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Abstract

The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack
of established methodology with the required flexibility and power. We propose a first principled approach to
statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological
investigations that query pairwise relations between tracks, represented as mathematical objects, along the
genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no.

Rationale
The combination of high-throughput molecular techni-
ques and deep DNA sequencing is now generating
detailed genome-wide information at an unprecedented
scale. As complete human genomic information at the
detail of the ENCODE project [1] is being made avail-
able for the full genome, it is becoming possible to
query relations between many organizational and infor-
mational elements embedded in the DNA code. These
elements can often best be understood as acting in con-
cert in a complex genomic setting, and research into
functional information typically involves integrational
aspects. The knowledge that may be derived from such
analyses is, however, presently only harvested to a small
degree. As is typical in the early phase of a new field,
research is performed using a multitude of techniques
and assumptions, without adhering to any established
principled approaches. This makes it more difficult to
compare, reproduce and realize the full implications of
the various findings.
The available toolbox for generic genome scale anno-

tation comparison is presently relatively small. Among
the more prominent tools are those embedded within
the genome browsers, or associated with them, such as
Galaxy [2], BioMart [3], EpiGRAPH [4] and UCSC Can-
cer Genomics Browser [5]. BioMart at this point mostly

offers flexible export of user-defined tracks and regions.
Galaxy provides a richer, text-centric suite of operations.
EpiGraph presents a solid set of statistical routines focused
on analysis of user-defined case-control regions. The
recently introduced UCSC Cancer Genomics Browser
visualizes clinical omics data, as well as providing patient-
centric statistical analyses.
We have developed novel statistical methodology and

a robust software system for comparative analysis of
sequence-level genomic data, enabling integrative sys-
tems biology, at the intersection of genomics, computa-
tional science and statistics. We focus on inferential
investigations, where two genomic annotations, or
tracks, are compared in order to find significant devia-
tion from null-model behavior. Tracks may be defined
by the researcher or extracted from the sizable library
provided with the system. The system is open-ended,
facilitating extensions by the user community.

Results
Overview
Our system is based on an abstract representation of gen-
eric genomic elements as mathematical objects. Hypoth-
eses of interest are translated into mathematical relations.
Concepts of randomization and track structure preserva-
tion are used to build complex problem-specific null mod-
els of the relation between two tracks. Formal inference is
performed at a global or local scale, taking confounder
tracks into account when necessary (Figure 1).
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Abstract representation of genomic elements
A genome annotation track is a collection of objects of a
specific genomic feature, such as genes, with base-pair-
specific locations from the start of chromosome 1 to the
end of chromosome Y. Tracks vary in biological content,
but also in the form of the information they contain. A
track representing genes contains positional information
that can be reduced to ‘segments’ (intervals of base
pairs) along the genome. A track of SNPs can be

reduced to points (single base pairs) on the genome.
The expression values of a gene, or the alleles of a SNP,
are non-positional information parts and are attributed
as ‘marks’ (numerical or categorical) to the correspond-
ing positional objects, that is, segments or points.
Finally, a track of DNA melting assigns a temperature
to each base pair, describing a ‘function’ on the genome.
We thus define five genomic types: unmarked points
(UP), marked points (MP), unmarked segments (US),
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Figure 1 Flow diagram of the mathematics of genomic tracks. Genomic tracks are represented as geometric objects on the line defined by
the base pairs of the genome sequence: (unmarked (UP) or marked (MP)) points, (unmarked (US) or marked (MS)) segments, and functions (F).
The biologist identifies the two tracks to be compared, and the Genomic HyperBrowser detects their type. The biological question of interest is
stated in terms of mathematical relations between the types of the two tracks. The relevant questions are proposed by the system. The biologist
then selects the question and needs to specify the null hypothesis. For this purpose she is called to decide about what structures are preserved
in each track, and how to randomize the rest. Thereafter, the Genomic HyperBrowser identifies the relevant test statistics, and computes actual
P-values, either exactly or by Monte Carlo testing. Results are then reported, both for a global analysis, answering the question on the whole
genome (or area of study), and for a local analysis. Here, the area is divided into bins, and the answer is given per bin. P-values, test-statistic, and
effect sizes are reported, as tables and graphics. Significance is reported when found, after correction for multiple testing.
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marked segments (MS) and functions (F). These five
types completely represent every one-dimensional
geometry with marks.

Catalogue of investigations
We translate biological hypotheses of interest into a
study of mathematical relations between genomic tracks,
leading to a large collection of possible generic
investigations.
Consider the relation between histone modifications

and gene expression, as investigated by visual inspection
in [6] (Figure S1 in Additional file 1). The question is
whether the number of nucleosomes with a given his-
tone modification (represented as type UP), counted in
a region around the transcription start site (TSS) of a
gene, correlates with the expression of the gene. The
second track is represented as marked segments (MS).
This study of histone modifications and gene expres-
sions can then be phrased as a generic investigation
between a pair of tracks (T1, T2) of type UP and MS:
are the number of T1 points inside T2 segments corre-
lated with T2 marks? Figure 2 shows the results when
repeating this analysis for all histone modifications
studied in [6], and different regions around the TSS. See
Section 1 in Additional file 1 for a more detailed exam-
ple investigation, analyzing the genome coverage by
different gene definitions.
In the context of the catalogue of investigations, the
genomic types are minimal models of information con-
tent. In the above example, nucleosome modifications
are only used for counting, and thus considered
unmarked points (UP), even though they are typically
represented in the file system as marked or unmarked
segments. As the gene-related properties of interest are
the genome segments in which the nucleosomes are
counted, as well as the corresponding gene expression
values (marks), T2 is of the type marked segments (MS).
The choice of genomic type clarifies the content of a
track, and also restricts which analyses are appropriate.
Investigations regarding the length of the elements of a
track are, for instance, relevant for genes, but not for
SNPs and DNA melting temperatures.
The five genomic types lead to 15 unordered pairs (T1,

T2) of track type combinations, with each combination
defining a specific set of relevant analyses. For instance,
the UP-US combination defines several investigations of
potential interest: are the T1 points falling inside the T2
segments more than expected by chance? Do the points
accumulate more at the borders of the segments, instead
of being spread evenly within? Do the points fall closer to
the segments than expected? A growing collection of
abstract mathematical versions of biological questions is
provided. We have currently implemented 13 different
analyses, filling 8 of the 15 possible combinations of track

types (see Additional file 2 for mathematical details).
Note that information reduction of a track to a simpler
type (for example, segments to points) may open up addi-
tional analytical opportunities, and are handled dynami-
cally by the system - for example, by treating segments as
their middle points.

Global and local inference
A global analysis investigates if a certain relation between
two tracks is found in a domain as a whole. A local analy-
sis is based on partitioning the domain into smaller units,
called bins, and performing the analysis in each unit
separately. Local analysis can be used to investigate if and
where two tracks display significant concordant or dis-
cordant behavior, and thus be used to generate hypoth-
eses on the existence of biological mechanisms
explaining such perturbations. Local investigations may
also be used to examine global results in more detail.
The length of each bin defines the scale of the analysis.
Inference is then based on the computation of P-values,
locally in each bin, or globally, under the null model.
To illustrate the value of local analysis, we consider

viral integration events in the human genome. These
may result in disease and may also be a consequence of
retroviral gene therapy. Derse et al. [7] examined inte-
gration for six types of retroviruses, with different viral
integrases, thus having different integration sites (type
UP). Using these data, we asked whether there are hot-
spots of integration inside 2-kb flanking regions of pre-
dicted promoters (type US), that is, whether and where
the points are falling inside the segments more than
expected by chance. Figure 3 displays the hotspots as
calculated P-values in bins across the genome, using the
subset of murine leukemia virus (MLV) sites. We find
locations of increased integration, thus generating
hypotheses on the role of integration site sequences and
their context.
Local analysis may be used to avoid drawing incorrect

conclusions from global investigations. Consider the
repressive histone modification H3K27me3 as studied in
[8]. Data from ChIP-chip experiments on mouse chro-
mosome 17 were analyzed, finding that H3K27me3 falls
in domains that are enriched in short interspersed
nuclear element (SINE) and depleted in long interspersed
nuclear element (LINE) repeats. Using the line of enquiry
raised in [8], we asked whether H3K27me3 regions (type
US) significantly overlap with SINE repeats (type US),
but here using formal statistical testing at the base pair
level. The chosen null model only allows local rearrange-
ments of genomic elements (for more detail, see next sec-
tion). This preserves local biological structure, but allows
for some controlled level of randomness.
Performing this test globally on the whole chromosome

17 leads to rejection of the null hypothesis (P = 10-4),
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in line with [8]. However, a local analysis leads to a dee-
per understanding. At a 5-Mbp scale, no significant find-
ings were obtained in any of the 19 bins (10% false
discovery rate (FDR)-corrected). The frequency of
H3K27me3 segments varies considerably along chromo-
some 17 (Figure S2 in Additional file 1), which may cause
the observed discrepancy between local and global
results.

Precise specification of null models
A crucial aspect of an investigation is the precise forma-
lization of the null model, which should reflect the com-
bination of stochastic and selective events that
constitutes the evolution behind the observed genomic
feature.
Consider again the example of H3K27me3 versus

repeating elements. In the chosen null model, we pre-
served the repeat segments exactly, but permuted the
positions of the H3K27me3 segments, while preserving
segment and intersegment lengths. We then computed
the total overlap between the segments, and used a
Monte Carlo test to quantify the departure from the
null model. The effect of using alternative null models is

shown in Table 1. The null model examined in the first
column, which does not preserve the dependency
between neighboring base pairs, produces lower
P-values. Unrealistically simple null models may thus
lead to false positives. In fact, two simulated indepen-
dent tracks may appear to have a significant association
if their individual characteristics are not appropriately
modeled (Section 2 in Additional file 1). In this example,
the choice between the biologically more reasonable null
models is difficult. The two other columns of Table 1
include models that preserve more of the biological
structure. The fact that these models do not lead to
clear rejection of the null hypotheses suggests that we in
this case lack strong evidence against the null hypoth-
esis. Thus, examining the results obtained for a set of
different null models may often contribute important
information. The null model should reflect biological
realism, but also allow sufficient variation to permit the
construction of tests. A set of simulated synthetic tracks
is provided as an aid for assessing appropriate null mod-
els (Additional file 3).
The Genomic HyperBrowser allows the user to define

an appropriate null model by specifying (a) a preservation
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Figure 2 Gene regulation by histone modifications. The correlation between occupancy of 21 different histone modifications and gene
expression within 4 different regions around the TSS (up- and downstream, 1 and 20 kb), sorted by correlation in 1-kb upstream regions. Sixteen
of 21 histone modifications show significant correlation in 1-kb upstream regions, while inspection of the actual value of Kendall’s tau (Table S1
in Additional file 1) shows very little effect size for 6 of these 16 (<0.1).
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rule for each track, and (b) a stochastic process, describ-
ing how the non-preserved elements should be rando-
mized. Preservation fixes elements or characteristics of
a track as present in the data. For each genomic type,
we have developed a hierarchy of less and less strict
preservation rules, starting from preserving the entire
track exactly (Section 3 in Additional file 1). For

example, these preservation options for unmarked seg-
ments can be assumed: (i) preserve all, as in data; (ii)
preserve segments and intervals between segments, in
number and length, but not their ordering; (iii) preserve
only the segments, in number and length, but not their
position; (iv) preserve only the number of base pairs in
segments, not segment position or number. Depending
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Figure 3 Viral integration sites. Plot of false discovery rate (FDR)-adjusted P-values along the genome, in 30-Mbp bins. Small P-values indicate
regions where murine leukemia virus (MLV) integrates inside 2-kb regions around FirstEF promoters more frequently than by chance. The FDR
cutoff at 10% is shown as a dashed line. The inset of a local area (chromosome 1:153,250,001-153,450,000) indicates FirstEF promoters expanded
by 2 kb in both directions, MLV integration sites, RefSeq genes, and unflanked FirstEF sites.
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on the test statistic T, the level of preservation and the
chosen randomization, P-values are computed exactly,
asymptotically or by standard or sequential Monte
Carlo [9,10].

Confounder tracks
The relation between two tracks of interest may often
be modulated by a third track. Such a third track may
act as a confounder, leading, if ignored, to dubious con-
clusions on the relation between the two tracks of
interest.
Consider the relation of coding regions to the melting

stability of the DNA double helix. Melting forks have
been found to coincide with exon boundaries [11-15].
Although few studies have reported statistical measures
of such correlation [11], the correlation is confirmed by
a straightforward investigation. Tracks (type F) repre-
senting the probabilities of melting fork locations [16] in
Saccharomyces cerevisiae, were compared to tracks con-
taining all exon boundaries (Figure 4). We asked if the
melting fork probabilities (P) were higher than expected
at the exon boundaries (E) than elsewhere. In the null
model, the function was conserved, while points were
uniformly randomized in each chromosome. Monte
Carlo testing was carried out on the chromosomes sepa-
rately, giving P-values <0.0005 (Table S3 in Additional

file 1). In the absence of a confounder, it is thus tempt-
ing to conclude that there is an interesting relation
between DNA melting and coding regions, for which
functional implications have been previously discussed
[15,17,18].
An alternative view is that the GC content, being

higher inside exons than outside, contains information
about exon location that is simply carried over, or
decoded, by a melting analysis, thus acting as a confoun-
der. We have developed a methodology to investigate
such situations further. Non-preserved elements of a
null model can be randomized according to a non-
homogeneous Poisson process with a base-pair-varying
intensity, which can depend on a third (or several) mod-
ulating genomic tracks [19,20]. We have defined an
algebra for the construction of intensities, where tracks
are combined, to allow rich and flexible constructions of
randomness (see Materials and methods).
To investigate the influence of GC content on the

exon-melting relation, we first generated a pair of
custom tracks (type F), assigning to each base the value
given by the GC content in the 100-bp left and right
flanking regions, respectively, weighted by a linearly
decreasing function. These two functions were used,
together with the exon boundary track, to create an
intensity curve proportional to the probability of exon
points, given GC content (see Materials and methods).
When performing the same analysis as before, but now
using the null model based on this intensity curve (rather
than assuming uniformity), a significant relationship
was found in only one yeast chromosome (Table S3 in
Additional file 1). In conclusion, there is a melting-exon
relationship in yeast, but it may simply be a conse-
quence of differences in GC content at the exon bound-
aries (high GC inside, low GC outside), which may exist
for biological reasons not involving melting fork
locations.

Resolving complexity: system architecture
The Genomic HyperBrowser is an integrated, open-
source system for genome analysis. It is continually
evolving, supporting 28 different analyses for signifi-
cance testing, as well as 62 different descriptive

Table 1 Significant bins of the overlap test between H3K27me3 segments and SINE repeats under various null models

Tracks to
randomize

Preserve total number of base
pairs covered

Preserve segment lengths, but
randomize position

Preserve segment and intersegment lengths, but
randomize positions

H3K27me3 10/19 1/19 0/19

SINE 10/19 5/19 4/19

H3K27me3 and
SINE

10/19 5/19 4/19

The number of significant bins of the overlap test between H3K27me3 segments and SINE repeats under different preservation and randomization rules for the
null model. The test was performed in 19 bins on mouse chromosome 17, with the MEFB1 cell line. (Use of the MEFF cell line gave similar results; Table S2 in
Additional file 1). In this case, less preservation of biological structure leads to smaller P-values. Also, randomizing the SINE track gave smaller P-values than
randomizing the H3K27me3 track (or both).
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statistics. The system currently hosts 184,500 tracks.
Most of these represent literature-based information,
previously mostly utilized in network-based approaches
[21]. As natural language based text mining allows for
the identification of a wide variety of biological entities,
we have generated tracks representing genomic locations
associated with terms for the complete gene ontology
tree, all Medical Subject Heading (MeSH) terms, chemi-
cals, and anatomy.
The system is implemented in Python [22], a high-

level programming language that allows fast and robust
software development. A main weakness of Python com-
pared to languages like C++ is its slower performance.
Thus, a two-level architecture has been designed. At the
highest level, Python objects and logic have been used
extensively to provide the required flexibility. At the
base-pair level, data are handled as low-level vectors,
combining near-optimal storage with efficient indexing,
allowing the use of vector operations to ensure speed.
Interoperability with standard file formats in the field
[23] is provided by parallel storage of original file for-
mats and preprocessed vector representations. To
reduce the memory footprint of analyses on genome-
wide data, an iterative divide-and-conquer algorithm is
automatically carried out when applicable. A further
speedup is achieved by memoizing intermediate results
to disk, automatically retrieving them when needed for
the same or different analyses on the same track(s) at
any subsequent time, by any user.
The system provides a web-based user interface with a

low entry point. However, the complex interdependen-
cies between the large body of available tracks, a num-
ber of syntactically different analyses, and a range of
choices for constructing null models, all pose challenges
to the concepts of simplicity and ease of use. In order to
simplify the task of making choices, a step-wise
approach has been implemented, displaying only the
relevant options at each stage. This guided approach
hides unnecessary complexities from the researcher,
while confronting her with important design choices as
needed. We rely on a dynamic system to infer appropri-
ate options, aiding maintenance. The list of selectable
tracks is based on scans of available files on disk. The
list of relevant questions is based on short runs of all
implemented analyses, using a minimal part of the
actual data from the selected tracks. For each analysis, a
set of relevant options is defined. The dynamics of the
system also provides automatic removal of analyses that
fail to run, enhancing system robustness.
Allowing extensibility along with efficiency and system

dynamics is a challenge. The complexities of the soft-
ware solutions are hidden in the backbone of the
system, simplifying coding of statistical modules. Each
module declares the data types it supports and which

results are needed from other modules. The backbone
automatically checks whether the selected tracks meet
the requirements, and if so, makes sure the intermediate
computations are carried out in correct order. Redun-
dant computations are avoided through the use of a
RAM-based memoization scheme. The system also pro-
vides a component-based framework for Monte Carlo
tests, where any test statistic can be combined with any
relevant randomization algorithm, simplifying develop-
ment. In addition, a framework for writing unit and
integration tests [24] is included. Further details on the
system architecture are provided in Section 4 in Addi-
tional file 1.

Step-by-step guide to HyperBrowser analysis
One of the main goals of the Genomic HyperBrowser is
to facilitate sophisticated statistical analyses. A range of
textual guides and screencasts are available in the help
section at the web page, demonstrating execution of var-
ious analyses, how to work with private data, and more.
To give an impression of the user experience, we here
provide a step-by-step guide to the analysis of broad
local enrichment (BLOC) segments versus SINE repeats,
as discussed in the section on ‘Precise specification of
null models’.
First, we open ‘hyperbrowser.uio.no’ in a web browser

and we select the ‘Perform analysis’ tool under ‘The
Genomic HyperBrowser’ in the left-hand menu. We
select the mouse genome (mm8) and continue to select
tracks of interest. As the first track, we select ‘Chroma-
tin’-’Histone modifications’-’BLOC segments’-’MEFB1’.
These are the BLOC segments according to the algo-
rithm of Pauler et al. [8] for the MEFB1 cell line. As the
second track, we select ‘Sequence’-’Repeating elements’-
’SINE’. Now that both tracks have been selected, a list
of relevant investigations is presented in the interface
(that is, investigations that are compatible with the
genomic types of the two tracks: US versus US). We
select the question of ‘Overlap?’ in the ‘Hypothesis test-
ing’ category, and the options relevant for this analysis
are subsequently displayed in the interface. The different
choices for ‘Null model’ will produce the various num-
bers in Table 1 (six different choices are directly avail-
able from the list. The other variants can be achieved by
reversing the selection order of the tracks). The original
BLOC paper [8] focused on chromosome 17. We want
to perform a local analysis along this chromosome,
avoiding the first three megabases that are centromeric.
Under ‘Region and scale’ we thus choose to ‘Compare in’
a custom specified region, writing ‘chr17:3m-’ as ‘Region
of the genome’ and writing ‘5 m’ (5 megabases) as ‘Bin
size’. Clicking the ‘Start analysis’ button will then perform
an appropriate statistical test according to the selected
null model assumption, and output textual and graphical
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results to a new Galaxy history element. Figure 5a
shows the user interface covering all selections above and
Figure 5b shows the answer page that results from this
analysis.
This example assumed the BLOC segments were

already in the system. If not, they could simply be

uploaded to the Galaxy history and then selected in the
first track menu as ‘– From history (bed, wig) –’-’[your
BLOC history element]’. For information on how to use
the Galaxy system, we refer to the Galaxy web site [25].

Discussion
The current leap in high-throughput sequencing tech-
nology is opening the way for a range of genome-wide
annotations beyond the presently abundant gene-centric
data. Not least, chromatin-related data are becoming
increasingly important for understanding higher-level
organization and regulation of the genome [26].
As is typical for a subfield that has not reached

maturation, analysis of new massive sequence-level data
is performed on a per-project basis. For instance, a
paper on the ENCODE project describes how inference
can be done by Monte Carlo testing, sampling bins for
one of the real tracks at random genome locations
under the null hypothesis [1]. Independently, a newer
study of histone modifications instead permuted bins of
data for one of the tracks [27]. Although genomic visua-
lization tools have been available for several years, few
generic tools exist for inference at the sequence level.
The following aspects distinguish our work from

currently available systems. First, we focus on genomic
information of a sequential nature, that is, with specific
base-pair locations on a genome, and thus not restricted
to only genes. Second, it focuses on the comparison of
pairs of genomic tracks, possibly taking others into
account through the concept of intensity tracks. Third,
all comparisons are performed using formal statistical
testing. Fourth, we provide analyses on any scale, from
genome-wide studies to miniature investigations on par-
ticular loci. Fifth, we offer flexible choices of null models
for exploration and choice where relevant. Finally, we
provide a user interface where the user describes the
data and the null models, while the system based on
this chooses the appropriate statistical test. Comparing
this to the EpiGRAPH and Galaxy frameworks, which
we believe are the closest existing systems, we find that
both require substantial technical expertise when choos-
ing the correct analysis and options. EpiGRAPH is
focused on a specific type of scenario that, according to
our cataloguing, amounts to the comparison of
unmarked points or segments versus categorically
marked segments (with mark being case or control).
Galaxy provides a simple user interface, is rich in tools
for manipulating and analyzing datasets of diverse for-
mats, but has little support for formal statistical testing.
Note also that our system is tightly connected to Galaxy
and can make use of all the tools provided within
Galaxy.
We provide tools for abstraction and cataloguing of

what we believe are typical questions of broad interest.

Figure 5 Screenshots of the Genomic HyperBrowser. (a)
Screenshot of the main interface for selecting analysis options. The
selections for the example relating H3K27me3 BLOCs to SINE
repeats have been pre-selected. In the interface, the user selects a
genome build followed by two tracks. A list of relevant
investigations is then presented, based on the genomic types of the
two tracks. After selecting an investigation, the interface presents
the user with a choice of null models, alternative hypotheses and
other relevant options. (b) Screenshot of the results of the analysis.
The question asked by the user is presented at the top, in this case:
‘Are ‘MEFB1 (BLOC segments)’ overlapping ‘SINE (Repeating
elements)’ more than expected by chance?’ A first, simplistic answer
is then presented: ‘No support from data for this conclusion in any
bin’. A more precise answer follows, detailing any global P-values, a
summary of local FDR-corrected P-values, the particular set of null
and alternative hypotheses tested, in addition to a legend of the
test statistic that has been used. Further links to a PDF file
containing the statistical details of the test, and to more detailed
tables of relevant statistics for both the global and the local analysis
are also included. The global result table also includes links to plots
and export opportunities for the individual statistics.
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The abstractions of genomic data, the proposing of pro-
totype investigations, and the careful attention given to
null models simplifies statistical inference for a range of
possible research topics. Our approach invites research-
ers to build relevant null models in a controlled manner,
so that specific biological assumptions can be realisti-
cally represented by preservation, randomness and
intensity based confounders. In addition, time used for
repetitive tasks like file parsing and calculation of
descriptive statistics may be significantly reduced.
Our system is highly extensible. The software is open

source, inviting the community to add new investiga-
tions and tools. Attention has been given to compo-
nent-based coding and simple interfaces, facilitating
extensions of the system.
The highly specialized nature of many research inves-

tigations poses a major challenge for a generic system
such as the one presented here. Even though a range of
analyses and options are provided, chances are that at a
given level of complexity, functionality beyond what is
provided by a generic system will be needed. Still, the
time and effort used to reach such a point may be shor-
tened considerably, and it should in many cases be pos-
sible to meet demands through custom extensions.
Genomic mechanisms commonly involve more than

two tracks, and the current focus on pair-wise interroga-
tions is limiting. Our methodology allows the incorpora-
tion of additional tracks through the concept of an
intensity track that modulates the null hypothesis, acting
as a confounder. However, the investigation of genuine
multi-track interactions is not yet possible within the
system, as complex modeling and testing of multiple
dependencies will be required.
Attention should be given to the trade-off between

fine resolution and lack of precision. When large bins
are considered, there may be too little homogeneity,
while small bins may contain too little data. There is
also an unresolved trade-off relating to preservation of
tracks in null-hypotheses construction: too little preser-
vation may give unrealistically small P-values, while too
strong preservation may give too limited randomness.
On a more specific note, a set of tissue-specific analy-

tical options would be beneficial with respect to many
types of experimental data - for example, chromatin,
expression and also gene subset tracks. Such options are
now under development.
Novel sequencing technologies are instrumental in

realizing the personalized genomes [28], and with them
the task of identifying phenotype-associated information
contained in each genome. An imminent challenge in
understanding cellular organization is that of the three
dimensions of the genome. While a number of genomes
have been sequenced, and a number of important cellu-
lar elements have been mapped on a linear scale, the

mapping of the three-dimensional organization of the
DNA and chromatin in the nucleus is still only in its
beginnings. Consequently, the impact of this organiza-
tion on cell regulation is still largely unresolved. How-
ever, the advent of methods like Hi-C [29] permits
detailed maps of three-dimensional DNA interactions to
be combined with coarser methods of mapping of other
elements. It appears that looking simultaneously at mul-
tiple scales seems important for understanding the
dynamics of different functional aspects, from chromo-
somal domains down to the nucleosome scale. The need
for taking multiple scales into account has recently been
emphasized in both theoretical and analytical settings
[30,31]. Consequently, statistical genomics needs to con-
sider several scales when proper analytical routines are
developed. Our approach is open to three-dimensional
extensions, where the bins, which are flexibly selected in
the system, will become three-dimensional volumes, and
local comparison will be within each volume. What
appears much more complex is the level of dependence
of such volumes. But as the three-dimensional organiza-
tion of the genome will become increasingly known,
appropriate volume topologies will be possible, so that
neighboring volumes representing three-dimensional
contiguity may be used as a basis for statistical tests.

Conclusions
By introducing a generic methodology to genome analy-
sis, we find that a range of genomic data sets can be
represented by the same mathematical objects, and that
a small set of such objects suffice to describe the bulk
of current data sets. Similarly, a range of biological
investigations can be reduced to similar statistical ana-
lyses. The need for precise control of assumptions and
other parameters can furthermore be met by generic
concepts such as preservation and randomization, local
analysis (binning) and confounder tracks.
Applying these ideas on a sample set of genomic

investigations underlines that the generic concepts fit
naturally to concrete analyses, and that such a generic
treatment may expose vagueness of biological conclu-
sions or expose unforeseen issues. A re-analysis of the
relation between BLOC segments of histone modifica-
tion and SINE repeats shows that conclusions regarding
direct overlap at the base-pair level depends on the ran-
domizations used in the significance analysis. Using bio-
logically reasonable null models, the correspondence
between BLOC segments and SINE repeats appears not
to be due to overlap at the base-pair level, but rather
seems to be due to local variation in intensities of both
tracks. This does not directly oppose the original con-
clusions, but brings further insight into the nature of
the relation. Similarly, an analysis of the relation
between DNA melting and exon location confirms the
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conclusion from previous studies that exon boundaries
coincide with gradients of melting temperature. How-
ever, taking GC content into account as a possible con-
founder, the analysis does not suggest a direct
functional relation between melting and exons. Instead,
it suggests that the association is due to the relationship
of both exons and melting tracks to GC content.
We believe the generic concepts and challenges identi-

fied by our work will trigger community efforts to
improve genome analysis methodology. The Genomic
HyperBrowser demonstrates the feasibility of applying
our approach to large-scale genomic datasets, providing
a concrete basis for further research and development in
inferential genomics. We thus consider the solutions
presented here more like a start than an end of this
important endeavor.

Materials and methods
Statistical methods
A track is defined over the whole genome or only in parts
of it, masking away the rest. In a local analysis, statistical
tests are performed in each bin with sufficient sample
size. Resizing of bins allows for localization of events
(similarities, differences, and so on, between the two
tracks) with flexible precision. Preservation rules leads to
conditional P-values that are not necessarily ordered,
even if the preservation mechanism is incremental. Sta-
tistical tests have been tried on simulated data, also when
model assumptions are not completely fulfilled. Standard
Monte Carlo requires deciding on the number of Monte
Carlo samples. We suggest at least two to five times the
number of tests, in order to allow for FDR adjustment.
Additionally, we adopt sequential Monte Carlo, where
the algorithm continues sampling until the observed
statistic has been exceeded a given number of times (say
20) [9]. This gives better estimates of small P-values with
overall reduced computations. Intensity tracks are used
to define non-standard null hypothesis. Several strategies
for building intensity curves are described in Section 3 in
Additional file 1. Intensity curves allow performing ran-
domizations that mimic another track (or a combination
of tracks), useful to account for confounding effects. For
unmarked points, the intensity curve can be any regular
function l0(b) where b is the position along, say, a chro-
mosome. If l0(b) = c (constant), points are uniformly dis-
tributed. As another example, l0(b) can be a kernel
density estimate based on the track of observed points. In
general, the intensity l0(b) may depend on several differ-
ent tracks g1, g2, ..., gk, through a function s, so that l0(b)
= s(g1(b), g2(b), ..., gk(b)), for example, l0(b) = c + Σbigi
(b). An important case that requires a special choice of
intensity track is when the comparison between two tracks
T1 and T2 might be confounded by a third, confounder,
track T3. This is discussed in further detail in Section 5

in Additional file 1 for the melting-exon example,
where each track depends on a function of the GC
content.

Software system
The Genomic HyperBrowser [30] is implemented in
Python [22], version 2.7. It runs as a stand-alone applica-
tion tightly connected to the Galaxy framework [2], using
the version dated 2010-10-04. The user interface is based
on Mako templates for Python [32], version 0.2.5, and
Javascript library Jquery [33], version 1.4.2. The software
uses NumPy [34], version 1.5.1rc1, for disk based vector
mapping and fast vector operations. R [35], version
2.10.1, is used for plotting and basic statistical routines,
using the RPy API [36], version 1.0.3. The software is
open source and freely available, using GPL [37] version
3, and can be downloaded from [30]. The Genomic
HyperBrowser runs on a dedicated Linux server, with
large computations offloaded to the Titan cluster [38].

Biological example: histone modifications versus gene
expression
Raw histone modification data [39] were preprocessed
using the NPS (Nucleosome Positioning from Sequen-
cing) software [40], using peak detection, leading to
nucleosome positioning information as short segments,
treated as unmarked points (UP). Raw microarray
expression values [41] were used to represent gene
expression, in line with [6]. Direct comparison of the
expression levels of individual probes is not generally
justified. As Barski et al. [6] compares sets of 1,000
genes each, the direct comparison of values between
groups may be justified by noise averaging (although not
discussed in [6]). Using Kendall’s rank correlation test, a
similar reduction of error is obtained. Detailed correla-
tion values for the different histone modifications are
given in Table S1 in Additional file 1. The distribution
of histone modifications relative to TSS is given for two
different modifications in Figure S4 in Additional file 1.

Biological example: histone modifications versus
repeating elements
ChIP-seq data on histone modification [39,42] were pre-
processed using the SICER software [43], which returns
clusters of neighboring nucleosomes as islands unlikely
to have appeared by chance, using an appropriate ran-
dom background model. These clusters are treated as
unmarked segments (US). The ChIP-chip data of
H3K27me3 positions were obtained directly from Pauler
et al. [8], and were preprocessed by them using their
BLOCs software, which returns broad local enrichments,
also treated as unmarked segments (US). Detailed overlap
results between repeats and different histone modifica-
tion sources are given in Table S2 in Additional file 1.
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Biological example: exons versus DNA melting
The melting fork probability tracks PL(x) and PR(x) used
in this study were obtained using the Poland-Scheraga
model [44]. To make the correction for GC content, a
pair of GC-based function tracks, L(x) and R(x), were
created using a moving window approach. Let EL (ER)
be the left (right) exon boundaries. For testing the melt-
ing-exon relation in tracks (EL, PL), an intensity track
was created based on L(x), R(x) and EL.(and similarly for
tracks (ER, PR)). See Section 5 in Additional file 1 for
more details.

Additional material

Additional file 1: Supplementary material. Miscellaneous
supplementary material: gene coverage example. On the importance of
realistic null models. On mathematics of genomic tracks. On system
architecture. On Exon DNA melting example. Supplementary figures and
tables.

Additional file 2: Statistical tests. Detailed description of the statistical
tests implemented in the software system.

Additional file 3: Supplementary note on simulation. Description of
basic algorithms for simulating synthetic tracks, used to assess statistical
tests.

Abbreviations
BLOC: broad local enrichment; bp: base pair; F: function; FDR: false discovery
rate; kb: kilo base pairs; LINE: long interspersed nuclear element; Mbp: mega
base pairs; MP: marked point; MS: marked segment; SINE: short interspersed
nuclear element; SNP: single-nucleotide polymorphism; TSS: transcription
start site; UP: unmarked point; US: unmarked segment.

Acknowledgements
We gratefully acknowledge ChIP-chip data provision from Florian M Pauler,
and helpful comments on the manuscript from Magnus Lie Hetland, Sylvia
Richardson and Håvard Rue. Gro Nilsen is acknowledged for some plotting
functions, and Peter Wiedswang for administrative assistance. We thank the
Scientific Computing Group at USIT for providing friendly and helpful
assistance on system administration. We also thank PubGene, Inc. for kind
assistance in the development of literature tracks. Additional funding was
kindly provided by EMBIO, UiO and Helse Sør-Øst. This work was performed
in association with ‘Statistics for Innovation’, a Centre for Research-Based
Innovation funded by the Research Council of Norway.

Author details
1Department of Informatics, University of Oslo, Blindern, 0316 Oslo, Norway.
2Department of Tumor Biology, The Norwegian Radium Hospital, Oslo
University Hospital, Montebello, 0310 Oslo, Norway. 3Statistics For Innovation,
Norwegian Computing Center, 0314 Oslo, Norway. 4Department of
Mathematics, University of Oslo, Blindern, 0316 Oslo, Norway. 5Centre for
Cancer Biomedicine, The Norwegian Radium Hospital, Oslo University
Hospital, Montebello, 0310 Oslo, Norway. 6Institute for Medical Informatics,
The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310
Oslo, Norway. 7Department of Biostatistics, Institute of Basic Medical
Sciences, University of Oslo, Blindern, 0317 Oslo, Norway.

Authors’ contributions
GKS, AF and EH conceived the approach, GKS, SG and MJ developed the
software, GKS, SG, HR, TC, VN and EH developed novel track types, IKG, LH,
MH, KL, EF and AF developed the statistical concepts, GKS, SG and HR tested
and validated the system, and GKS, SG, HR, ET and EH developed the
biological examples. All authors participated in the manuscript development,
and read and approved the final manuscript.

Competing interests
Eivind Hovig is a shareholder of PubGene, Inc. All other authors declare that
they have no competing interests.

Received: 27 August 2010 Revised: 8 December 2010
Accepted: 23 December 2010 Published: 23 December 2010

References
1. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004,

306:636-640.
2. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y,

Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy:
a platform for interactive large-scale genome analysis. Genome Res 2005,
15:1451-1455.

3. Pruess M, Kersey P, Apweiler R: The Integr8 project–a resource for
genomic and proteomic data. In Silico Biol 2005, 5:179-185.

4. Bock C, Halachev K, Buch J, Lengauer T: EpiGRAPH: user-friendly software
for statistical analysis and prediction of (epi)genomic data. Genome Biol
2009, 10:R14.

5. Zhu J, Sanborn JZ, Benz S, Szeto C, Hsu F, Kuhn RM, Karolchik D, Archie J,
Lenburg ME, Esserman LJ, Kent WJ, Haussler D, Wang T: The UCSC Cancer
Genomics Browser. Nat Methods 2009, 6:239-240.

6. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G,
Chepelev I, Zhao K: High-resolution profiling of histone methylations in
the human genome. Cell 2007, 129:823-837.

7. Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C, McGrath CF, Hughes SH,
Munroe DJ, Wu X: Human T-cell leukemia virus type 1 integration target
sites in the human genome: comparison with those of other
retroviruses. J Virol 2007, 81:6731-6741.

8. Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, Sommer A,
Aszodi A, Jenuwein T, Barlow DP: H3K27me3 forms BLOCs over silent
genes and intergenic regions and specifies a histone banding pattern
on a mouse autosomal chromosome. Genome Res 2009, 19:221-233.

9. Besag J, Clifford P: Sequential Monte Carlo p-values. Biometrika 1991,
78:301-304.

10. Manly BFJ: Randomization, Bootstrap and Monte Carlo Methods in Biology
Boca Raton, FL: Chapman and Hall; 2007.

11. Jost D, Everaers R: Genome wide application of DNA melting analysis. J
Phys Condensed Matter 2009, 21:034108.

12. King GJ: Stability, structure and complexity of yeast chromosome III.
Nucleic Acids Res 1993, 21:4239-4245.

13. Liu F, Tostesen E, Sundet JK, Jenssen TK, Bock C, Jerstad GI, Thilly WG,
Hovig E: The human genomic melting map. PLoS Comput Biol 2007, 3:e93.

14. Suyama A, Wada A: Correlation between thermal stability maps and
genetic maps of double-stranded DNAs. J Theor Biol 1983, 105:133-145.

15. Yeramian E: Genes and the physics of the DNA double-helix. Gene 2000,
255:139-150.

16. Tøstesen E, Sandve GK, Liu F, Hovig E: Segmentation of DNA sequences
into twostate regions and melting fork regions. J Phys Condensed Matter
2009, 21:034109.

17. Carlon E, Malki ML, Blossey R: Exons, introns, and DNA thermodynamics.
Phys Rev Lett 2005, 94:178101.

18. Hanai R, Suyama A, Wada A: Vestiges of lost introns in the thermal
stability map of DNA. FEBS Lett 1988, 226:247-249.

19. Cox DR, Isham V: Point Processes Boca Raton, FL: Chapman and Hall; 1980.
20. Grandell J: Mixed Poisson Processes Boca Raton, FL: Chapman and Hall; 1997.
21. Jenssen TK, Laegreid A, Komorowski J, Hovig E: A literature network of

human genes for high-throughput analysis of gene expression. Nat
Genet 2001, 28:21-28.

22. Python Reference Manual. [http://docs.python.org/release/2.5.2/ref/ref.
html].

23. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D: The human genome browser at UCSC. Genome Res 2002,
12:996-1006.

24. Beck K: Test Driven Development London: Addison-Wesley Profession; 2002.
25. Galaxy. [http://main.g2.bx.psu.edu/].
26. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,

Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R,
Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J,
Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range

Sandve et al. Genome Biology 2010, 11:R121
http://genomebiology.com/2010/11/12/R121

Page 12 of 13

http://www.biomedcentral.com/content/supplementary/gb-2010-11-12-r121-S1.doc
http://www.biomedcentral.com/content/supplementary/gb-2010-11-12-r121-S2.pdf
http://www.biomedcentral.com/content/supplementary/gb-2010-11-12-r121-S3.doc
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15972013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15972013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19333237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19333237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17512414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17512414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17409138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17409138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17409138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19047520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19047520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19047520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8414978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17511513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6317987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6317987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11024275?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15904337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3338556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3338556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11326270?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11326270?dopt=Abstract
http://docs.python.org/release/2.5.2/ref/ref.html
http://docs.python.org/release/2.5.2/ref/ref.html
http://www.ncbi.nlm.nih.gov/pubmed/12045153?dopt=Abstract
http://main.g2.bx.psu.edu/
http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract


interactions reveals folding principles of the human genome. Science
2009, 326:289-293.

27. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K,
Roh TY, Peng W, Zhang MQ, Zhao K: Combinatorial patterns of histone
acetylations and methylations in the human genome. Nat Genet 2008,
40:897-903.

28. 1000Genomes. [http://www.1000genomes.org/].
29. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,

Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R,
Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J,
Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. Science
2009, 326:289-293.

30. Naumova N, Dekker J: Integrating one-dimensional and three-
dimensional maps of genomes. J Cell Sci 123:1979-1988.

31. Knoch TA, Goker M, Lohner R, Abuseiris A, Grosveld FG: Fine-structured
multi-scaling long-range correlations in completely sequenced genomes
- features, origin, and classification. Eur Biophys J 2009, 38:757-779.

32. Mako. [http://www.makotemplates.org].
33. JQuery. [http://jquery.com].
34. Oliphant TE: In Guide to NumPy. Edited by: Spanish Fork UT. Trelgol

Publishing; 2006:.
35. Team R: R: A Language and Environment for Statistical Computing Vienna:

Austria; R Foundation for Statistical Computing; 2006.
36. RPy a robust Python interface to the R Programming Language. [http://

rpy.sf.net].
37. GPL. [http://www.gnu.org/copyleft/gpl.html].
38. Titan. [http://www.notur.no/hardware/titan/].
39. Barski A, Zhao K: Genomic location analysis by ChIP-Seq. J Cell Biochem

2009, 107:11-18.
40. Zhang Y, Shin H, Song JS, Lei Y, Liu XS: Identifying positioned

nucleosomes with epigenetic marks in human from ChIP-Seq. BMC
Genomics 2008, 9:537.

41. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R,
Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas
of the mouse and human protein-encoding transcriptomes. Proc Natl
Acad Sci USA 2004, 101:6062-6067.

42. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P,
Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A,
Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C,
Lander ES, Bernstein BE: Genome-wide maps of chromatin state in
pluripotent and lineage-committed cells. Nature 2007, 448:553-560.

43. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W: A clustering
approach for identification of enriched domains from histone
modification ChIP-Seq data. Bioinformatics 2009, 25:1952-1958.

44. Poland D, Scheraga HA: Theory of Helix-Coil Transitions in Biopolymers New
York: Academic Press; 1970.

45. Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S,
Farrell CM, Loveland JE, Ruef BJ, Hart E, Suner MM, Landrum MJ, Aken B,
Ayling S, Baertsch R, Fernandez-Banet J, Cherry JL, Curwen V, Dicuccio M,
Kellis M, Lee J, Lin MF, Schuster M, Shkeda A, Amid C, Brown G,
Dukhanina O, Frankish A, Hart J, et al: The consensus coding sequence
(CCDS) project: Identifying a common protein-coding gene set for the
human and mouse genomes. Genome Res 2009, 19:1316-1323.

46. Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences:
current status, policy and new initiatives. Nucleic Acids Res 2009, 37:
D32-36.

47. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J,
Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L,
Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R,
Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J,
Spooner W, Stabenau A, et al: The Ensembl genome database project.
Nucleic Acids Res 2002, 30:38-41.

48. Wilming LG, Gilbert JG, Howe K, Trevanion S, Hubbard T, Harrow JL: The
vertebrate genome annotation (Vega) database. Nucleic Acids Res 2008,
36:D753-760.

49. Yamasaki C, Murakami K, Fujii Y, Sato Y, Harada E, Takeda J, Taniya T,
Sakate R, Kikugawa S, Shimada M, Tanino M, Koyanagi KO, Barrero RA,
Gough C, Chun HW, Habara T, Hanaoka H, Hayakawa Y, Hilton PB,
Kaneko Y, Kanno M, Kawahara Y, Kawamura T, Matsuya A, Nagata N,
Nishikata K, Noda AO, Nurimoto S, Saichi N, Sakai H, et al: The H-

Invitational Database (H-InvDB), a comprehensive annotation resource
for human genes and transcripts. Nucleic Acids Res 2008, 36:D793-799.

doi:10.1186/gb-2010-11-12-r121
Cite this article as: Sandve et al.: The Genomic HyperBrowser: inferential
genomics at the sequence level. Genome Biology 2010 11:R121.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Sandve et al. Genome Biology 2010, 11:R121
http://genomebiology.com/2010/11/12/R121

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18552846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18552846?dopt=Abstract
http://www.1000genomes.org/
http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20519580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20519580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19533117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19533117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19533117?dopt=Abstract
http://www.makotemplates.org
http://jquery.com
http://rpy.sf.net
http://rpy.sf.net
http://www.gnu.org/copyleft/gpl.html
http://www.notur.no/hardware/titan/
http://www.ncbi.nlm.nih.gov/pubmed/19173299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15075390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15075390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17603471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17603471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19498102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19498102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19498102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18089548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18089548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18089548?dopt=Abstract

	Abstract
	Rationale
	Results
	Overview
	Abstract representation of genomic elements
	Catalogue of investigations
	Global and local inference
	Precise specification of null models
	Confounder tracks
	Resolving complexity: system architecture
	Step-by-step guide to HyperBrowser analysis

	Discussion
	Conclusions
	Materials and methods
	Statistical methods
	Software system
	Biological example: histone modifications versus gene expression
	Biological example: histone modifications versus repeating elements
	Biological example: exons versus DNA melting

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

