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Diatom cell cycleGenes controlling the cell cycle in two diatoms have been identified and functionally charac-terized, revealing environmental regulation of the cell cycle.
Abstract
Background: Despite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, 
little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, 
suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental 
signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to 
explore the molecular conservation of cell cycle regulation in diatoms.

Results: By profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were 
identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded 
extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific 
cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated 
genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S 
transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental 
stimuli.

Conclusion: The discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control 
mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly 
fluctuating environmental conditions.

Background
Diatoms (Bacillariophyceae) are unicellular photosynthetic
eukaryotes responsible for approximately 20% of the global
carbon fixation [1,2]. They belong to the Stramenopile
algae (chromists) that most probably arose from a second-
ary endosymbiotic process in which a red eukaryotic alga
was engulfed by a heterotrophic eukaryotic host approxi-
mately 1.3 billion years ago [3,4]. This event led to an
unusual combination of conserved features with novel
metabolism and regulatory elements, as recently confirmed
by whole-genome analysis of Thalassiosira pseudonana
and Phaeodactylum tricornutum [5-7], which are represen-
tatives of the two major architectural diatom types, the cen-
trics and the pennates, respectively.

Besides their huge ecological importance, diatoms are
interesting from a biotechnological perspective as produc-
ers of a variety of metabolites (including oils, fatty acids,
and pigments) [8,9], and because of their highly structured
mesoporous cell wall, made of amorphous silica [10]. Thus,
understanding the basic mechanisms controlling the diatom
life cycle will be important to comprehend their ecological
success in aquatic ecosystems and to control and optimize
diatom growth for commercial applications.

As predominant organisms in marine and freshwater eco-
systems, diatoms often encounter rapid and intense envi-
ronmental fluctuations (for example, light and nutrient
supply) [11] that might have dramatic effects on cell physi-
ology and viability. Therefore, cell cycle regulation in dia-
toms most probably involves efficient signalling of
different environmental cues [12]. Recent studies illustrate
how diatoms can acclimate rapidly to iron limitation
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[13,14] and phosphorus scarcity [15] through biochemical
reconfiguration or maintenance of internal reservoirs and
how their cell fate can be determined by perception of dia-
tom-derived reactive aldehydes [16,17]. Furthermore, in P.
tricornutum, a new blue light sensor (cryptochrome/pho-
tolyase family member 1) has been discovered with dual
activity as a 6-4 photolyase and a blue-light-dependent tran-
scription regulator [18]. Thus, diatoms are expected to pos-
sess complex fine-tuned signalling networks that integrate
diverse stimuli with the cell cycle. The recent availability of
genome data of T. pseudonana [5] and P. tricornutum [6]
now provides the basis to explore how the cell cycle
machinery has evolved in diatoms.

Efficient molecular regulation of the cell cycle is crucial
to ensure that structural rearrangements during cell division
are coordinated and that the genetic material is replicated
and distributed correctly. In eukaryotes, the mitotic cell
cycle comprises successive rounds of DNA synthesis (S
phase) and cell division (mitosis or M phase) separated
from each other by two gap (G1 and G2) phases [19]. Pas-
sage through the different cell cycle phases is controlled at
multiple checkpoints by an evolutionarily conserved set of
proteins, the cyclin-dependent kinases (CDKs) and cyclins
(reviewed in [19,20]). Together, these proteins can form
functional complexes, in which the CDKs and cyclins act as
catalytic and regulatory subunits, respectively. Various
types of CDKs and cyclins exist and they generally regulate
the cell cycle, but some can be involved in other processes,
such as transcriptional control or splicing [21,22].

In eukaryotes, activity of CDK-cyclin complexes is
mainly controlled by (de)phosphorylation of the CDK sub-
units and interaction with inhibitors or scaffolding proteins
[23]. Regulators include CDK-activating kinases (CAKs)
[24,25], members of the WEE1/MYT1/MIK1 kinase family
and CDC25 phosphatases that carry out inhibitory phospho-
rylation and dephosphorylation [26], as well as CDK inhib-
itors (CKIs) [23] and the scaffolding protein CKS1/Suc1
[27,28].

The aim of this work was to reveal the molecular network
of cell cycle regulators in P. tricornutum, a species used for
decades as a model diatom for physiological studies. P. tri-
cornutum is a coastal diatom, typically found in highly
unstable environments, and its cells can easily acclimate to
environmental changes [13,29]. Key cell cycle regulators
(CDKs, CDK interactors, and cyclins) were annotated and
their transcript expression profiled during synchronized
growth in P. tricornutum. The results indicate that diatom
cell division is controlled by a combination of conserved
molecules found in yeast, animals and/or plants, and novel
components, including diatom-specific cyclins that proba-
bly transduce the environmental status of the cells to the
cell cycle machinery.

Results and discussion
Annotation of the cell cycle genes in diatoms
The following cell cycle gene families were selected for
comprehensive analysis: CDKs, cyclins, CKS1/suc1,
WEE1/MYT1/MIK1, CDC25, and CKIs. These gene fami-
lies were annotated functionally on the basis of their homol-
ogy with known cell cycle genes in other organisms (see
Materials and methods). The results of this family-wise
annotation are discussed below and summarized in Table 1
and Additional file 1. The nomenclature of all identified
proteins is according to that used in other protists for which
cell cycle gene annotation was available [30,31].

Cell cycle synchronization and expression analysis
To validate the predicted functions of the annotated genes,
we examined their transcript expression during the cell
cycle. To synchronize cell division in P. tricornutum, we
subjected exponentially growing cells to a prolonged dark
period, which arrests the cells in the G1 phase [32] (Figure
1; Additional file 2), and released the cells synchronously
from this arrest point by illumination. A comparable
method had been applied successfully to synchronize
growth in a closely related diatom, Seminavis robusta [33].
Microscopic observations of the dark-arrested P. tricornu-
tum cultures showed that all cells contained a single undi-
vided chloroplast (Figure 1a, upper panel). Accordingly, in
flow cytometric histograms, the dark-arrested cells showed
only a 2C peak (Figure 1b and Additional file 2, t = 0), con-
firming the G1 phase identity of cells containing a single
chloroplast. When cells were released from the dark arrest,
the population of bi-chloroplastidic cells steadily increased
and cells entered the S phase, as observed by flow cytome-
try (Additional file 2, upper panel). However, the level of
synchrony decreased at later time points (from 10 h after
the dark release onward), probably because cells entered
the next cell division cycle at the moment other cells still
had to pass through M phase (Additional file 2). To circum-
vent this problem and to obtain an enrichment of cells in M
phase during the later time points (Additional file 2), the
metaphase blocker nocodazole was added at the time of re-
illumination [34], but without major effect on cell cycle
progression (Additional file 2).

To monitor gene expression during the different cell cycle
phases, exponentially growing cells were synchronized in
the presence of nocodazole (Figure 1b, c). Automated anal-
ysis of the flow histograms indicated that G1-phase cells
were dominant during the first 4 h of re-illumination; from
4 to 7 h, cells went through S phase, as seen by the broaden-
ing and lowering of the 2C peak, while cells went mainly
through the G2 and M phases at 8 to 12 h (Figure 1b, c). In
S. robusta, chloroplast division had been found to take
place only after S-phase onset [33]. Chloroplast division in
P. tricornutum was observed starting from 5 h after illumi-
nation, confirming the S-phase timing determined by flow
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cytometry (Figure 1a, lower panel, and 1c). The duration of
the cell cycle after the synchronization procedure was com-
parable with that of cultures grown under standard condi-
tions (approximately one division per day; Additional file
3). For downstream analysis, at hourly intervals after illu-
mination, samples were taken for expression analysis by
real-time quantitative polymerase chain reaction (qPCR).

CDKs and CDK interactors
CDKs
CDKs are serine/threonine kinases that play a central role in
cell cycle regulation and other processes, such as transcrip-
tional control. Yeast uses only one single PSTAIRE-con-
taining CDK for cell cycle progression [35,36], while
higher organisms encode different CDKs implicated in cell
division. The most conserved CDKs contain a PSTAIRE
cyclin-binding motif [19,20]. In plants, the PSTAIRE-con-
taining CDK had been designated CDKA and is active dur-
ing both G1-to-S and G2-to-M transitions [19]. The plant-
specific B-type CDKs contain a P [P/S]T [A/T]LRE motif
and are active during the G2 and M phases [19]. In animals,
three PSTAIRE (Cdk1, Cdk2, and Cdk3) and two P(I/
L)ST(V/I)RE (Cdk4 and Cdk6) CDKs are involved in cell
cycle control, although evidence has been found recently
that only Cdk1 is really required to drive cell division
[20,37].

Five CDKs could be identified in P. tricornutum (Table
1), of which two clustered together with the CDKA (plant)/
CDK1-2 (animal) family in the phylogenetic tree (Figure
2). CDKA1 contains the typical PSTAIRE cyclin-binding
motif (Figure 3) and its mRNA levels were high during late
G1 and S phase (Figure 4a), suggesting a role at the G1-to-
S transition. CDKA2 shows a PSTALRE motif (Figure 3),
which is a midway motif between the CDKA hallmark
PSTAIRE and the plant-specific CDKB hallmark P [P/S]T
[A/T]LRE. The mRNA levels of CDKA2 were elevated in
G2/M cells (Figure 4a). No homologs of the metazoan
CDK4/6 family were found in P. tricornutum.

CDKC, CDKD and CDKE (designated Cdk9, Cdk7 and
Cdk8 in animals, respectively) are kinases related to CDKA
[38]. C-type CDKs (CDKC and Cdk9) and Cdk8 have been
shown to associate with transcription initiation complexes
and, thus, to play a role in transcriptional control [39,40].
Additionally, CDKC2 is active in spliceosomal dynamics in
plants [22] and CDKE controls floral cell differentiation
[41]. We identified two C-type CDKs (Table 1), CDKC1
and CDKC2 (Figure 2a) with PITALRE and PLQFIRE
cyclin-binding motifs, respectively (Figure 3). No CDKE
homolog was found in P. tricornutum. Both CDKC genes
had relatively low mRNA levels throughout the cell cycle
without any discernible cell cycle phase pattern (data not
shown). Thus, like in other eukaryotes, CDKC expression
probably does not depend on the cell cycle phase in P. tri-

Table 1: Overview and evolutionary conservation of the different core cell cycle gene families

Number of copies

Cell cycle gene Phatra Aratha, b Osttaa, c Saccea, c Homsaa, c

CDKA 2d 1 1 1 3

CDKB - 4 1 - -

CDKC 2 2 1 1 1

CDKD 1 3 1 - 1

CDKF - 1 - 1 1

CYCA 1? 10 1 NA NA

CYCB 2? 9 1 NA NA

CYCD 1? 10 1 NA NA

CYCH 1? 1 1 NA NA

CDC25 - - 1e 1 3

Wee1/Myt1/Mik1 1 1 2 2 2

CKS 1 2 1 1 2

CKI - 7 1 1 8

aAbbreviations: Phatr, Phaeodactylum tricornutum; Arath, Arabidopsis thaliana; Ostta, Ostreococcus tauri; Sacce, Saccharomyces cerevisiae; 
Homsa, Homo sapiens. bData taken from [67]. cData taken from [30].dOne of these genes shows some CDKB characteristics. eClassification 
uncertain because of weak phylogeny. NA, not available due to other classification nomenclature.
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Figure 1 Synchronization of the cell cycle in P. tricornutum. (a) Confocal images of a dark-arrested cell (upper panel) showing a single parietal 
chloroplast and a cell after 12 h illumination (lower panel) showing divided and translocated daughter chloroplasts. Red, autofluorescence of the chlo-
roplast. Scale bar: 5 μm. (b) Validation of synchronization of the cell cycle of P. tricornutum by flow cytometry. DNA content (abscissa) is plotted against 
cell number (ordinate). After a 20-h dark period, most of the cells are blocked in G1 phase (t = 0 to 4 h), indicated by the single 2C peak. After reillumi-
nation, cells proceed synchronously with their cell cycle, going through S phase (between t = 4 and 7 h), visible as the broadening and lowering of 
the 2C peak, and G2-M phase (t = 8 to 12 h), indicated by the accumulation of 4C cells. (c) Histogram indicating the proportion of cells in a certain cell 
cycle phase and chloroplast conformation during the cell cycle. Divided chloroplasts were observed starting from 5 h after illumination, after S-phase 
onset.
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cornutum, but it might be involved in other processes, such
as transcription or splicing. One CDKD was identified
(CDKD1) in P. tricornutum (Table 1 and Figure 2a). D-type
CDKs are known to interact with H-type cyclins to form a
CAK complex [24]. We found that CDKD1 mRNA levels
were high at the G1-to-S phase transition (Figure 4a).
Another CDK variant, CDKF, has only been found in

plants, where it functions as a CAK-activating kinase
(CAKAK) [24]. No members of the CDKF family were
identified in P. tricornutum, confirming that the CAKAK
pathway is specific to plants and should have evolved
within the green lineage (Table 1).

In addition, we identified seven hypothetical CDKs
(hCDKs; Additional file 1) with divergent cyclin-binding

Figure 2 Phylogenetic analysis of the cyclin-dependent kinases of P. tricornutum. Neighbor-joining tree (TREECON, Poisson correction, 1,000 
replicates) of the CDK family. The P. tricornutum sequences are shown in bold. Abbreviations: Arath, Arabidopsis thaliana; Drome, Drosophila melano-
gaster; Homsa, Homo sapiens; Lyces, Lycopersicon esculentum; Medsa, Medicago sativa; Musmu, Mus musculus; Nicta, Nicotiana tabacum; Oryja, Oryza 
japonica; Orysa, Oryza sativa; Ostta, Ostreococcus tauri; Phatr, Phaeodactylum tricornutum; Sacce, Saccharomyces cerevisiae; Schpo, Schizosaccharomyces 
pombe; Thaps, Thalassiosira pseudonana; and Xenla, Xenopus laevis.
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domains (Figure 3) that could not be integrated into the
phylogenetic tree due to high sequence divergence. The
expression levels of several of these hCDKs were modu-
lated during the cell cycle (Figure 4a). The hCDK1 mRNA
levels were the highest during G2-M, whereas those of
hCDK6 were up-regulated during G1 phase and hCDK2,
hCDK3, hCDK4, and hCDK5 were predominantly

expressed at G1 and/or S phase. For hCDK7, no reproduc-
ible expression pattern was found (data not shown).
CDK subunit
CDK subunit (CKS) proteins act as docking factors that
mediate the interaction of CDKs with putative substrates
and regulatory proteins [27]. In P. tricornutum, one CKS
gene was found (CKS1; Table 1) of which the mRNA levels
were mainly high in G2/M cells (Figure 4b).
WEE1/MYT1/MIK1 kinases
WEE1/MYT1/MIK1 kinases inhibit cell cycle progression
through phosphorylation of CDKs [26]. In yeast and ani-
mals, MYT1 is a membrane-associated kinase that phos-
phorylates Thr14 of Cdc2 proteins, as well as Tyr15, which
is also a target of WEE1, a nucleus-localized kinase
[42,43]. A single CKI could be identified in P. tricornutum,
belonging to the MYT1 family (Table 1; Additional file 4)
[42]. In Arabidopsis thaliana, the inhibitory kinase corre-
sponds to WEE1 [44], while the green alga Ostreococcus
tauri expresses both WEE1 [30] and MYT1 (unpublished
data), like animals do [42] (Table 1). Expression of the P.
tricornutum MYT1 kinase was not associated with a specific
cell cycle phase (data not shown). Because MYT1 is proba-
bly implicated in stress responses during the cell cycle [45],
it is possible that the imposed dark arrest or addition of
nocodazole influenced the mRNA levels of MYT1, with too
much variability in its expression profile as a consequence.
CDC25 phosphatase
As antagonists of the WEE1/MYT1/MIK1 kinases, CDC25
phosphatases activate CDKs [26]. In contrast to the pres-
ence of a counteracting kinase, no CDC25 phosphatase
could be identified in P. tricornutum (Table 1) or in T.
pseudonana. Both Arabidopsis and Oryza sativa also lack a

Figure 3 Cyclin-dependent kinase cyclin-binding motifs. Align-
ment of the cyclin-binding motifs of all annotated CDKs in P. tricornu-
tum. The motifs are indicated in the green box. Conserved residues are 
marked by an asterix in the bottom line.
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hCDK6 -KVLQNLEIEISI
                   *  

Figure 4 Hierarchical average linkage clustering of the expression profiles of cyclin-dependent kinases and their interactors in P. tricornu-
tum. (a) Members of the CDK family. (b) CKS1. h, hypothetical.
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functional CDC25 [46,47] and, in plants, CDC25-mediated
regulatory mechanisms have been proposed to be replaced
by a mechanism governed by the plant-specific B-type
CDKs [48]. In P. tricornutum, no true B-type CDK
homolog could be found, but CDKA2, classified by weak
homology as A-type CDK class, possessed a PSTALRE
cyclin-binding motif (Figure 3), which is halfway between
the CDKA and CDKB hallmarks. This motif also occurred
in the Dictyostelium discoideum CDC2 homolog [49] and
in the O. tauri CDKB protein [30]. The PSTALRE motif is
present as well in the CDKA2 homolog of T. pseudonana
(Thaps3_35387; Figure 2a), confirming that this subtype
could generally be found in diatoms. Moreover, CDKA2
was expressed during G2-M (Figure 4a), the expected time
of action of a B-type CDK. Although further in-depth bio-
chemical research will be required to determine its true
physiological function, the presence of this A/B-type CDK
might explain the absence of a CDC25 phosphatase in dia-
toms. Alternatively, if the sequence of the CDC25 phos-
phatase had diverged to such an extent in diatoms, it might
be not detectable by sequence homology, as already sug-
gested for higher plants as well [50].
CDK inhibitors
CDK-cyclin complexes can be inactivated by CKIs, includ-
ing the members of the INK4 family and the Cip/Kip family
in animals [51], or Kip-related proteins and SIAMESE pro-
teins in plants [52,53]. CKIs are mainly low-molecular-
weight proteins that inhibit CDK activity by tight associa-
tion in response to developmental or environmental stimuli
[23,51,54]. Despite extensive sequence similarity searches
for CKIs, no homologs could be identified in P. tricornu-
tum, which is not so surprising given the high sequence
diversity of this cell cycle family [52]. These inhibitory
proteins are most probably present in P. tricornutum, but
their identification will require more advanced molecular
techniques.

Cyclins
The cyclin gene family is expanded in diatoms
We found a large number of highly diverged cyclin genes in
diatoms, of which 24 are in P. tricornutum (Additional file
1). Due to their high divergence, indicated by the low boot-
strap values in the phylogenetic tree, the classification into
different subclasses was not clear (Figure 5), as it was for
the 52 putative cyclins identified in T. pseudonana [55].
Moreover, many represent a novel class of cyclins, which
we designated diatom-specific cyclins (dsCYCs).

To investigate whether the expansion of the cyclin gene
family is specific to diatoms, we compared cyclin abun-
dance among a representative set of Chromalveolates
(Stramenopiles, Apicomplexa, and Ciliates; Table 2) for
which genome data are available [56-64] and have been
pre-processed in a previous study [65]. Because of the lack
of cell cycle gene annotation in all investigated species, we

first screened for cyclin genes, which allowed us to create a
reference dataset for analyzing cyclin evolution. We
searched the different genomes for proteins that showed
similarity to our cyclin HMMER profile and determined the
number of proteins that contained an InterPro cyclin
domain (Table 2). Generally, both detection methods
yielded comparable results within all species (Table 2). An
indication of the putative subclasses and function of the
detected proteins is given by specific cyclin InterPro
domains (Table 2). The proportion of the detected cyclin
proteins relative to the predicted total gene number of each
species revealed that, in the diatom genomes, cyclins are
overrepresented compared to all investigated species,
except for both Cryptosporidium species [57,58] and Para-
mecium tetraurelia [64] (Table 2). However, the total num-
ber of cyclins found in Cryptosporidium (12) is low
compared to that in diatoms (28 in P. tricornutum and 57 in
T. pseudonana). Cryptosporidium species are protozoan
pathogens that depend on their hosts for nutrients. More-
over, Gene Ontology distribution for Cryptosporidium and
Plasmodium is similar, indicating that no functional spe-
cialization of conserved gene families has occurred [58]. In
Paramecium tetrauleria, the cyclin family is expanded as
well. However, this species has a complex genome struc-
ture, possessing silent diploid micronuclei and polyploid
macronuclei. Furthermore, P. tetraurelia underwent at least
three whole-genome duplications, resulting in an apparent
expansion of almost every gene family [64].

In conclusion, the large number of cyclin genes in both
diatoms does not seem to be shared with its closest related
species, indicating that diatom cyclins could have evolved
separately to acquire new specific functions. Although the
cyclin family has been found to be expanded in both dia-
toms, the size of the cyclin gene family in T. pseudonana is
larger than that in P. tricornutum, which seems to result
mainly from the presence of a larger number of diatom-spe-
cific cyclins in T. pseudonana (Figure 5). The biological
cause of the changes in the cyclin family size remains
unknown, although natural selection due to differential hab-
itats might have played a role, or alternatively, random gene
loss or gain might have occurred over long time stretches,
as both species diverged at least 90 million years ago [6].
Genome sequence data of other diatom species are cur-
rently being generated (for example, for Fragilariopsis
cyclindrus and Pseudo-nitzschia multiseries) and will help
to shed light on cyclin gene family evolution in diatoms.
Conserved cyclins
Cyclins can be functionally classified into two major
groups: the cell cycle regulators and the transcription regu-
lators. Generally, during the cell cycle, specific cyclins are
associated with G1 phase (cyclin D), S phase (cyclins A
and E), and mitosis (cyclins A and B) [66]. In P. tricornu-
tum, we identified a single A/B-type cyclin gene (CYCA/
B;1; Figure 5), which gradually accumulated its mRNA



Huysman et al. Genome Biology 2010, 11:R17
http://genomebiology.com/2010/11/2/R17

Page 8 of 19

Figure 5 Phylogenetic analysis of the cyclins of P. tricornutum. Neighbor-joining tree (TREECON, Poisson correction, 500 replicates) of the cyclin 
family. The P. tricornutum sequences are shown in bold. Abbreviations: Arath, Arabidopsis thaliana; Homsa, Homo sapiens; Ostta, Ostreococcus tauri; Pha-
tr, Phaeodactylum tricornutum; and Thaps, Thalassiosira pseudonana.
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Table 2: Expansion of cyclin gene family in different representatives of the Chromalveolata

Stramenopiles Apicomplexa Ciliates

Diatoms Oomycetes

Ph
atr

Tha
ps

Phy
ra

Phy
so

Cry
ho

Cry
pa

Pla
fa

Pla
yo

The
an

The
pa

Par
te

Tet
th

General

Number of 
proteins 
matching the 
cyclin 
HMMER 
profile

28 57 19 19 12 12 5 5 8 8 144 29

Number of 
proteins with 
an InterPro 
cyclin 
domain

27 55 18 18 12 12 5 5 4 6 140 27

Specific InterPro 
domains

IPR004367 
Cyclin, C-
terminal

7 9 4 5 - - - - - - 19 6

IPR006670 
Cyclin

6 18 7 7 2 2 2 1 2 1 94 20

IPR006671 
Cyclin, N-
terminal

18 45 9 10 1 1 - - - - 96 20

IPR011028 
Cyclin-like

27 55 18 18 11 11 5 5 4 6 140 27

IPR013763 
Cyclin-
related

21 47 13 13 6 6 3 2 2 2 72 22

IPR013922 
Cyclin-
related 2

1 1 1 1 3 3 1 1 1 1 21 1

IPR014400 
Cyclin, A/B/D/
E

2 4 2 3 1 1 - - - - 42 3

IPR015429 
Transcription 
regulator 
cyclin

4 3 6 5 2 2 2 2 2 2 6 3

IPR015432 
Cyclin H

1 - 1 1 1 1 1 1 1 1 - -

IPR015451 
Cyclin D

- 4 - - 1 - - - - - - -
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IPR015452 
G2/mitotic-
specific cyclin 
B3

- - - - - - - - - - 3 1

IPR015453 
G2/mitotic-
specific cyclin 
A

1 1 3 3 - - - - - - 2 -

IPR015454 
G2/mitotic-
specific cyclin 
B

1 - - - - - - - - - 9 1

IPR017060 
Cyclin L

- - 1 1 - - 1 1 - - 2 -

Total number of 
genes

10,
402

11,
776

15,
743

19,
027

3,9
94

3,9
52

5,2
68

5,2
68

3,7
92

4,0
35

39,
642

27,
000

Genome size 
(Mbp)

27.
4

32.
4

65 95 9.1
6

9.1
1

22.
85

23.
1

8.3
5

8.3 104

Cyclins/genes total

(%)a

0.2
7

0.4
8

0.1
2

0.1
0

0.3
0

0.3
0

0.0
9

0.0
9

0.2
1

0.2
0

0.3
6

0.1
1

Cyclins/genes total

(%)b

0.2
6

0.4
7

0.1
1

0.0
9

0.3
0

0.3
0

0.0
9

0.0
9

0.1
1

0.1
5

0.3
5

0.1
0

Abbreviations: Phatr, Phaeodactylum tricornutum; Thaps, Thalassiosira pseudonana; Phyra, Phytophthora ramorum; Physo, Phytophthora sojae; 
Cryho, Cryptosporidium hominis; Crypa, Cryptosporidium parvum; Plafa, Plasmodium falciparum; Playo, Plasmodium yoelii yoelii; Thean, Theileria 
annulata; Thepa, Theileria parva; Parte, Paramecium tetraurelia, Tetth, Tetrahymena thermophila. aNumber of cyclins versus total number of 
genes calculated with the number of proteins that match our cyclin HMMER profile. bNumber of cyclins versus total number of genes 
calculated with the number of proteins with a InterPro cyclin domain.

Table 2: Expansion of cyclin gene family in different representatives of the Chromalveolata (Continued)

transcript during the G2 and M phases (Figure 6a). Both B- has previously been demonstrated to be an immediate early

type cyclin genes (encoded by CYCB1 and CYCB2) (Figure
5) were predominately expressed in G2/M cells, but mRNA
levels of CYCB2 accumulated earlier than those of CYCB1
(Figure 6a). The single D-type cyclin (encoded by CYCD1;
Figure 2b) was mainly expressed during S and G2/M phase
progression (Figure 6a). As in plants, CYCE seems to be
absent in diatoms [67].

Cyclins with a regulatory role during transcription
include those belonging to the classes C, H, K, L, and T
[39]. However, some cyclins involved in transcriptional
control might also have a function in cell cycle regulation.
For example, besides being a transcriptional regulator, the
human C-type cyclin is also involved in the control of cell
cycle transitions [68] and H-type cyclins can regulate the
cell cycle through interaction with D-type CDKs, thereby
forming a CAK complex [24,69,70]. The latter is probably
also true for the P. tricornutum CYCH1 (Figure 5) because
it was coexpressed with CDKD1 during the cell cycle (Fig-
ure 6a). The single L-type cyclin (encoded by CYCL1; Fig-
ure 5) showed elevated mRNA levels at G1 and during S
phase (Figure 6a). In animals, cyclin L (also called Ania-6)

gene that could be involved in cell cycle re-entry [71,72].
Six cyclins in P. tricornutum clustered together with P-

type cyclins (PHO80-like proteins, also called U-type
cyclins; Additional file 1 and Figure 5) that are believed to
play a role in phosphate signalling [73,74]. The mRNA lev-
els of all P-type cyclin genes (CYCP1, CYCP2, CYCP3,
CYCP4, CYCP5, and CYCP6) were high early during the
time series (Figure 6a). One cyclin gene did not cluster with
any of the represented classes and was annotated as CYC-
like (Figure 5). The mRNA levels of this gene peaked dur-
ing the G1 and S phases (Figure 6a).
Most diatom-specific cyclins are expressed early during the 
cell cycle
Eleven cyclin genes were identified that clustered only with
cyclins of T. pseudonana (Figure 5). Therefore, we assigned
these as dsCYC genes. dsCYC3 and dsCYC4 showed both
high expression at the G2/M phases (Figure 6b). The
mRNA levels of dsCYC10 were slightly up-regulated at the
G1-to-S transition and reached a peak late during the cell
cycle (Figure 6b). As the other dsCYC genes displayed
increased mRNA levels during the G1 and/or S phases
(dsCYC1, dsCYC2, dsCYC5, dsCYC6, dsCYC7, dsCYC8,
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Figure 6 Hierarchical average linkage clustering of the expression profiles of cyclin genes in P. tricornutum. (a) Cyclin genes. (b) dsCYCs. ds, 
diatom specific.
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dsCYC9, and dsCYC11; Figure 6b), some might function as
immediate early genes controlled by light or mitogens.

Organisms living in aquatic environments, particularly in
coastal regions, often have to cope with rapid and broad
fluctuations in light intensity, temperature, nutrient avail-
ability, oxygen level, and salinity, all of which can have
profound consequences on cell cycle progression. Compar-
ative genome analyses of marine phytoplankton have
revealed that coastal organisms contain genetic imprints
indicative of adaptation to life under variable conditions
[75,76], including distinct proteins coding for photosynthe-
sis and light harvesting, additional two-component regula-
tory systems, novel carbon-concentrating mechanisms,
transcription of transporters and assimilation proteins for
the uptake of alternative nitrogen sources, and numerous
metal transporter families and metal enzymes [75,76]. Sim-
ilar adaptation imprints were also found in the diatom
genomes [5,6]. Nevertheless, because diatoms generally
dominate the microplankton in temperate waters and
coastal upwelling regions under favorable conditions [77],

we expect diatoms to possess additional sophisticated fine-
tuning systems enabling them to adjust the pace of the cell
division rate in tune with the prevailing conditions.

Although in plants numerous copies of D-type cyclins
integrate both external and internal signals into the cell
cycle [19], in P. tricornutum only one CYCD was identified
that was highly expressed late during the cell cycle (Figure
6a). Therefore, in diatoms CYCD probably does not play its
classical role of G1-phase signal integrator, but might have
acquired an alternative function in the G2-to-M transition
as previously proposed for some D-type cyclins in plants
[78]. On the other hand, the wide variety of dsCYC genes in
diatoms expressed early during the cell cycle renders them
plausible candidates to fulfil the task of signal integrators.
Moreover, diatom-specific genes have been found to evolve
faster than other genes in diatom genomes [6], indicating
that these cyclin genes might have acquired novel and/or
species-specific functions. Interestingly, other gene families
expanded in diatoms include histidine kinases and heat
shock factors, which are supposed to be involved in envi-
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ronmental sensing and expressed under certain growth con-
ditions [6]. Thus, gene family expansion in diatoms could
possibly be linked to the development of specific signal
responses and adaptations to the environment.

dsCYCs respond to nutrient availability
To investigate the role of the dsCYC genes during the cell
cycle, we analyzed them in more detail. More specifically,
we examined whether their transcription is affected by
nutrient deprivation. Analysis of recently published
expressed sequence tag data [79,80] illustrates the differen-
tial expression of dsCYC3, dsCYC7, and dsCYC10 across a
range of environmental conditions (for example, nitrate-
starved, nitrate-repleted, and iron-limited cultures). More-
over, a microarray analysis revealed that dsCYC9 transcript
levels were higher in cultures grown in the presence of sil-
ica than those without silica [81].

To examine whether dsCYC expression could be respon-
sive to nutrient status during the cell cycle, we monitored
mRNA levels in parallel with cell growth during nutrient
starvation-repletion experiments. Exponentially growing
cultures were nutrient-starved for 24 h and re-supplied with
only nitrate, phosphate, iron, trace metals, the combination
of all nutrients (positive control), or no nutrients (negative
control). Three hours after nutrient supply, samples were
collected for expression analysis. After nitrate repletion,
cells reinitiated cell division at almost comparable levels to
the positive control cultures, whereas repletion with phos-
phate, iron, or trace elements did not differ from the nega-
tive control (Figure 7a), indicating that nitrate is a cell cycle
rate-limiting nutrient in P. tricornutum, as reported for other
diatom species [82,83]. Nitrogen starvation in diatoms gen-
erally leads to a G1-phase arrest [82,83]. Thus, increased
mRNA levels of early cell cycle-regulated genes are to be
expected at the time of cell cycle reinitiation after nitrate
repletion. Accordingly, early cell cycle genes (CYCP6,
CYCH1, and hCDK5) were induced in the nitrate replete
and positive control cultures (Figure 7b). To exclude cell
cycle effects during sampling, the starvation experiment
was repeated for nitrate repletion, but after imposing a 24-h
dark arrest after starvation and re-supply of nitrate in com-
plete darkness. In these cultures, the expression of the early
cell cycle genes did not differ from that of the negative con-
trol after nitrate supply (Figure 7c), confirming that expres-
sion of CYCP6, CYCH1, and hCDK5 is linked to cell cycle
re-entry rather than to the nitrate status of the cells.

In contrast to nitrate, cells resupplied with phosphate
remained arrested (Figure 7a, b). Upon addition of phos-
phate, mRNA levels of dsCYC5, dsCYC7 and dsCYC10
were significantly higher than those of the negative control
(Figure 7d), strongly suggesting that these genes might
function as direct cell cycle signal integrators upon increase
of phosphate levels. Upon replenishment with nitrate (in the

dark), iron or trace elements, no effects on dsCYC gene
expression were observed (Figure 7d and data not shown).

Nitrogen, together with the micronutrient iron, is gener-
ally considered to be a major limiting factor of primary pro-
duction in the oceans [84]. Phosphate limitation, on the
other hand, is considered to be less common, although it has
been reported in certain oceanic areas [85] and has been
hypothized recently to have been more wide-spread during
the glacial periods [86]. As an important constituent of ade-
nosine triphosphate, nucleic acids, and phospholipids,
phosphorus is an important molecule not only for growth,
but for almost all metabolic activities. Recently, diatoms
have been shown to reduce their phosphorus demand upon
phosphorus limitation, and to maintain growth by substitut-
ing phospholipids with non-phosphorus membrane lipids,
only when nitrogen is not limiting [15].

In summary, these results reveal that some dsCYCs might
be involved in environmental cell cycle control, functioning
as nutrient signal integrators. All phosphate-responding
dsCYC genes were expressed early during the synchronized
time series (Figure 6b), fitting with a function in linking
nutritional status and cell division start.

Cell cycle biomarkers
The identification of the complete set of major cell cycle
regulators in P. tricornutum, along with the determination of
their temporal expression patterns, generates a basis for
studying different cell cycle-related processes in diatoms.
Diatom cell cycle biomarkers could be used to observe cell
cycle effects in laboratory experiments, but they could also
be highly valuable to monitor diatom life cycle events in the
natural habitat, like bloom or rest periods.

To validate whether the expression data obtained through
the synchronization experiment was applicable in cell
cycle-associated studies, we selected diatom cell cycle
genes with a defined expression pattern to test their value as
cell cycle biomarkers. As a control experiment, we checked
the expression of four early (CYCH1, hCDK5, CDKA1, and
CDKD1) and two late (CDKA2 and CYCB1) cell cycle
genes during a 12-h light/12-h dark photoperiod (LD
12:12). Flow cytometry data during this 24-h time course of
the grown cultures indicate that the cells show a low degree
of 'natural' synchronization of cell division: in the morning,
most cells are in the G1 phase, while in the evening, divi-
sion takes place (Figure 8a). Thus, it was to be expected
that genes determined as early and as late cell cycle genes
would be induced in the morning and in the evening,
respectively. Indeed, expression according to the different
cell cycle distributions was found for all selected genes
(Figure 8b, c), indicating that they would perform as good
cell cycle markers in cell cycle-related studies and that the
expression data obtained from the synchronization studies
(Figures 4 and 6) could serve as a reliable basis to select
appropriate marker genes.
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In a real case study, we used these cell cycle biomarkers
to investigate whether the cell cycle in P. tricornutum
would be regulated by an endogenous clock or a so-called
circadian oscillator. Circadian regulation of cell division is
well known to occur in eukaryotes and is particularly well-
described for unicellular algae [87,88]. Although circadian
regulation of light-harvesting protein-encoding genes and
pigment synthesis has been reported in diatoms [89,90], we
did not find any direct evidence that circadian regulation of
the cell cycle exists in P. tricornutum. Comparison of cell
cycle progression and cell cycle biomarker expression in
cells under normal LD 12:12 or free-running LL 12:12 light

conditions indicate that neither the cell cycle itself nor
mRNA accumulation of the main core cell cycle genes
depends on a circadian oscillator (Additional files 5 and 6).
These findings stress even more the importance of the
development and use of efficient signalling networks that
link environmental cues to cell growth in diatoms.

Conclusions
From the annotation and expression analyses, we conclude
that the diatom cell cycle machinery shares common fea-
tures with cell cycle regulatory systems present in other
eukaryotes, including a PSTAIRE-containing CDK, con-

Figure 7 Nutrient response of diatom-specific cyclins. (a) Growth rate of different subcultures after repletion based on average cell density mea-
surements at the time of and 3 days after repletion. These data indicate the ability of the cells to recover from starvation. (b) Expression profiles of early 
cell cycle genes at the time of sampling during the light experiment. (c) Expression profiles of early cell cycle genes at the time of sampling during 
the dark experiment. (d) dsCYCs responding to phosphate addition. Error bars represent standard errors of the mean of two biological replicates.
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Figure 8 Validation of cell cycle marker genes. (a) DNA distributions (2C versus 4C) of exponentially growing cells entrained by a LD 12:12 photo-
period during the time series (b) Expression profiles of early cell cycle genes (CYCH1 and hCDK5; peak expression at t = 2 in the synchronization series 
(Figure 4 and 6)); and CDKA1 and CDKD1 (peak expression at t = 3 in the synchronization series (Figure 4)). (c) Expression profiles of late cell cycle genes 
(CDKA2 and CYCB1). Error bars represent standard errors of the mean of two biological replicates.
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served cyclin classes of types A, B, and D, and a MYT1
kinase. In addition, members of the retinoblastoma pathway
for G1-S regulation involving the retinoblastoma protein
and E2F/DP transcription factors [91-93] were also found
in P. tricornutum (unpublished data). Components that were
expected to be found in diatoms but could not be identified
include a CDC25 phosphatase and CKIs. Possibly the func-
tion of the CDC25 phosphatase might be taken over by
CDKA2, given its expression time and sequence similarity
with B-type CDKs [48], whereas the lack of CKI identifica-
tion by sequence similarity searches might be due to high
sequence divergence [52].

Most interestingly, we found a major expansion of the
cyclin gene family in diatoms and discovered a new cyclin
class, the diatom-specific cyclins. The latter are most prob-
ably involved in signal integration to the cell cycle because
transcript levels of dsCYC5, dsCYC7, and dsCYC10
depended on phosphate (this study), and dsCYC9 was
reported to be induced upon silica availability [81]. Besides
their role in nutrient sensing, we hypothesize that transcrip-
tion of some dsCYC genes might also be light-modulated,
as illustrated by the high dsCYC2 mRNA levels in dark-
acclimated cells that drastically dropped after 1 h of light
exposure (Figure 6b). In addition, this gene was recently
found to be modulated upon blue light treatment [18]. The
responsiveness of other dsCYC genes to different light con-
ditions is currently under investigation.

The complete set of major diatom key cell cycle regula-
tors identified in this study could serve as a set of marker
genes for monitoring diatom growth both in the laboratory
and in the field. As cell cycle-regulated transcription cannot
be assumed to depict a cell cycle-regulatory role for a gene,
the predicted functions of the individual diatom cell cycle
genes await further experimental confirmation by molecu-
lar and biochemical studies, although they already provide
first insights into the manner in which diatoms control their
cell division. Therefore, this dataset will form a starting
point for future experiments aimed at exploring and manip-
ulating the diatom cell cycle.

Materials and methods
Culture conditions
P. tricornutum (Pt1 8.6; accession numbers CCAP 1055/1
and CCMP2561) [29] was grown in F/2 medium without
silica (F/2-Si) [94], made with filtered and autoclaved sea
water collected from the North Sea (Belgium). Cultures
were cultivated at 18 to 20°C in a 12-h light/12-h dark
regime (50 to 100 μmol·photons·m-2·s-1) and shaken at 100
rpm. Under these conditions, the average generation time of
P. tricornutum was calculated to be 0.93 ± 0.07 days (Addi-
tional file 3).

Family-wise annotation of the diatom cell cycle genes
In a first step, known plant and animal cell cycle genes
were selected to construct a reference cell cycle dataset.
The members of every cell cycle family were used to build
family-specific HMMER profiles [95]. With these profiles,
the predicted P. tricornutum and T. pseudonana proteomes
were screened for the presence of core cell cycle families.
Missing gene families were also screened against the raw
genome sequence (using tBLASTN) to account for annota-
tion errors (that is, missing genes). For each family, the
putative P. tricornutum homologs found were validated by
comparing them with the reference family members in a
multiple alignment.

Phylogenetic analysis
Multiple alignments generated with MUSCLE [96] were
manually improved with BioEdit [97]. To define subclasses
within the gene families, phylogenetic trees were built that
included the reference cell cycle genes from plants and ani-
mals. Both TREECON [98] and PHYLIP [99] were used to
construct the neighbor-joining trees based on Poisson-cor-
rected distances. To test the significance of the nodes, boot-
strap analysis was applied using 1,000 replicates for all
trees, except for the cyclin tree (500 replicates).

Synchronization of the cell cycle in P. tricornutum
P. tricornutum cells were arrested in the G1 phase by pro-
longed darkness (20 h). After release of the cells from this
G1 checkpoint by reillumination, samples for cell cycle
analysis and real-time qPCR were collected during 12 h at
hourly intervals, starting at reillumination (t = 0). To pre-
vent cells from entering a second cell cycle, nocodazole
(2.5 mg/l; Sigma-Aldrich, St. Louis, Missouri, USA) was
added to the cultures at t = 0. Synchronization was vali-
dated by flow cytometric analysis on a Partec CyFlow ML
platform (with data acquisition software Flomax; Partec
GmbH, Münster, Germany) on cells fixed with 70% etha-
nol, washed three times with 1× phosphate buffered saline
and stained with 4',6-diamidino-2-phenylindole (final con-
centration of 1 ng/ml). For each sample, 10,000 cells were
processed. Flow cytograms were analyzed with Multicycle
AV for Windows (Phoenix Flow Systems, San Diego, Cali-
fornia, USA) software to determine relative representations
of the different cell cycle stages in the samples.

Nutrient starvation/repletion experiment
Exponentially growing cells (under constant light, 50
μmol·photons·m-2·s-1) were collected by centrifugation 3
days after medium replenishment, and washed twice with
natural seawater (North Sea, Belgium) to starve the cells.
After 24 h starvation, the culture was subdivided into six
subcultures and supplied with only nitrate (8.82 × 10-4 M
NaNO3; N), phosphate (3.62 × 10-5 M NaH2PO4 H2O; P),
iron (1.17 × 10-5 M FeCl3 6H2O; Fe), trace metals (3.93 ×
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10-8 M CuSO4 5H2O, 2.60 × 10-8 M Na2MoO4 2H2O, 7.65 ×
10-8 M ZnSO4 7H2O, 4.20 × 10-8 CoCl2 6H2O and 9.10 × 10-

7 M MnCl2 4H2O; trace), the combination of all nutrients
(concentrations as mentioned above; F/2), or no nutrients
(no repletion). Samples were taken for real-time qPCR after
3 hours of incubation. Cell density and growth rate were
monitored during 3 days after repletion using a Bürker
counting chamber to assess the degree of starvation in the
different subcultures. For each sample, the average cell
density was counted from nine large squares (0.1 mm3) and
growth rate was calculated from semi-log linear regression
of the cell numbers plotted against time.

To exclude cell cycle effects upon nitrate repletion, the
experiment was repeated with cells grown in a LD 12:12
photoperiod. Three days after medium replenishment, the
cells were washed twice with natural seawater (North Sea,
Belgium) to starve the cells and illuminated for 12 h. The
cells were then incubated in the dark for 24 h and no nutri-
ents and nitrate were supplied in the dark as mentioned
above. Samples were taken for real-time qPCR after 3
hours of incubation in the dark.

Real-time qPCR
For RNA extraction, 5 × 107 cells were collected at each
time point, fast frozen in liquid nitrogen, and stored at -
70°C. To lyse the cells and extract RNA, TriReagent
(Molecular Research Center, Inc., Cincinnati, Ohio, USA)
was used initially. After addition of chloroform, RNA was
purified from the aqueous phase by RNeasy purification,
according to the manufacturer's instructions (RNeasy Min-
Elute Cleanup kit; Qiagen, Hilden, Germany). Contaminat-
ing genomic DNA was removed by DNaseI (GE
Healthcare, Little Chalfont, United Kingdom) treatment.
RNA concentration and purity were assessed by spectro-
photometry (NanoDrop ND-1000, Wilmington, Delaware,
USA). Total RNA was reverse transcribed with Superscript
II reverse transcriptase (Invitrogen, Carlsbad, California,
USA) in a total volume of 40 μl with oligo(dT) primers.
Finally, 1.25 ng (synchronization experiment and control
experiment) or 10 ng (nutrient starvation/repletion experi-
ment and circadian experiment) of cDNA was used as tem-
plate for each qPCR reaction.

Samples in triplicate were amplified on the Lightcycler
480 platform with the Lightcycler 480 SYBR Green I Mas-
ter mix (Roche Diagnostics, Brussels, Belgium) in the pres-
ence of 0.5 μM gene-specific primers (Additional file 1).
The cycling conditions were 10 minutes polymerase activa-
tion at 95°C and 45 cycles at 95°C for 10 s, 58°C for 15 s,
and 72°C for 15 s. Amplicon dissociation curves were
recorded after cycle 45 by heating from 65°C to 95°C. In
qBase [100], data were analyzed using the ΔCt relative
quantification method with the stably expressed histone H4
as a normalization gene (Additional file 7) [101]. Expres-

sion profiles of the synchronized cell cycle series were
mean relative expression from three independent sample
series. After normalization, the mean profiles were clus-
tered using hierarchical average linkage clustering (analysis
software TIGR MultiExperiment Viewer 3D (TMEV3D)).

Image acquisition
Confocal images were obtained with a scanning confocal
microscope 100 M (Zeiss, Jena, Germany) equipped with
the software package LSM510 version 3.2 (Zeiss, Jena,
Germany) and a C-Apochromat 63× (1.2 NA) water-cor-
rected objective. Chlorophyll autofluorescence was excited
with HeNe illumination (543 nm).

Accession numbers
Sequence data from this article can be accessed through the
Joint Genome Institute (JGI) portal [102]. Accession num-
bers of the cell cycle genes are listed in Additional file 1.

Additional material

Additional file 1 Cell cycle genes in P. tricornutum.. An Excel spread-
sheet providing an overview of the annotated cell cycle genes in P. tricornu-
tum.
Additional file 2 Cell cycle progression in nocodazole-treated versus 
untreated cells. A PDF figure file showing cell cycle progression in nocoda-
zole-treated versus untreated cells. (a) Flow histograms plotting DNA con-
tent against cell number (left) and histograms indicating the ploidy 
distribution (2C versus 4C; right) during a 12-h time course of synchronized 
cells in the absence of nocodazole. At the later time points (t = 10 to 12), 
the level of synchrony decreased, indicated by the ploidy level equilibrium 
reached at these time points, probably resulting from cells entering the 
next cell cycle round, while other cells still have to pass through M phase. 
(b) Flow histograms plotting DNA content against cell number (left) and 
histograms indicating the ploidy distribution (2C versus 4C; right) during a 
12-h time course of synchronized cells in the presence of nocodazole. At 
the later time points, an increasing enrichment of 4C cells can be observed 
because of a blockage of the cells at metaphase. Asterisk marks the appar-
ently lower proportion of 2C cells after a 20-h dark treatment in the control 
series than in the nocodazole series, resulting from an acquisition artefact 
during flow cytometry, indicated by the increased peak broadness in the 
respective flow histogram.
Additional file 3 Growth curves of P. tricornutum cells under standard 
conditions. A PDF figure file showing growth curves of P. tricornutum cells 
under standard conditions (18°C, LD 12:12, 50 to 100 μmol·photons·m-2·s-1). 
Error bars represent standard deviations.
Additional file 4 Phylogenetic tree of WEE1/MYT1/MIK1 family. A PDF 
figure file showing a Phylogenetic tree of WEE1/MYT1/MIK1 family. Neigh-
bor-joining tree (PHYLIP, 1,000 replicates) of WEE1/MYT1/MIK1 family. The P. 
tricornutum sequence is shown in bold. Abbreviations: Arath, Arabidopsis 
thaliana; Drome, Drosophila melanogaster; Homsa, Homo sapiens; Musmu, 
Mus musculus; Orysa, Oryza sativa; Phatr, Phaeodactylum tricornutum; Schpo, 
Schizosaccharomyces pombe; Thaps, Thalassiosira pseudonana.
Additional file 5 Cell cycle versus circadian control. A PDF figure file 
showing cell cycle versus circadian control. Exponentially growing cultures 
entrained by a LD 12:12 photoperiod were subdivided in two cultures at 
the end of the light period 3 days after medium replenishment. Left and 
right: cells experiencing a normal (darkness; grey bar) and subjective (light; 
white bar) night, respectively. (a) Histograms plotting DNA distributions (2C 
versus 4C) of the cells during the 24-h time series. (b) Expression profiles of 
early cell cycle genes. (c) Expression profiles of late cell cycle genes. Error 
bars represent standard errors of the mean of two biological replicates.

http://www.biomedcentral.com/content/supplementary/gb-2010-11-2-r17-S1.xls
http://www.biomedcentral.com/content/supplementary/gb-2010-11-2-r17-S2.pdf
http://www.biomedcentral.com/content/supplementary/gb-2010-11-2-r17-S3.pdf
http://www.biomedcentral.com/content/supplementary/gb-2010-11-2-r17-S4.pdf
http://www.biomedcentral.com/content/supplementary/gb-2010-11-2-r17-S5.pdf
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Abbreviations
CAK: CDK-activating kinase; CDK: cyclin-dependent kinase; CKI: CDK inhibitor;
CKS: CDK subunit; CYC: cyclin; D: dark; dsCYC: diatom-specific cyclin; hCDK:
hypothetical CDK; L: light; qPCR: quantitative polymerase chain reaction.
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