their respec-
tive drug-induced fitness defect in wild-type cells, pro-
viding independent experimental evidence of a predicted
interaction.

The first validated prediction is the interaction of
Exo84 with nocodazole. Exo84 is a subunit of the well-
conserved exocyst complex, first identified for its role in
the secretory pathway in Saccharomyces cerevisiae [61].
The mammalian homolog is essential for development
and participates in multiple biological processes, includ-
ing vesicle targeting to the plasma membrane, protein
translation, and filopodia extension [62,63]. Filopodia are
cytoplasmic projections that extend from the leading
edge of migrating cells and are important for cellular
motility. Like nocodazole, the exocyst complex inhibits
tubulin polymerization in vitro [64]. It is known that the
microtubule-depolymerizer nocodazole distorts the fila-
mentous localization of Exo84 in cultured mammalian
cells [64]. Furthermore, the exocyst localization is depen-
dent on microtubules in normal rat kidney (NRK) cells,
and the filamentous distribution of Exo84 (as well as two
other exocyst subunits, Sec8 and Exo70) is disrupted by
nocodazole. Accordingly, it is possible that in yeast,
nocodazole treatment causes mislocalization of Exo84,
preventing the protein from performing its essential role
in the exocyst.

A second intriguing finding is our prediction of an
interaction between clozapine and both yeast Cox17 and
its human homolog. Clozapine's primary targets are
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thought to be neurotransmitter receptors, but the drug
also alters cytochome C oxidase (COX) activity through
an unknown mechanism [65]. This COX alteration has
been shown to be linked to clozapine's side effects
[66,67]. Our preliminary genetic data indicating a novel
interaction between Cox17 and clozapine are tantalizing
given the renewed interest in this drug [61], and deserve
further investigation.

Our statistical and experimental results demonstrate
the ability of our novel algorithm to produce high-quality,
testable hypotheses regarding drug-target interactions.
Our model is, however, limited by the number of full-
genome chemogenomic profiles obtained and will likely
improve as we collect additional data with diverse com-
pounds. Nonetheless, these results may shed new light on
the mechanisms by which a drug exerts its primary or
secondary effect. Combining this predictive method with
other computational and experimental data sources
should improve these predictions and expand the number
of potential compound-protein pairs for subsequent test-
ing. This technology can easily be implemented in a high-
throughput manner and should have a positive impact on
the early stages of drug discovery, both by identifying
potential new drug targets and as a filter to prune less
promising ones.

Materials and methods
Data sources
The chemogenomic dataset analyzed here has recently
been published [1]. Briefly, it consists of genome-wide fit-
ness data obtained when 5,984 pooled heterozygous and
4,769 pooled homozygous S. cerevisiae single deletion
strains were grown in 726 and 418 conditions, respec-
tively. The diverse set of compounds tested included
FDA-approved compounds, natural products, bioactives,
and other chemicals from various compound suppliers
[1].

Co-fitness and co-inhibition
We calculated co-fitness and co-inhibition separately for
the heterozygous and homozygous datasets. To deter-
mine the best representation of co-fitness of two genes
(the similarity of their fitness profiles), we tested several
score types and similarity metrics. The score types
included log2 ratio, z-score, P-value, and log P-value. Four
distance metrics were calculated across all experiments:
Pearson correlation; Spearman rank correlation; Euclid-
ean distance; and the cosine of binary data (discretized
with a binary cutoff of log2 ratio >0.5). Two more distance
metrics were calculated across subsets of experiments,
based on a biclustering analysis on the log2 ratios, using
the BicAT toolbox [68] with the Iterative Signature Algo-
rithm [69]. The two metrics were: bicluster co-occur-
rence count (that is, the number of biclusters in which a

gene pair co-occurred); and bicluster Pearson correlation
(that is, the correlation in the subset of experiments in the
bicluster to which the gene pair was co-assigned; if co-
assigned to multiple biclusters, then the correlation was
collapsed into the median). We selected Pearson correla-
tion of log2 ratio fitness defect scores, which best revealed
the reference expert-curated interactions (Supplementary
Figure 1 in Additional file 1). In cases where we needed to
define a significance cutoff for 'co-fit partners' (Supple-
mentary Figure 5 in Additional file 1), we calculated sig-
nificant co-fitness (P < 0.01, three standard deviations
above the mean) as deletion strains with a Pearson corre-
lation coefficient >0.47. Once the Pearson correlation was
established as the best metric, to measure the accuracy of
predicting gene-gene functional relationships for co-fit-
ness and other gene interaction datasets (Figure 1), we
followed the method of [13], using the GRIFn tool [70].

When comparing co-fitness to protein complexes (Sup-
plementary Figures 5 and 6 in Additional file 1), we used
three datasets of protein complexes: Munich Information
Center for Protein Sequences (MIPS) hand-curated com-
plexes; the TAP-MS-based predicted complexes of Col-
lins et al. [25] defined using a score cutoff of 0.5; and
Gene Ontology cellular components. We only considered
Gene Ontology components with fewer than 25 proteins,
excluding the extremely large complexes such as the ribo-
some. We combined all three datasets, resulting in a large
set of 54,255 co-complex interactions.

Conditionally essential protein complexes
To define conditionally essential protein complexes, we
used the 215 expert-curated Saccharomyces Genome
Database Gene Ontology cellular component complexes
with ≥2 members that were viable as homozygous dele-
tions. We limited the analysis to homozygous deletions
for simplicity, because complex stoichiometry, which
would be affected by a heterozygous deletion, is not suffi-
ciently understood [9]. For each condition, we generated
a random distribution by randomly reassigning the genes
to the 215 complexes, maintaining complex sizes. We
repeated this reassignment 10,000 times. This random
distribution allowed us to measure significance in the
actual distribution for the condition.

A protein complex was defined to be 'essential' if at
least 80% of its genes had a significant (P < 0.01) fitness
defect. We note that this is slightly different from the
original definition of essential genes, whose deletion
strains are inviable [71]. Because inviability is difficult to
measure in the pooled assay, we chose a P-value cutoff
instead.

We identified conditions with significantly more essen-
tial complexes than random as conditions having ≥X
essential complexes, where X essential complexes were
not observed in any of the 10,000 permutations for the
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condition. This corresponds to a P-value <1e-4, and a
Bonferroni correction for the 418 conditions tested
resulted in a P-value of 0.04. X was usually around four to
five essential complexes, depending on the condition. In
order to better rank the hypotheses, we also calculated
the average log2 ratio fitness defect of each complex in
each condition.

Chemical structure similarity and therapeutic 
classifications
Because we sought to identify differences between the
heterozygous and homozygous datasets in the analysis of
shared structure and therapeutic class, we limited the
compounds to those tested in both the heterozygous and
homozygous assays. This was to allow for fair comparison
between the two assays. To analyze chemical structure,
we represented each chemical in a machine-readable
manner as SMILES (Simplified Molecular Input Line
Entry System) strings [72]. We used PerlMol [73] to
search each SMILES structure for what we call 'substruc-
ture motifs'. Substructure motifs are fingerprint substruc-
tures defined by PubChem [74]; we used the 554 SMILES
and SMARTS (SMiles ARbitrary Target Specification)
substructures (numbered 327 through 880). Some of
these substructures are explicit, such as a six-carbon ring
with aromatic bonds, while others are more general regu-
lar expressions, such as a ring with any type of bond
(SMARTS [75]). These substructure motifs range in size
from two to eight atoms.

To identify a similarity metric for shared structure, we
constructed the substructure vectors (containing the 554
PubChem substructures) in three different ways. First, we
used the simple binary vector, where the value is 1 if the
compound contains the substructure, and 0 otherwise.
Second, we converted each binary indicator in the 554-
vector to an inverse document frequency (IDF) score
used in text mining [76] to identify infrequent words that
may be more informative than common ones. The IDF
score for each substructure motif i is:

where |C| is the total number of compounds, and cj is
the number of compounds that contain motif mi. Using
IDF limits the analysis to less common, more discrimina-
tive substructures. The value for each substructure is 0 if
the compound does not contain the substructure, and
IDF >0 if it does. Third, we chose a threshold for IDF and
converted the IDF vector back into a binary vector, which
again is 1 if the compound contains the (relatively infre-
quent) substructure, and 0 otherwise. Any commonly

occurring substructure (with IDF less than the threshold)
will always be 0.

For the binary data (that is, the 554-substructure Pub-
Chem fingerprints), we calculated structural similarity
using the Tanimoto (Jaccard) coefficient, Hamming dis-
tance, and Dice coefficient. For the IDF data, we used
cosine distance Pearson correlation, Spearman correla-
tion, Euclidean distance, Kendall's Tau, and city-block
distance. Although several metrics revealed a relationship
to co-inhibition, we found the greatest relationship when
we used the IDF vector transformed into a binary vector
(where the threshold was IDF >2.5), using the Tanimoto
coefficient, which only uses the present substructures
(ignoring the 'off ' bits). Not surprisingly, this suggests
that the less common, more discriminative substructures
are more predictive of the compound's activity in this
assay.

We defined a pair of compounds to be 'co-therapeutic'
if they shared annotation at level 3 of the WHO ATC
hierarchy [39]. This level encodes the compound's thera-
peutic/pharmacological action, such as 'antipsychotics',
'immunosuppressants', and 'antimetabolites'.

In counting the number of co-inhibiting pairs that were
co-therapeutic but not co-structural, we first tried limit-
ing the analysis to the pairs tested in common between
heterozygous and homozygous datasets, as described for
the previous analyses. However, as the sample size in this
case was too small to draw conclusions, we expanded this
analysis to all compound pairs. We counted pairs of com-
pounds that were positively co-inhibiting (correlation
>0), had shared therapeutic class, and a measurable struc-
tural similarity (295 and 37 pairs in the heterozygous and
homozygous datasets, respectively). Of these pairs, 74%
and 90% in the heterozygous and homozygous datasets,
respectively, did not share structural similarity (Tanimoto
similarity <0.2). We summarized this result in the main
text as more than 70% because the two datasets cannot be
compared in this analysis.

Drug target prediction algorithm
To learn a model of protein-compound interactions, we
used two curated sets of interactions. First, we asked
experts in our laboratory for known protein-ligand inter-
actions in yeast and from this set included those for
which the literature provided evidence of the interaction.
This yielded 83 expert-curated yeast protein-ligand inter-
actions. We constructed a negative test set as 83 random
combinations of compound-protein pairs from the posi-
tive test set, forbidding any pairs that existed in the posi-
tive set, and keeping constant the connectivity degree of
each protein and compound. Second, we used known
compound-protein interactions in DrugBank [47] and
mapped them to yeast homologs using BLASTp [77] with
an e-value <1e-10 and no length criterion, and retained

IDF
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any interactions that both had a yeast homolog and a
compound tested in our chemical genomic assay. This
yielded a total of 180 unique positive drug-protein inter-
actions. Of these, 134 interactions were due to only two
of the DrugBank compounds, staurosporine and emodin,
which have many annotated human kinase targets, each
of which had up to several BLASTp-determined
homologs in yeast. We filtered out these promiscuous
compounds, leaving a filtered set of 46 interactions. We
again constructed negative interactions (180 unfiltered or
46 filtered) randomly from the proteins and compounds
in the positive set. Within each set, we predicted targets
using tenfold cross-validation. For DrugBank, the filtered
set of 46 interactions showed slightly better performance
than the unfiltered set of 180; the filtered set is shown in
Figure 5a. In addition to cross-validation on equal-sized
positive and negative sets, we also performed cross-vali-
dation in which the negative set contained all possible
protein-ligand interactions (2,178 and 710, respectively,
for the yeast curated interactions and the DrugBank
human homologs). These results are shown in Supple-
mentary Figure 7 in Additional file 1.

Some compounds were screened against the deletion
collection multiple times, at varying concentrations and
time-point of collection. When constructing the training
and test sets, a protein-compound pair has multiple pos-
sible fitness defect scores, each of which could be consid-
ered an individual instance or a replicate to be collapsed
with other instances. Here we collapsed such replicates
and only considered unique instances of a pair. We used
the maximum fitness defect (greatest sensitivity)
observed for the strain in the compound.

Features used in learning drug targets
We defined the following 20 features for use in machine
learning for predicting whether a protein-compound pair
physically interacts. For each feature we list its name in
Supplementary Figures 8 and 9 in Additional file 1.
Fitness defect score (two features)
This feature is the heterozygous fitness defect score of the
protein-compound pair under consideration (more spe-
cifically, the gene deletion-compound pair). We used only
the heterozygous (not homozygous) scores because they
have been shown to identify the drug target [2,3]. We
hereafter denote the gene deletion instance (and its cor-
responding protein) as gi, and the compound, or drug,
under consideration as cj. Fitness defect as a feature uses
the original observation, described above, that drug com-
pounds sensitize the heterozygous deletion strain of the
physical protein target. For example, the drug methotrex-
ate is known to target the protein Dfr1, and the dfr1
heterozygous deletion mutant exhibited a large fitness
defect [3]. For this feature, we included both the log-ratio

score and P-value score ('ratio' and 'pvalue' in Supplemen-
tary Figures 8 and 9 in Additional file 1).
Gene sensitivity frequency (one feature)
This feature ('genefreq') describes the number of com-
pounds causing sensitivity in gi as a heterozygote. Our
motivation for including it is the following: in addition to
the physical target, genes involved in bioavailability
sometimes cause a significant fitness defect when deleted
as heterozygotes. These genes may export the drug from
the cell or sequester or metabolize drugs in intracellular
compartments such as the vacuole. For example, in the
case of methotrexate, we observed significant sensitivity
of the strain deleted for YBT1, a membrane ABC trans-
porter that expels methotrexate from the cell. In its
absence, the cell exhibits sensitivity to methotrexate. We
found that these bioavailability gene deletions are fre-
quently sensitive [1]. Such promiscuous strains are less
likely to be a specific target, and more likely involved in
availability or metabolism.
Drug inhibition frequency (one feature)
This feature ('drugfreq') describes the number of
heterozygous deletion strains sensitive in cj. Some com-
pounds inhibit large numbers of strains, making it diffi-
cult to determine their exact target. For example, some
antifungal azole drugs such as miconazole inhibit several
hundred strains, only one of which is deleted for the
known target ERG11, (Figure 2) [1].
Phenotype in rich medium (one feature)
In the absence of drug, if the homozygous deletion strain
gi initially showed no phenotype relative to wild type
[9,78], the target cannot be identified by the heterozygous
deletion assay as this assay is dependent on diminished
'functional dosage' of the drug target based on growth
inhibition (that is, the heterozygous deletion of the target
together with the drug's inhibition by binding to the tar-
get protein should mimic a full deletion). The range of
phenotypes of homozygous deletions has been measured
[9] and can thus serve as a feature ('hompheno').
Chemical structure similarity enrichment of putative 
compounds (three features)
If a gene deletion strain gi is sensitive in the HIP
(heterozygous) assay to several structurally similar com-
pounds, this increases confidence that each of the com-
pounds target the protein. Protein-compound binding is
often due to a structural backbone on the compound
(sometimes called a pharmacophore), which can appear
in multiple compounds. If such a common backbone is
observed in a set of compounds, it is more likely that the
entire set shares a target, compared to a random set of
compounds that do not share structure. For example, the
protein Erg11 binds to the compounds in Figure 2, which
appear structurally similar.
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We quantified the structural similarity of a set of com-
pounds as the molecular fingerprints described above.
For each gene deletion gi, we considered the set of com-
pounds Ci that induced significant sensitivity (P < 0.01) in
gi. Each individual compound c contains a set of motifs,
Mc. We calculated whether the set Ci was statistically
enriched for any shared motif m, using a log risk ratio
(RR), which has been applied in calculating other types of
motif enrichment [79]:

where P(m | Ci) is the frequency of motif m among the
subset of compounds Ci that inhibit gi, and P(m) is the
frequency of motif m in all compounds. We also consid-
ered pairs of motifs, to allow for the possibility of binding
on non-contiguous structural areas of the compound;
these were subjected to the same analysis. We chose the
motif or pair with the maximum risk ratio score, and used
this score as a feature ('struct_enrichment').

As a second type of feature in this realm of structural
enrichment ('struct_count'), we simply counted the num-
ber of compounds k in Ci that all shared a common motif
with the compound in question. For example, when pre-
dicting whether ERG11 binds miconazole (Figure 2a), we
would observe that three other compounds in CERG11
share a common motif (a benzene ring with two chlorine
atoms), so the value for this feature would be three. If
there were multiple possible values of k, due to multiple
common motifs, we used the maximum k.

As a third feature ('struct_similarity'), we calculated the
average structural similarity score for the compounds Ci,
using the Tanimoto similarity method described (Figure
3), where the Tanimoto coefficient is calculated from the
554-substructure PubChem fingerprints.
Co-inhibiting 'secondary compound' fitness defect scores (ten 
features)
We identified the top ten heterozygous co-inhibiting
compounds with cj, the compound of interest. We then
used the fitness defect scores of these ten 'secondary
compounds' for the gene of interest, gi, as ten features
('secondary_ligands'). Our hypothesis is that co-inhibit-
ing compounds share physical targets, suggesting that if
the instance compound targets the instance protein,
inhibiting the heterozygous deletion strain, then co-
inhibiting compounds would be more likely to inhibit the
strain as well.

Co-inhibiting 'secondary compound' fitness defect scores: 
summary statistics (two features)
We summarized the top ten co-inhibiting heterozygous
secondary compounds' fitness defect scores as their mean
('secondary_mean') and median ('secondary_median').

Classification of drug targets
We applied several machine learning algorithms using
the Weka packages [80]: Random Forest, Naïve Bayes,
Decision Stump, Logistic Regression, Support Vector
Machine (SVM: SMO algorithm), Decision Tree (J48
algorithm), and Bayesian Network. We tested their accu-
racy on the training sets using tenfold cross-validation
(Supplementary Figure 7 in Additional file 1); Random
Forest exhibited the greatest performance and was
selected for future use. This algorithm constructs a 'ran-
dom forest' of ten decision trees, each of which considers
sqrt(M) + 1 random features, where M is the number of
original features (20 in the case of considering all fea-
tures, 1 in the case of considering fitness defect alone).
The algorithm's decision is the mode of the decisions of
the ten trees.

Experimental testing of predicted drug-target interaction 
by overexpression
We filtered the top predicted interactions for further test-
ing using the following criteria: the gene was essential or
showed a fitness defect as a homozygous deletion strain
in the absence of compound; the confidence value of pre-
dicted interaction (from the Random Forest algorithm)
was ≥0.7 out of 1, high fitness defect (log ratio ≥ 5); the
compound was not a frequently predicted interactor; and
the protein and compound were reciprocal top ten sensi-
tivity hits of each other. This yielded 12 pairs (Supple-
mentary Table 1 in Additional file 1), four for which we
were able to obtain overexpression plasmids and com-
pound reagents: Cox17 with clozapine, Exo84 with
nocodazole, Pop1 with nystatin, and Arc18 with nystatin.
COX17 overexpression
To create the overexpression strains, yeast strain Y258
(MATa pep4-3, his4-580, ura 3-53, leu2-3,112 [81]) was
transformed with plasmids BG1805 (Open Biosystems,
Huntsville, AL, USA): the vector is derived from
pRSAB1234 from Erin O'Shea using sequence verified, de
novo synthesized yeast or human COX17 under control of
the Gal1-promoter. The BG1805 plasmid host was con-
structed as follows: BG1805 plasmid containing the
MTF1 ORF was extracted from the Y258 yeast strain,
amplified in DH5α Escherichia coli, purified, and restric-
tion digested with BsrGI. The plasmid lacking the gene
insert was gel purified and recircularized by ligation with
T4 ligase. This 'empty' expression vector was used as the
control in our experiments, and was also used for sub-
cloning both yeast and human Cox17, which where syn-
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thesized and sequence-verified by BioBasic (Markham,
Ontario, Canada). The sequences for generating the gene
inserts are shown in Additional file 1. PCR products and
the empty vector BG1805 were co-transformed into
Y258.

In the overexpression experiments, the strains were
grown overnight at 30°C on selective, synthetic defined
medium lacking uracil, supplemented with 2% raffinose
[82]. The next day, cells were diluted to OD595 0.0625 in
YP medium containing 2% galactose and 1% raffinose
[82]. After 4 hours of growth, clozapine (dissolved in
DMSO) from Tocris Bioscience (Ellisville, MO, USA) was
added to a final concentration of 400 μM to the experi-
mental wells. A corresponding amount of DMSO (2%)
was added to the control wells. The plate containing the
cells was inserted in a Tecan GENios microplate reader
(Tecan Systems Inc., San Jose, CA, USA) at 30°C with
orbital shaking. Optical density measurements (OD595)
were taken every 15 minutes for 45 hours. Due to the
non-linearity between OD and cell number at higher cell
densities, the measured Tecan ODs were converted to
'real' ODs using the calibration function 'real OD' = -
1.0543 + 12.2716 × measured OD.
Exo84, Pop1, and Arc18 overexpression
2u plasmids (backbone p5476; kind gift from Charlie
Boone's laboratory) containing full-length ORFs EXO84,
POP1, or ARC18 under their native promoter along with
approximately 900 bp upstream and approximately 250
bp downstream of the coding region, and the KanMX
cassette, were amplified in DH5α E. coli and used to
transform the BY4743 wild-type strain (MATa/α his3Δ 1/
his3Δ 1 leu2Δ 0/leu2Δ 0 lys2Δ 0/LYS2 MET15/met15Δ 0
ura3Δ 0/ura3Δ 0) lacking the KanMX-marker [71]. In the
overexpression experiments, the strains were grown
overnight at 30°C on rich medium (YPD) supplemented
with 200 μg/ml G418 [82]. The next day, cells were
diluted to OD595 0.0625 in fresh YPD) supplemented with
200 μg/ml G418, and drug or vehicle (2% DMSO) was
added. Potential rescue by overexpression was tested
using a range of drug concentrations: EXO84 was probed
using 20 to 27 μM nocodazole, and POP1 and ARC18
using 700 to 1,300 nM nystatin. To monitor growth, a
Tecan GENios microplate reader (Tecan Systems Inc.)
was used at 30°C with orbital shaking. OD measurements
(OD595) were taken every 15 minutes for 34 hours. Due to
the non-linearity between OD and cell number at higher
cell densities, the Tecan ODs were converted to 'real' ODs
using the calibration function 'real OD' = -1.0543 +
12.2716 × measured OD.
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