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Abstract
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Background: Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is
thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription
through the cell cycle has not been studied; genome-wide approaches have only focused on protein-coding
genes. To explore the complex transcriptome architecture underlying the budding yeast cell cycle, we used 8 bp
tiling arrays to generate a 5 minute-resolution, strand-specific expression atlas of the whole genome.

Results: We discovered 523 antisense transcripts, of which 80 cycle or are located opposite periodically expressed
mRNAs, 135 unannotated intergenic non-coding RNAs, of which 11 cycle, and 109 cell-cycle-regulated protein-
coding genes that had not previously been shown to cycle. We detected periodic expression coupling of sense
and antisense transcript pairs, including antisense transcripts opposite of key cell-cycle regulators, like FART and

Conclusions: Our dataset presents the most comprehensive resource to date on gene expression during the
budding yeast cell cycle. It reveals periodic expression of both protein-coding and non-coding RNA and profiles
the expression of non-annotated RNAs throughout the cell cycle for the first time. This data enables hypothesis-
driven mechanistic studies concerning the functions of non-coding RNAs.

Background

Genome-wide transcriptome analyses in humans [1-5],
mouse [6], Drosophila melanogaster [7,8], Arabidopsis
thaliana [9], and fission and budding yeast [10-12] have
provided evidence for widespread expression of non-
coding RNAs (ncRNAs) from intergenic as well as
protein-coding regions (for example, antisense or
intron-derived transcripts). ncRNAs have been
implicated in regulation of chromatin structure, DNA
methylation, transcription, translation, as well as RNA
silencing and stability [2,13-15].

Extensive transcription of intergenic regions and the
antisense strands of hundreds of annotated protein-cod-
ing genes occurs in budding yeast, despite it lacking ves-
tiges of the protein machinery required for microRNA
or small interfering RNA processing [11,16-18]. It is not
clear to what extent these RNAs are functional [19], but
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several have been shown to regulate transcription, acting
through either transcriptional interference or epigenetic
modifications. Examples of transcriptional interference
are SRGI, a ncRNA transcribed in cis across the promo-
ter of SER3 [20,21], and the antisense transcript of
IME4 [22], whereas the antisense transcripts of PHOS
[23], PHO84 [24], transposable element Ty1 [25] and
GAL10-ncRNA [26] function through epigenetic modifi-
cation. For most newly discovered ncRNAs, the biologi-
cal roles and mechanisms of action remain unknown.
To unravel the functions of ncRNAs in yeast, it is infor-
mative to characterize them in the context of a robustly
regulated and well-understood cellular process, such as
the mitotic cell cycle, in which regulatory roles of
ncRNAs have not been studied extensively.

The cell cycle orchestrates virtually all cellular pro-
cesses - metabolism, protein synthesis, secretion, DNA
replication, organelle biogenesis, cytoskeletal dynamics
and chromosome segregation [27] - and diverse regula-
tory events depend on the maintenance of its periodi-
city. Between 400 and 800 periodically expressed
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protein-coding genes have been identified in the mitotic
cell cycle and the genomic binding sites of transcription
factors that control phase-specific expression of these
genes have been mapped in genome-wide location ana-
lyses [28-30]. In addition to transcriptional regulation,
strict timing of cell-cycle progression is ensured by
post-translational regulation. This includes post-transla-
tional modifications, targeted protein degradation and
indirect regulation via interactions with cell-cycle-regu-
lated proteins [31].

To investigate the global cell cycle regulation of all
transcripts, we measured high-resolution, strand-specific
tiling microarray profiles of RNA expression during the
Saccharomyces cerevisiae cell cycle. In contrast to pre-
vious studies [29,30], which only interrogated annotated
features within the genome without resolving strand
specificity, the fine spatial and temporal resolution of
our dataset enabled us to look at the whole transcrip-
tome on both strands, including non-coding RNAs
(both away from coding genes and in antisense posi-
tion), complex transcription architecture of protein-cod-
ing genes, alternative transcription start and
polyadenylation sites, splicing, and differential regulation
of sense and antisense transcripts. Our data reveal cell-
cycle-regulated non-coding genes, complex expression
coupling between sense and antisense transcripts, as
well as over 100 protein-coding genes that were not pre-
viously known to cycle.

Results and discussion

Detecting periodic transcripts

We monitored genome-wide cell-cycle-regulated expres-
sion at 5-minute intervals for up to three cell division
cycles, using whole-genome tiling arrays [11]. The array
is unique in interrogating every base pair in the genome
on average six times and providing an 8-bp resolution
for strand-specific probes. Two independent synchroni-
zation methods were used in order to obtain synchro-
nous cultures (see Materials and methods; Additional
file 1). Late G1 phase arrest was induced by exposure of
barl cells to alpha factor, and by raising the tempera-
ture to 38°C for temperature-sensitive cdc28-13 mutant
cells. Expression profiles for all genomic regions are
provided in a database that is searchable by gene symbol
or chromosomal coordinate [32].

To identify all transcribed sequences, we segmented
along-chromosome expression profiles, applying an
adaptation of the method described by Huber et al. [33]
(see Materials and methods). In addition to protein-cod-
ing transcripts and infrastructural RNAs, we registered
abundant expression of unannotated non-coding RNAs
(Additional file 2). These unannotated expressed fea-
tures comprise 523 antisense transcripts opposite pro-
tein-coding regions and 135 intergenic transcripts
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(Additional file 3). The length distribution of ORFs in
these unannotated transcripts is within the range that is
expected by chance. Hence, we find no evidence for the
unannotated transcripts to be protein coding.

The average segment levels from each time-point were
analyzed for periodic expression by two different com-
putational methods [34,35], as well as by visual inspec-
tion. The aim of this combination of methods was
accurate and sensitive detection of cell-cycle-regulated
transcripts (see Materials and methods). In order to vali-
date our approach, we compared our gene list of peri-
odic protein-coding genes to a benchmark set that
comprised all known cell-cycle-regulated genes identi-
fied in single-gene experiments [35,36]. Our individual
cdc28 and alpha-factor datasets were each better than
most of the available ones [28-30] (Additional file 4).
Furthermore, our combined list of periodic protein-cod-
ing genes, despite being based on just two experimental
datasets, performed almost as well in identifying the
benchmark set of genes as that of Gauthier et al. [37],
which integrated all available genomic datasets of cell-
cycle-regulated genes performed to date (Additional file
4). Thus, our dataset and analysis method reproduced
the previous data on cycling protein-coding genes.

Altogether, 598 periodic mRNAs, 37 cycling antisense
RNAs, and 11 cycling intergenic transcripts were identi-
fied and ranked according to their peak time of expres-
sion (Figure 1; Additional file 5). Non-coding periodic
transcripts were expressed in all cell-cycle phases
(Figure 2; see Additional file 6 for the determination of
the boundaries of the cell cycle phases). Overall, the
peak times of antisense periodic expression were consis-
tent with the waves of expression of periodic protein-
coding genes [38]. To characterize the newly discovered
periodic ncRNAs, we overlapped them with regions of
conserved RNA secondary structure [39]. Despite their
cell-cycle-regulated expression, the unannotated inter-
genic and antisense ncRNAs had little secondary struc-
ture (Additional file 6). Conversely, infrastructural
ncRNAs, comprising tRNAs, rRNAs, small nuclear and
small nucleolar RNAs, were highly structured but were
not periodically expressed.

Cell-cycle-regulated expression of unannotated non-
coding RNAs

Studies in mammalian cells have suggested that anti-
sense RNAs could regulate gene expression of their
sense counterparts, whereby sense and antisense tran-
scripts often exhibit expression correlation patterns
[40,41] and overlap in opposite directionality [42]. We
thus analyzed antisense RNAs in the context of the
sense-antisense pairs (SAPs) of which they are a part.
We categorized the pairs into four classes based on
their expression coupling: 13 periodic antisense
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Figure 1 Gene expression profiles ordered by expression peak times. CDC28 and alpha-factor panels show the expression profiles for all
identified cell cycle-regulated genes, including 598 protein-coding genes, 37 unannotated antisense transcripts and 11 intergenic transcripts,
ordered by their peak times. Profiles for annotated ORFs are graded in blue; all non-coding RNAs are graded in red. Each column of the two
time-course panels represents a single experimental 5-minute time-point. The scales on the left display the relative duration and number of
transcripts expressed in each phase. Key cell-cycle-regulated genes are indicated on the right side. In each row, white and dark blue (or dark red
for the non-coding RNASs) represent the minimum and maximum expression levels, respectively, of the corresponding transcript. Intermediate
values are shown by colors that scale linearly over the range.
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Figure 2 Gene expression profiles for all identified cell-cycle-regulated ncRNAs ordered by their expression peak times. Each column of
the CDC28 and alpha-factor time-course panels represents a single experimental 5-minute time-point. The scales on the left display the relative
duration and number of transcripts expressed in each phase. In each row, white and dark red represent the minimum and maximum expression

levels, respectively, of the corresponding transcript. Intermediate values are shown by colors that scale linearly over the range.

transcripts opposite periodic sense transcripts; 24 peri-
odic antisense transcripts opposite non-periodic sense
transcripts; 43 non-periodic antisense transcripts oppo-
site periodic sense transcripts; and 443 non-periodic
antisense and sense transcript pairs (Additional file 7).
The 13 periodic antisense transcripts opposite periodic
sense transcripts were further subdivided based on the
relative timing of expression of the sense and antisense
transcripts. Considering the absolute difference between
their expression peak times, two pairs (ALK and HSLI)
cycle in-phase, whereas seven (CTF4, FARI, HMS2,
TAF2, TIP1, YNL300W and YPL162C) show anti-corre-
lated expression (Additional file 8). Expression profiles
of the other four SAPs (PRY3, YLRO50C, YMR253C and
YPL230W) had phase shifts between 0 and m.
Remarkably, several genes encoding important cell
cycle regulators fall within the categories listed above
(Figure 3a-c). Among them, FARI is important for mat-
ing pheromone-induced growth arrest and, together
with cyclins CLN2 and CLN3, plays one of the key roles
in the G1/S transition [43]. FARI is expressed at the M/
G1 transition and needs to be shut down in late G1 for
the cell to pass the G1/S checkpoint. Its antisense RNA
peaks starting from the late G1 phase and throughout
the G1/S transition, when Farl protein should not be
present. TAF2, which is involved in transcription initia-
tion, is expressed in late M and early G1 phase; its anti-
sense transcript peaks in late G1 and further into S
phase. The sense and antisense transcripts of CTF4,
which shapes and maintains chromatin structure to
ensure the passage through the S-phase checkpoint [44],
are expressed in an anti-correlated manner, peaking in
the G1/S and G2/M transitions, respectively. The CTF4
sense transcript appears to be transcribed from a

bidirectional promoter shared with the antisense tran-
script of the neighboring gene, MSS18 (Additional files
6 and 9). Together these expression patterns suggest
that some of the antisense transcripts may play a role in
cell-cycle regulation.

We analyzed Gene Ontology (GO) categories of genes
overlapped by antisense transcripts. Most of the protein-
coding messages opposite the 37 periodic antisense tran-
scripts (13 + 24) fall into GO categories linked with the
process of cell division, including cell wall and organelle
organization and biosynthesis, regulation of transcrip-
tion, signal transduction and protein modification, car-
bohydrate metabolic processes, and cell cycle
(Additional file 10). Surprisingly, 15 of the 37 sense
transcripts are of unknown function. We carried out a
similar analysis for the 43 non-periodic antisense tran-
scripts opposite periodic sense transcripts. As expected,
most of these cycling sense messages fall into cell-cycle-
related GO categories, including genes involved in bud
site selection and polarization (BUD9, GICI), daughter
cell separation from the mother (DSE2, CTSI), cell wall
proteins, and so on (Additional file 7). Analysis of GO
categories for the remaining 443 non-periodic SAPs did
not show enrichment in any particular category,
although almost a quarter of the genes have unknown
function (Additional file 11).

We observed a statistically significant correlation (P <
0.002; 5 x 4 contingency table; x> test) between the
overlap patterns of the sense and antisense transcripts
and the relationship of their expression profiles (Addi-
tional file 12). Altogether we distinguished five types of
overlap within a given SAP: antisense transcript contains
the transcribed message of its sense counterpart; the
antisense transcript is contained within the sense
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Figure 3 Expression for sense and antisense transcripts. Heatmaps of expression for sense and antisense transcripts of (a) FART, (b) TAF2, (c)
CTF4, (d) SPST00 and (e) YLRO50C. Each horizontal line represents a single experimental time-point. The unit of the time axis (vertical) is minutes.
The horizontal axis in the center of each panel represents genomic coordinates, and annotated coding genes are indicated by blue boxes. The
heatmap in the upper half of each panel represents signal on the Watson strand, the one in the lower half signal on the Crick strand. The
horizontal orange lines separate alpha-factor (above the line) and Cdc28 (below the line) experimental datasets. Vertical red lines show the

log, (expression level)

transcript; the antisense transcript overlaps either the 3’
or the 5’ end of its sense partner; and the antisense
transcript overlaps two distinct sense transcripts. The
following patterns of overlap were over-represented
compared to what was expected by chance. In 8 out of
13 periodic antisense transcripts opposite periodic sense
transcripts, the antisense transcript is mainly contained
within the protein-coding message; 2 of these 8 cycle in-
phase, and 6 display opposite-phase expression. For 5 of
24 SAPs in which only the antisense transcript cycles,
the antisense transcript contains the complete sense
message, and for another 5, it overlaps 2 sense tran-
scripts. In 15 of the 43 pairs in which only the sense
message is cell cycle regulated, the antisense transcript
overlaps the 5 end of the mRNA and in many cases
extends further upstream.

To investigate sense and antisense expression in more
detail, we also searched for putative TF binding sites
(Additional file 6) and supported these predictions with
the existing ChIP-chip data. TF binding site analyses are
inherently non-strand-specific; however, our data on the

temporal expression of the sense and antisense tran-
scripts yield clues to the regulation of strand-specific
expression. For example, ChIP-chip data and our motif
analysis for FARI suggest binding of both the M-phase
TF Mcml [45] and the G1/S TF SBF [46] within the
region spanned by 600 bases before and after the tran-
script. This evidence for SBF regulation of FARI contra-
dicts the timing of expression of the sense transcript
since FARI is expressed at the M/G1 transition and
needs to be shut down in late G1. Our data show late-
G1-specific expression of the FARI antisense transcript,
thus providing a putative explanation for the presence
of the TF binding site for SBF. Overall, our analyses
indicate that the cycling unannotated transcripts have
binding sites for the same set of TFs that drive sense
transcription during the cell cycle (Additional file 6).
Altogether, 135 unannotated intergenic transcripts
were detected in our dataset. Of these, 11 oscillate with
mitotic progression (Additional files 5; Additional file
13c). As for the antisense transcripts, their peak in
expression follows the waves of excitation in mitotic
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progression observed for protein-coding genes [38]. To
elucidate the role of these intergenic transcripts in cell
cycle regulation, deletion strains for 10 of the 11 unan-
notated periodic transcripts were generated in both
strain backgrounds. Growth curves of the deletion
strains did not show significant lagging in cell doubling
time after asynchronous growth in rich media for 28
hours at 30°C and 37°C. Lack of phenotype is consistent
with our previous observations for the unannotated
intergenic transcripts detected from asynchronous cul-
ture [11]. This suggests that their deletion phenotypes
have more subtle effects than those of many protein-
coding genes.

Cell cycle-regulated protein-coding genes

Previous studies have identified a large number of anno-
tated periodic transcripts. Compared to the integrated
dataset of Gauthier et al. [37], our list contains 223
additional periodic protein-coding genes, of which 109
were also not identified by Pramila et al. [29] and Spell-
man et al. [30] (Figure 4; Additional file 14). Only 3 of
the 109 have been shown to be periodically expressed in
small scale experiments [47]. GOslim analysis [48]
showed that the biological function is unknown for 35
of these 109 genes, whereas 41 perform functions
directly or indirectly associated with the regulation of
the cell cycle, such as organelle organization and bio-
genesis, cytoskeleton organization and biogenesis, ribo-
some biogenesis and assembly, and so on (Additional
file 15).

Of the 598 periodically expressed protein-coding genes,
just 7 contain an intron according to the Saccharomyces

Gauthier et al. Spellman et al.

600 800

Pramila et al.
1000

Granovskaia et al.
598

Figure 4 Venn diagram displays the overlap of our list of
identified cell cycle-regulated protein-coding genes with the
lists determined by the previous studies of Gauthier et al. [37],
Pramila et al. [29], and Spellman et al. [30]. The overlap shows
that we find an additional 223 genes not identified by Gauthier et
al, among which 109 are unique to our dataset and were not
previously defined by the other studies.
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Genome Database annotation: CIN2, MOB1, PMI40,
RFA2, SRCI, TUBI, and USV1I. This is due to the fact
that many of the budding yeast introns reside within
genes that encode ribosomal proteins [48]. In addition,
none of the introns in periodically expressed genes show
signs of phase-specific splicing; hence, in contrast to
meiosis in budding and fission yeast [49,50], we see no
evidence for a regulatory role of splicing in the mitotic
cell cycle of budding yeast.

Conclusions

Our data provide 5-minute resolution strand-specific
profiles of temporal expression during the mitotic cell
cycle of S. cerevisiae, monitored for more than three
complete cell divisions. The resulting atlas for the first
time comprehensively maps the expression of non-anno-
tated regions transcribed in mitotic circuitry, measures
the expression coupling of protein-coding and non-cod-
ing transcript pairs and reveals strand specificity of tran-
scription regulation. Furthermore, it unravels complex
architectures of the mitotic transcriptome, such as spli-
cing and alternative transcription start and polyadenyla-
tion sites, and extends the set of previously reported
cell-cycle-regulated genes by 109 protein-coding genes.

The abundance of antisense expression across the gen-
ome raises the question of whether it represents oppor-
tunistic ‘ripples of transcription’ through active
chromatin regions, or whether it is a regulated overlap
between the transcripts [51]. An evolutionary analysis of
genes with overlapping antisense partners across a num-
ber of eukaryotic genomes has indicated that the sense-
antisense arrangement is more highly conserved than
expected if it were random ‘leakage’ of the transcription
machinery [52].

Regulatory roles for a few antisense transcripts have
been documented in yeast [20-25], yet it is still debated
what proportion of ncRNAs are functional [19]. Our
dataset reveals that most cycling antisense transcripts
are located opposite genes with cell-cycle-related func-
tions. Antisense transcripts may regulate the corre-
sponding functional sense transcripts through several
molecular mechanisms, which can be speculated from
the mutual expression pattern of the two transcripts
[53]. For example, transcriptional interference or anti-
sense-dependent inhibitory chromatin remodeling may
give rise to the anti-correlated expression of sense and
antisense transcripts, as is observed for more than half
of the 13 periodic SAPs. For the 24 cases where the
antisense transcript cycles while the sense transcript is
stably expressed, the periodic antisense transcript may
putatively mask the sense transcript, thereby conferring
periodic regulation at the level of translation. Through
the same mechanism, the 43 stably expressed antisense
transcripts may dampen stochastic fluctuation of sense
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messages by setting a threshold above which the sense
expression must rise [53]. Alternatively, stably expressed
antisense transcripts could mediate activatory chromatin
remodeling that maintains the chromosomal region in a
transcriptionally activatable/repressible state and thereby
facilitate expression regulation of the periodic sense
transcript. Indeed, more than one-third of the 43 stably
expressed antisense opposite cell-cycle-regulated
mRNAs overlap with the 5° UTRs. Altogether, the
sense-antisense expression coupling may help to narrow
down molecular mechanisms through which a specific
antisense transcript exerts its function. Our high-resolu-
tion, unbiased expression atlas of the budding yeast cell
cycle is thus a resource with which to unravel a poten-
tial additional level of the cell cycle regulatory circuit, as
well as to study the periodic expression of protein-cod-
ing transcripts at a fine temporal and spatial resolution.
The dataset provides a link between genomic
approaches and hypothesis-driven mechanistic research
with regard to the functions of ncRNAs.

Materials and methods

Yeast strains and cell cycle synchronization

W101 (50 ml; MATa ade2-1 trpl-1 leu2-3, 112 his3-11,
15 ura3 canl-100 [psil]) background temperature-sensi-
tive cdc28-13 mutant S. cerevisiae strain K3445
(YNN553) was grown for approximately 8 to 10 hours
in rich yeast-extract/peptone/dextrose (YPD) in a shak-
ing water bath at 25°C and diluted in 3 x 1.6 liter cul-
tures for overnight growth in an air incubator at 25°C.
The following morning the cultures of OD600 approxi-
mately 0.2 were mixed together, distributed into 45 x
100 ml samples and arrested in late G1 at START by
shifting the temperature from 25°C to 38°C. After 3.5
hours, the cells were transferred back to permissive tem-
perature to re-initiate cell division and samples were
collected every 5 minutes for 215 minutes (equal to
more than two complete cell cycles). The cultures were
centrifuged and snap-frozen in liquid nitrogen. The
degree of synchrony was monitored by assessing the
number of budding cells and measuring the bud size
(Additional file 1). Nuclear position was determined by
Hoechst staining with fluorescence microscopy (Addi-
tional file 16).

To arrest barl strain DBY8724 (MATa GAL2 ura3
barl::URA3) [30] in G1 at START, alpha-factor phero-
mone was added to a final concentration of 600 ng/ml.
After 2 hours of arrest, cells were released by washing
and recovered in fresh preconditioned medium to facili-
tate initiation of mitosis. Samples were collected every 5
minutes for 200 minutes (equal to three cell cycles).
The degree of synchrony was monitored by assessing
the number of budding cells. Nuclear position was
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determined by Hoechst staining with fluorescence
microscopy.

Total RNA extraction, poly(A)-RNA enrichment, cDNA
synthesis and labeling

Total RNA was isolated from the culture correspond-
ing to each time-point by the standard hot phenol
method [11]. Poly(A)-RNA was enriched from 1 mg of
total RNA by a single passage through the Oligotex
Oligo-dT Column (Qiagen, Hilden, Germany). Poly(A)-
RNA was treated with RNase-free DNasel (Ambion’s
Turbo DNA-free Kit, Foster City, CA, USA) for 25
minutes at 37°C according to the manufacturer’s
instructions and subsequently reverse transcribed to
single-stranded ¢cDNA for microarray hybridization.
Each 200 pl reverse transcription reaction was carried
out in duplicate and comprised 6 pg of poly(A)-RNA,
3 ug random hexamers (RH6), 1 ul of 6 mg/ml Actino-
mycin D (ActD), 0.4 mM dNTPs containing dUTP
(dTTP:dUTP = 4:1), 40 pl 5x first strand synthesis buf-
fer (Invitrogen, Karlsruhe, Germany), 20 pl 0.1 M
dithiothreitol (Invitrogen), and 1,600 units of Super-
Script II (Invitrogen). The synthesis was carried out at
42°C for 1 h and 10 minutes, followed by reverse tran-
scriptase inactivation at 70°C for 10 minutes. Poly(A)-
RNA and RNA in heteroduplex with cDNA were
digested by a mixture of 3 pl of RNAseA/T cocktail
(Ambion) and 3 pul of RNAseH (Invitrogen) for 15
minutes at 37°C followed by inactivation of the
enzymes for 15 minutes at 70°C. Replicate cDNA sam-
ples were further applied to the Affy Clean-up column
(Affymetrix, Santa Clara, CA, USA), eluted together in
30 ul DEPC-H,0 and quantified. Purified cDNA (3.3
pg of each 5-minute time-point sample) was fragmen-
ted and labeled with WT Terminal Labeling Kit (Affy-
metrix) according to the manufacturer’s instructions
and then hybridized to tiling arrays.

Genomic DNA preparation

For DNA hybridization, both strains were grown in YPD
media overnight to saturation in three biological repli-
cates and whole-genomic DNA was purified using the
Genomic DNA Kit (Qiagen). Genomic DNA (10 ug) was
digested to 25 to 100 base fragments with 0.2 U of
DNasel (Invitrogen) in 1x One-Phor-All buffer (Phar-
macia, Munich, Germany) containing 1.5 mM CoCl,
(Roche, Mannheim, Germany) for 3.5 minutes at 37°C.
After DNasel inactivation by boiling for 10 minutes, the
sample was 3’ end-labeled in the same buffer by the
addition of 1.5 pl of Terminal Transferase (25 units/pl;
Roche) and 1.5 pl 10 mM biotin-N6-ddATP (Molecular
Probes, Karlsruhe, Germany) for 2 hours at 37°C, and
hybridized to the tiling array.
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Array design

The array was designed in collaboration with Affymetrix
(PN 520055), as described in David et al. [11]. Probe
sequences were aligned to the genome sequence of S.
cerevisiae strain S288c (Saccharomyces Genome Data-
base of 7 August 2005). Perfect match probes were
further analyzed.

Probe normalization and segmentation

The log-base 2 perfect match (PM) probe intensities
from each array were background corrected and cali-
brated using the DNA reference normalization method
described in Huber et al. [33], which was applied sepa-
rately to both datasets, cdc28 and alpha-factor.

To determine the transcript boundaries in the com-
bined dataset, a piece-wise constant model was fitted to
the normalized intensities of the unique probes ordered
by genomic coordinates. The basic model described in
Huber et. al. [33] was modified to allow time-point-
dependent levels. The normalized intensities (zj) were
modeled as:

ij:Usk+gjk fOI'tSSjStS_H(l)

where ug is the array-specific level of the s-th seg-
ment, g;; are the residuals, j = 1, 2,., # indexes the
probes in ascending order along the chromosome, k
indexes the time-point (array), t,,., ts parameterize the
segment boundaries (¢, = 1 and ¢5,; = n + 1) and S is
the total number of segments. Model 1 was applied
separately to each strand of each chromosome. For each
chromosome, S was chosen such that the average seg-
ment length was 1,250 nucleotides. Change-points were
estimated using a dynamic programming algorithm
implemented in the tilingArray package [33].

After segmentation, the average of the probe signals
within the segment boundaries was calculated for each
time point. A table of segment levels is available from
the supplementary materials webpage [32].

To estimate a threshold for expression, the average
level over both datasets was calculated for each segment.
Segments not overlapping annotated, transcribed fea-
tures were used to estimate the background level as fol-
lows. A normal distribution was fit in order to
determine a threshold at which the estimated false dis-
covery rate was 0.1% [11]. For the mean of the normal
distribution, we used the midpoint of the shorth (the
shortest interval that covers half of the values), for the
variance, the empirical variance of the lowest 99.9% of
the data. Segments whose level fell below this threshold
were considered not expressed.

Segments were then assigned to different categories
depending on how they overlapped with annotated
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features as described in David et al. [11], with the dif-
ference of re-naming the unannotated isolated features
to the unannotated intergenic. Expression values for
each annotated feature were calculated as weighted
averages of the overlapping segments on the same
strand.

Detection of periodic genes

We used a combination of three approaches to identify
periodically expressed segments and annotated features
based on the cdc28 and alpha-factor datasets: the
method of Ahdesmaki et al. [34], which calculates P-
values for a robust nonparametric version of Fisher’s g-
test [54,55], the permutation-based method of de Lich-
tenberg et al. [35], which scores genes based on both
the magnitude of regulation and the periodicity of pro-
file, and by systematic visual inspection. For the two
computational methods, score cutoffs were determined
based on comparison with existing benchmark sets of
113 known cycling genes identified in single-gene stu-
dies [47]. A combined list of cycling transcripts was
compiled that contains all transcripts identified as
cycling by at least two of the three methods. The peak
time of expression for each transcript was calculated as
percentage of the cell cycle duration as previously
described [35]. To determine the length of the cell cycle
in each experiment, the period length was optimized to
fit the expression profiles for selected genes from the
benchmark set.

Analysis of protein-coding potential

To test if the ncRNAs are likely to be novel protein-cod-
ing genes, we extracted all ORFs within unannotated
antisense and intergenic transcripts and compared their
length distributions to what would be expected by
chance. The length of an ORF was defined as the distance
between a stop codon and the most upstream ATG
codon. Two separate background distributions were used
for antisense and intergenic transcripts, to take into
account that these two types of ncRNAs have different
sequence properties (k-mer frequencies), because the for-
mer are located opposite of protein-coding genes whereas
the latter are located within intergenic regions. For anti-
sense transcripts, a set of sequences with the same length
distribution was sampled from the genomic regions
opposite other protein-coding genes. Opposite genomic
regions with matched length distribution and sequence
properties were used as a background for the unanno-
tated intergenic RNAs. The ORF length distributions
observed for the antisense and intergenic transcripts
were not statistically significantly different from their
respective background distributions according to the Kol-
mogorov-Smirnov test.
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Transcription factor binding sites analysis

We used the TAMO suite [56] to identify the TFs that
preferentially bind to regulatory regions of periodic non-
coding transcripts. We systematically searched for bind-
ing motifs that were significantly overrepresented for
the region, spanning from -600 bp upstream up to +600
bp downstream of 37 periodic unannotated antisense
and 11 intergenic transcripts of interest, relative to a
background set composed of all transcripts detected in
the alpha-factor experiment. A benchmark set com-
prised 113 genes whose transcription was reported as
cell cycle regulated in single-gene studies previously
[47], whereas the lowest scoring 252 non-periodic anti-
sense transcripts from the alpha-factor induced arrest
dataset served as a negative control. We also performed
de novo motif discovery on these sequences, using the
combination of methods contained in the TAMO soft-
ware suite. This analysis revealed no significantly overre-
presented sequence motifs. We then searched for the
putative TF binding sites that matched the position-spe-
cific score matrices from Maclsaac [57,58].

Analysis of RNA secondary structure conservation

We investigated the overlap between transcripts and
genomic regions with conserved secondary structure
[39]. We used Steigele et al’s [39] regions for cutoff 0.5.
The regions were remapped to the current genome
assembly using Exonerate (requiring 100% identity). The
regions are strand-specific and overlap with these
regions was also considered in a strand-specific way.

Deletion strains of the periodic unannotated intergenic
transcripts

We generated deletion strains with the help of PCR-
based technology as described on the Stanford Yeast
Deletion webpage [59] using a set of up- and down-
stream primers flanking the defined periodic unanno-
tated sequence listed in Additional file 5. The growth of
deletion strains was monitored in liquid media using
GENios automatic microplate readers (TECAN).

Additional file 1: A table providing control data on the synchronous
division of the yeast cells. Excel sheet 1 contains a table of the number
and percentage of budded cells and dividing nuclei over time with the
progression of the cell cycle; sheet 2 contains a chart of these data.

Additional file 2: A figure showing categories of expressed segments.
The pie chart shows the categories and the numbers of all identified
transcribed segments. The unassigned categories encompass the
segments that did not meet filter criteria and were excluded from further
analyses [11]; correspondingly, the filtered categories are those that did
pass the filtering criteria.

Additional file 3: A table listing antisense and novel intergenic
transcripts identified in our study. Excel sheet 1 is a table of all 523
antisense transcripts, characterized by their genomic position, length and
overlapping sense feature; sheet 2 is a table of all 135 unannotated
intergenic transcripts, categorized by genomic position and length.
Cycling intergenic transcripts are highlighted in sheet 2.
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Additional file 4: A figure showing a comparison of our dataset with
the published datasets on the cell cycle in yeast. Three ROC-like plots
compare: (@) our combined dataset with that of Gauthier et al. [37]; (b)
our cdc28 dataset with the other Cdc28 datasets of Spellman et al. [30]
and Cho et al. [28]; (c) our alpha-factor dataset with the existing alpha-
factor datasets of Spellman et al. [30] and Pramila et al. [29]. The fraction
of the BT benchmark set genes identified by the various datasets is
plotted as a function of gene rank. (@) Comparison of the method of de
Lichtenberg et al. applied to our data (red line) with the comprehensive
integrated dataset of Gauthier et al. (black line) [35]. The cross indicates
our combined list, obtained by the combination of two computational
methods of analyses, and curated manually. (b) Comparison of Cdc28
datasets. (c) Comparison of alpha factor-induced growth arrest datasets.
The color code displays: light brown, Cho et al,; green, Spellman et al,
cyan and blue, Pramila et al; black, Gauthier et al,; red, this study. The
dotted line indicates random selection of genes.

Additional file 5: A table listing periodic protein-coding genes,
antisense and unannotated intergenic transcripts. Excel sheet 1 lists 598
periodic ORFs identified in our dataset, sheet 2 lists 37 cycling antisense
transcripts, and sheet 3 lists 11 periodic unannotated intergenic
transcripts.

Additional file 6: A Word document providing supplemental data. The
file provides additional information on the following sections: 1,
Determination of the boundaries of the cell cycle phases; 2, Conservation
analysis of non-coding RNAs; 3, Analysis of upstream regulatory elements
for periodic unannotated transcripts; 4, UTR lengths; 5, Divergently
transcribed periodic transcripts.

Additional file 7: A table listing the categories of 37 periodic and 43
non-periodic antisense transcripts. Excel table sheet 1 lists 37 periodic
antisense transcripts and sheet 2 lists 43 non-periodic antisense
transcripts, each characterized by genomic position, length, overlapping
sense feature, function of the opposite sense counterpart according to
the Saccharomyces Genome Database, and peak time of expression
(cycling 37 antisense transcripts only).

Additional file 8: A figure showing a comparison of the relative timing
of expression within 13 periodic SAPs. We calculated the peak-time
difference for the periodic sense and antisense transcripts within each of
the 13 cycling SAPs for the alpha-factor and Cdc28 experiments
separately. A difference of 0 corresponds to in-phase expression, whereas
a difference of 50 corresponds to opposite-phase expression (180 degree
phase shift). We observe a good correlation between the two
experiments. The shape of the symbol shows how the sense-antisense
counterparts overlap.

Additional file 9: A table listing pairs of pairs of divergent transcripts
from a bidirectional promoter. Each transcript in a pair is characterized
by the genomic location, category and gene name.

Additional file 10: A figure showing GO categories of the ORFs
opposite cell-cycle-regulated antisense transcripts. The x-axis displays the
number of genes and the y-axis shows the names of GO categories.

Additional file 11: A figure showing GO categories of 443 non-periodic
ORFs opposite non-periodic antisense transcripts. The x-axis displays the
number of genes and the y-axis shows the names of GO categories.

Additional file 12: A contingency table for sense-antisense transcript
overlap.

Additional file 13: A figure showing heatmaps of bi-directional
expression of neighboring cell cycle-regulated genes that share
transcription regulatory elements. (a) Two neighboring ORFs: TEL2 and
ESPT. (b) ORF and an antisense transcript of the upstream protein-coding
gene: SPT21 and antisense counterpart of YMR178W. (c) ORF and cycling
unannotated intergenic transcript: MCDT7and upstream cycling novel
transcript. The heatmap plot is explained in the caption of Figure 3.

Additional file 14: A table listing the 109 periodic ORFs identified in our
study.

Additional file 15: A figure showing GO categories of 109 periodic ORFs
unique to our dataset. The x-axis displays the number of genes and the
y-axis shows the names of GO categories.
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Additional file 16: A figure showing Hoechst nuclear staining of
dividing cdc28-ts mutant cells. Control data displaying synchronous
division of the yeast cells along with the cell cycle progression. Each
image represents a gallery of approximately 10 to 20 representative cells
that were chosen, for the respective time-point, from different fields of
view. Criteria of choice were sharpness of the image and visibility of the
bud; besides these, we aimed for random selection.

Abbreviations

ChIP: chromatin immunoprecipitation; GO: Gene Ontology; ncRNA: non-
coding RNA; ORF: open reading frame; SAP: sense-antisense pair; TF:
transcription factor; UTR: untranslated region.
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