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Abstract

Recent research has revealed complex heterogeneous genomic landscapes in human cancers. However, mutations
tend to occur within a core group of pathways and biological processes that can be grouped into gene sets.
To better understand the significance of these pathways, we have developed an approach that initially scores each
gene set at the patient rather than the gene level. In mutation analysis, these patient-oriented methods are more
transparent, interpretable, and statistically powerful than traditional gene-oriented methods.

Background
To date, the sequences of all coding exons (the exome)
have been determined in 74 cancers [1-8]. These studies
have revealed that advanced cancers each generally
harbor between 30 and 80 point mutations or small
insertions or deletions. Other genetic alterations, such as
amplifications and homozygous deletions, contribute
another ten genes per tumor. These alterations can be
categorized into two classes: ‘drivers’, which bestow a
growth advantage on the cancer cell, inhibiting cell death
or promoting cell birth and ‘passengers’ which coinciden-
tally occurred in a cell that later or concurrently devel-
oped a driver mutation, but had no effect on cell
proliferation. These same studies have defined a land-
scape consisting of both ‘mountains’ - drivers which are
mutated at high frequency in tumors of the same type -
and ‘hills’ - drivers which are mutated at low frequency
in these tumors. Most driver genes appear to be hills,
making it difficult or impossible to distinguish them from
passenger mutations on the basis of frequency alone.
A variety of bioinformatic studies based on these data
have suggested that the mountains and hills, though het-
erogeneous among tumors, can be grouped into a much
smaller set of pathways and biologic processes called
‘gene sets.’ This has led to the idea that an analysis of
gene sets constituting these pathways and biologic

processes may provide more information about the path-
ways altered in cancers than an analysis of individual
genes.
Sequencing studies completed prior to those involving

large scale sequencing have additionally revealed an
‘exclusivity principle’. Within a single pathway, it is rare
for multiple genes to be altered in a single tumor. Thus a
tumor with a KRAS mutation generally does not also har-
bor a BRAF mutation, as KRAS is upstream of BRAF in
the same pathway [9]. Similarly, PIK3CA and PTEN
mutations do not generally occur in the same tumor, and
other genes in the same pathway are also mutually exclu-
sive [10]. The explanation for this principle is that once a
mutation alters a pathway, the selective growth advantage
incurred by a second mutation in the same pathway is
minimal. Large scale sequencing studies of cancers
[4,11,12] have provided additional support for the exclu-
sivity principle.
Recent cancer genome projects have therefore evalu-

ated gene sets in addition to scoring genes based on the
number and types of alterations observed. Many methods
have been proposed for this statistical task, beginning
with [13] and [14] and reviewed in [15]. Most of these
methods are gene-oriented, in that they first calculate a
score for each gene while assigning each gene to a parti-
cular gene set. The next step is to determine which gene
sets carry better scores than predicted by chance. In
mutation analysis this also involves normalizing for the
number of genes in each gene set and the sizes and
nucleotide compositions of each gene in each gene set.
Gene set analysis was originally devised to evaluate

expression data and when applied to mutational data,
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has not yet taken into account the exclusivity principle.
By summarizing the data across patients one gene at the
time, conventional gene set approaches are not able to
differentiate between two very different scenarios. For
example, consider a gene set including ten genes, and
suppose ten different mutations are found among ten
cancers of the same type. In one scenario, each of the
ten genes might have a single mutation and, consistently
with the exclusivity principle, one mutation may occur
in each of the ten patients. In another scenario, one can-
cer might have mutations in all ten genes in the path-
way, and the other nine cancers might each have no
mutations. Conventional gene set analysis methods,
which focus only on the number of alterations in a gene
among the ten patients, cannot distinguish between
these two scenarios. However, from a biological stand-
point, in the former case, all patients have the relevant
pathway altered while in the latter, only one patient has
any mutations in this pathway.
We here describe a patient-oriented approach that fac-

tors in the principles noted above. Basically, we compute
a patient-based score for each gene set. In its simplest
version, this score can only have two values - one or zero
(that is it is binary): the score is one if any gene within
the gene set is altered in the individual patient’s tumor
and zero if no gene is altered. Though a strict interpreta-
tion of the exclusivity principle should preclude two
genes in the same gene set from being altered in the
same tumor, the present state of genome annotation is
imperfect and also many genes are components of more
than one gene set. Our approach allows us to cope with
this imperfection while maintaining statistical rigor. We
believe that this new analytic method more accurately
reflects the selective pressures that drive mutation acqui-
sition in naturally occurring cancers. Our assumption
provides a unifying theme for organizing the mutations
but there are exceptions, such as PIK3CA and PTEN in
endometrial cancers. These exceptions are currently a
weakness in our patient-centric model, but we believe
they are uncommon. We note that other alterations, such
as differences in copy number or epigenetic silencing,
will be important to tumor growth, but our study is con-
cerned only with the interpretation of the significance of
genes that are altered through point mutations.

Results and discussion
Gene set analysis tools
We developed a number of patient-oriented techniques
and compared them to each other as well as to a stan-
dard gene-oriented approach for analysis of the same
data and gene sets.
For the gene-oriented approach, we started out with

gene-specific scores. For each gene, the total number of
mutations across all tumor samples was compared to that

predicted from the passenger mutation rate, providing a
score. The genes were then ranked according to these
scores, with the most mutated genes ranked highest. For
each gene set, we then determined whether the ranks of
the scores for the genes within that gene set were higher
than predicted by chance. The details of the scoring we
used for this analysis are described in the Methods section.
For the main patient-oriented approach, we calculated

a score (Ts) for each gene set, defining this score in the
simplest way possible ( [3,11] and [12]): the score is the
number of patients in which the gene set is altered. We
then considered randomly assigned mutations for
the null hypothesis. For example, suppose that one of
the tumors contained 60 mutations. The 60 mutations
were randomly assigned to 60 different genes. A similar
permutation was performed for each tumor. We then
determined the scores for each gene set, that is, the
number of patients in which the gene set was altered by
one or more of the randomly assigned mutations.
Finally, we assessed whether the scores of gene sets con-
taining the randomly assigned genes was statistically dif-
ferent from the scores calculated from the actual
experimental data. We also considered three other varia-
tions on this method (one where the null hypothesis
considers mutations obtained from estimated passenger
probabilities and two where tumor heterogeneity is
included in the Ts score, using either a permutation or a
passenger null). More detailed descriptions of the statis-
tical methods, as well as mathematical proofs, are
described in Methods and expanded in the Additional
file 1.

Experimental results
We analyzed the mutation data on glioblastoma multi-
forme (GBM) patients in [4] using the patient-oriented
and gene-oriented methods. The gene set annotations
came from the MetaCore database [16]. We considered
3,071 sets, having between 3 and 2,096 genes. There was
substantial overlap between the set annotations (mean:
33 genes; median: 9 genes; interquartile range: 5 to
29 genes).
In the GBM experimental dataset, 1,454 of the 3,071

gene sets were altered in at least one sample. Of the
1,454 gene sets with at least one altered gene, the great
majority (1,131, representing 78%) had only one altera-
tion per sample, in accordance with the exclusivity prin-
ciple. The composition of these 1,131 gene sets was
somewhat similar to those of the total 3,071 gene sets
(mean: 17 genes; median: 8 genes; interquartile range:
4 to 20 genes). In contrast, there were 323 gene sets
which had two or more alterations and these tended to
be considerably larger than the average gene set (mean:
167 genes; median 116 genes; interquartile range: 61 to
197 genes). Note that the exclusivity principle is

Boca et al. Genome Biology 2010, 11:R112
http://genomebiology.com/2010/11/11/R112

Page 2 of 10



incompatible with passenger mutations occurring in the
same gene set as driver mutations; passenger mutations
are more likely to occur in bigger genes and in larger
gene sets by chance alone. It is also possible that some of
the gene sets fail to obey the exclusivity principle because
they encompass parts of multiple pathways or processes,
or because of faulty annotations. Information gained
from gene set analysis, whether it be patient-oriented or
gene-oriented, will improve as biologic knowledge of the
relevant processes and pathways continually improves.
In Figure 1, a scatter plot of the number of GBM

mutations per gene set (Ts) vs the size of each gene set
provides an overall sense of the variation. The expected
number of mutations for each gene set under one of the
null hypotheses (see Methods), as well as the values
within two standard deviations of the expected number,
are overlaid on these experimental data. These results
show that mutations tend to cluster within gene sets far
more than one would expect by chance. In particular,
there were a large number of sets whose Ts scores were
more than two standard deviations away from the
expected mean under the null hypothesis. Though this
GBM study had only 21 subjects, it was still possible to
get useful information at the gene set level for sets
including as many as a few hundred genes; a larger
number of tumors would have to be evaluated to get a
statistically significant result for the largest gene sets.
A more in-depth view of the dependence between the
null distribution of Ts and the size of the gene set is

presented in Additional file 2. We developed and stu-
died four implementations of the patient-oriented meth-
ods, differing only by the nature of the assumptions
used to generate the null distributions and the normali-
zation methods (see Methods). The patient-oriented
methods and the gene-oriented method are further
compared in Figure 2, which shows (using the CAT plot
introduced in [17]) that the same gene sets are com-
monly identified by any two of the patient-oriented
methods but that different gene sets are often identified
by the gene-oriented method. (The plot shows only two
of the patient-oriented methods being compared to the
gene-oriented method, for the sake of clarity, but the
remaining two display a similar behavior.)
Which approach is superior at identifying the ‘true’

gene sets involved in GBM? One way to address this
question is through the evaluation of pathways known
to be involved in this tumor type. Among the gene sets
evaluated were those containing the PI3K or RB1 path-
ways, which are known to be altered in GBM. We
would therefore expect that many of the gene sets con-
taining the PI3K or RB1 pathways would be ranked high
in any robust analysis of GBM mutational data. With
the patient-oriented approach, we found all but one of
the 15 gene sets containing PI3K or RB1 to be ranked at
a high and statistically significant level (Additional
file 3). In contrast, many gene sets containing the PI3K
or RB1 pathways were not highly ranked with the gene-
oriented method.
Another example of the superiority of the patient-

oriented approach was provided by an analysis of the
106 gene sets containing TP53, the gene most frequently
mutated in GBMs (10 of 21 samples). The presence of a
mutation in a specific gene in a large fraction of tumors
should implicate virtually any gene set containing that
gene in the tumorigenic process. A gene set analysis
with the patient-oriented method was in accord with
this expectation, while an equivalent analysis with the
gene-oriented method was not (all of the gene sets
ranked among the top 50 contained TP53 when using
the patient-oriented approach, with the exception of a
single set in one of the four methods, whereas only four
of the gene sets ranked among the top 50 contained
TP53 when using the gene-oriented method). In the
tumor subset in which TP53 was mutant, each of the
top 52 sets (having ranks of at most 50, due to ties)
included TP53, when analyzed with the main patient-
oriented method. With the gene-oriented method, only
ten of the top 50 gene sets included TP53 in those
tumors in which TP53 was itself mutant.
We also looked at the sets which contained other can-

didate cancer genes (CAN-genes), as defined in [4],
except for CDKN2A and CDK4, which were not
mutated in any of the samples we considered. There
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Figure 1 Observed (blue) and expected number of altered
samples (Ts) across the gene sets in the dataset from [4], as a
function of the size of the gene set. The expected numbers are
computed using the permutation null and denoted by E(Ts|Hs0). The
values within two standard deviations of the E(Ts|Hs0) are also
shown.
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were 411 sets in which at least one of these genes was
present, but TP53 was not. Their median ranks were
between 334 and 348 in each of the four patient-
oriented methods.
Our methods permits sample size estimations for

future studies which would draw from the same or a
similar sample of tumors via simulation. We note that
the number of patients required for significant results
will vary from set to set, depending on the size of the
gene set and the frequency with which it is altered. Con-
sider for example the response to retinoic acid, which
has the lowest P-value under the main patient-oriented
method we consider, and is composed of only seven
genes, of which TP53 and LRP2, both CAN-genes, are
altered in a total of 12 samples. Out of 100 simulations
performed in which 5 of the 21 patients were considered
each time, 65 assign it a q-value of 0.1 or lower, which
would often be considered significant. However, if we
consider the set of genes involved in PLAU signaling in
cell adhesion, which consists of 42 genes (three of
which are CAN-genes) altered in seven samples, the

simulation results would look very different. In the
actual dataset, this gene set has a rank of 154.5, but
nonetheless, is significant (q-value of 0.007). Out of 100
simulations with 5 samples, it only had a q-value less
than or equal to 0.1 seven times; for 10 and 15 samples,
this number went up to 42, respectively 76.
We also analyzed (see Additional file 4) data from

three additional studies that comprehensively examined
somatic mutations in breast, colorectal, and pancreatic
tumors, reaching qualitatively similar conclusions.

Controlled simulation results
To systematically examine the value of our method, we
performed 100 simulations with the existing (3,071) gene
sets presenting data consistent with a null distribution
and other gene sets ‘spiked-in,’ that is having a high
probability of being altered in varying proportions of the
samples considered. These sets each have sizes of 25,
100, and 250 genes, with probabilities of being altered in
a given patient of 0.25, 0.50, 0.75 and 0.90, resulting in 12
artificially generated sets. They were chosen to cover a
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wide range of gene set sizes and probabilities: For exam-
ple, there were 260 sets containing between 20 and
30 genes, 124 sets containing between 75 and 125 genes,
and 23 sets containing between 225 and 275 genes.
We considered two ways of generating null distribu-

tions in our simulations: one where the data on the
genes present in the ‘null’ gene sets were obtained by
permutation, and one where they were generated
according to pre-specified mutation rates; further details
are given in the Methods section. Using these simulated
datasets, the patient-oriented approaches and the gene-
oriented methods were compared with respect to sensi-
tivity and specificity. In the analyses below, the spiked-
in sets represent the biological signal, and if, discovered,
are ‘true positives.’ The remaining gene sets represent
the background noise, and if discovered, are ‘false
positives.’
Sensitivity (power)
We compared the patient-oriented methods to the gene-
oriented method in terms of the ranks of the spiked-in
sets. The simulation results for the permutation null are
presented in the top panel of Figure 3, showing how
many spiked-in gene sets are identified within the top
scoring sets. For example, for the primary patient-
oriented approach, eight of the 12 spiked-in gene sets
were among the top ten-scoring gene sets. Ideally, the
plot would show a straight line for ranks between one
and twelve, as indicated by the red segment. On average,
the four patient-oriented methods identified more true
positives for a given list size than the gene-oriented
method.
Among the spiked-in gene sets considered, five are

generally given good ranks by both the patient-oriented
methods and the gene-oriented one. These gene sets
tend to have both a relatively small number of genes
and a high probability of being altered in any given
patient, that is those with 25 genes and probabilities of
being altered of 0.50, 0.75, and 0.90 and those with
100 genes and probabilities of being altered of 0.75 and
0.90. However, when the gene set size increases or the
probability of being altered decreases, the patient-
oriented methods perform better. For example, the gene
set with 100 genes and a probability of being altered of
0.50 had median ranks of eight or nine across the
100 simulations for each of the patient-oriented meth-
ods, while for the gene-oriented method, the median
rank was 28.5. Similar results were obtained with the
gene set with 25 genes and probability 0.25 (the median
rank of the patient-oriented approaches was between
nine and ten, while for the gene-oriented approach it is
14), the gene sets with 250 genes and probabilities
0.90 (median ranks of five or six with the patient-
oriented approaches versus 35 with the gene-oriented
approach) and 0.75 (median ranks of seven or eight

versus 201). The remaining three spiked-in gene sets
generally did not achieve good ranks in either approach,
due to the combination of the large number of genes
and low probability of being altered; but again, the
patient-oriented methods generally ranked them higher
than the gene-oriented method.
An analogous graph for a second set of simulations

which uses the pre-specified mutation rates to obtain
the ‘null’ gene sets is presented in Figure 3, bottom
panel. Results were qualitatively similar. For example,
the gene set of size 250 and probability 0.75 got good
median ranks with the patient-oriented methods (seven
across the board), but a poor median rank with the
gene-oriented approach (91).
We conclude that in simulation scenarios reflecting

the exclusivity principle, patient-oriented methods have
better power, especially for larger gene set sizes and
lower probabilities of being altered.
Specificity
We also considered how well the patient-oriented and
gene-oriented approaches performed in terms of the
number of false positives. Figure 4 shows plots of the
actual true fraction of false positives versus the q-value
for the 100 controlled simulations, employing the two
different ways of generating null distributions (see
above and Methods). In the ideal scenario the q-values
would fall below the identity line, meaning that the
q-values accurately control the false discovery rate
(FDR). The patient-oriented approaches generally show
appropriate behavior in both sets of simulations, as the
true fraction of false discoveries is generally close to or
much lower than the q-value. This is generally what is
desired with an analytic method, as it lends confidence
to the highest ranking gene sets. In contrast, the gene-
oriented methods are anti-conservative: they identify a
relatively large number of false positive gene sets, and
are overly confident about the presence of false positives
in the lists they generate. The two patient-oriented
approaches that employ the passenger null are some-
what anti-conservative (though much less so than
the gene-oriented approach) for the permutation null
data-generating mechanism. This is due to the data-
generating mechanism implying a higher rate of passen-
ger mutations than is given by the actual estimated
passenger rate, since the events being permuted include
those in CAN-genes.

Conclusions
We have developed and evaluated a patient-oriented
approach for the gene set analysis of mutation data in
cancer genome studies.
We performed simulations with spiked-in gene sets

and applied the patient-oriented methods as well as the
gene-oriented methods to their analysis. We found that
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the patient-oriented methods tended to outperform the
gene-oriented methods in terms of power, especially
when considering gene sets of a large size or low prob-
abilities for alteration. We also appear to be gaining
power when considering the real mutation data in [4],
as many gene sets which had prior evidence of being
altered received better scores/ranks with our approach
than with the gene-oriented approach. Our new patient-

oriented methods also performed better in terms of spe-
cificity (Figure 4).
Our results validate the analyses presented in [3] and

[4] in three important ways: They provide a formal sta-
tistical evaluation of the properties and performance of
patient-oriented gene set methods; they quantify the
value added of patient-centered analyses over commonly
used gene-centered analyses; and they confirm that in
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tumor studies including as few as 21 patients, there is
significant power to detect relatively subtle signals as
long as the analysis is carried out at the level of gene
sets. This conclusion still applies to gene sets of rela-
tively large size. The availability of complete exomic
data from larger numbers of patients will make this
approach even more valuable and accurate.
While we focused on mutation analysis, extensions of

our methodology to consideration of other types of
alterations measured on a genome-wide scale are

possible. For example, it is straightforward to simply
replace ‘mutation’ with ‘any alteration’ and proceed with
the analysis approach proposed here. However, some of
the null distributions required for statistical analysis
would be more complex to generate with other types of
alterations, such as copy number alterations (see Meth-
ods for a more detailed discussion). An important find-
ing of our study was that the different patient-oriented
methods we used generally yielded similar results, both
for the controlled simulations and for the data in [4].
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However, we recommend that the main method we con-
sidered (called the ‘permutation null method without
heterogeneity’) is optimal, as it requires the least amount
of data; in particular, it does not make use of gene cov-
erages or of passenger rates. This is particularly impor-
tant because passenger rates are extremely difficult to
determine and may well vary from tumor type to tumor
type and from patient to patient with the same tumor
type. Compared to other gene set analysis techniques,
we believe that the patient-oriented approaches are
more transparent, more interpretable, and ultimately,
ask questions of greater scientific interest.

Materials and methods
Gene set analysis
Our patient-oriented approach relies on starting with a
statistic for each gene in each patient, which is either
one or zero, depending on whether or not the gene is
altered in the patient. (A possible extension may involve
a gene-level statistic which represents a probability, and
is thus between zero and one.) For each patient, we
combine the statistics corresponding to all the genes in
a specific gene set to get a binary gene set statistic,
which is one if the gene set is altered in the patient and
zero if it is not. We then obtain a statistic for each gene
set by taking a weighted sum of the patient-based gene
set statistics. We consider two possible types of weights,
depending on whether or not the decision is made to
incorporate tumor heterogeneity. In the case which does
not account for heterogeneity, the gene set statistic is
simply the number of patients in which the gene set is
altered. We also consider two possible null hypotheses:
either the events are permuted randomly within each
patient, or they come from a ‘passenger mutation rate’
that is computed for each patient individually. Thus, we
consider four different patient-oriented methods: per-
mutation null without heterogeneity, permutation null
with heterogeneity, passenger null without heterogene-
ity, and passenger null with heterogeneity. We are able
to derive novel and explicit mathematical expressions
for the P-values associated with the gene set test we
propose. Formal definitions and proofs are given in the
Additional file 1.
In gene expression applications, [18] and [15] advo-

cated phenotype permutations as opposed to gene per-
mutations, but a large part of their argument was based
on the fact that microarray gene expression data is cor-
related. As we make use of mutation data, we do not
expect this to be as important a consideration. We also
note that we have only matched tumor-normal samples,
so we cannot permute on the phenotypes.
For comparison, we use a gene-oriented method

implemented in the limma package [19] and previously
used in [3] (accessed through an interface developed for

[20]). This implementation of the method first ranks
genes according to a likelihood ratio test (LRT) using
the null hypothesis that the genes are mutated according
to the passenger rates, as detailed in [21] and [2]. For
each gene set, the ranking of the genes within it is com-
pared to the ranking of the genes outside it using the
Wilcoxon test.
This method is similar to the GSEA method of [22],

though it is much faster. It is possible to use other
gene-specific scores in the Wilcoxon test besides the
LRT score, such as the CaMP score, developed in [1].
There are also other statistical tests which can be
applied to obtain a P-value for the gene sets. For exam-
ple, a t-test may be used to compare the scores of the
genes within a gene set to those of the genes outside it.
We tried each of these variations on the glioblastoma
dataset described in the next section, and the CAT plots
comparing the patient-oriented to the gene-oriented
methods were similar. Another approach could be to set
a threshold, either on the number of mutations in a
gene, or on another gene-specific score, then to create a
contingency table for each gene set, comparing the
number genes within and outside the set with the
threshold. A test like the chi-squared test or Fisher’s
exact test could then be employed. This approach is
often used in gene set analysis for expression data [15].
However, given that less than 5% of the genes are
mutated in our dataset, any threshold would invariably
result in over 95% of the gene-specific scores being
below it, thus invalidating this approach.
In both our simulated and real data analysis we compute

P-values for each approach considered. Starting from these
P-values, we use the Benjamini-Hochberg approach for
obtaining q-values [23] for FDR control. We note that this
is not the ideal scenario for the application of this
approach, since the null hypotheses are correlated and the
test statistics for the different gene sets are discrete and
not identically distributed. However, it is likely that these
factors lead to q-values that are conservative.

Experimental data
We consider the somatic nonsynonymous point muta-
tions from the glioblastoma dataset in [4] which were
present in the Discovery Screen. In this screen, tumor
samples from 22 patients were initially analyzed, one of
them being excluded from subsequent analysis due to
treatment with temozolomide, which led to a very differ-
ent mutation profile from the other tumors. Thus, only
21 samples were considered for further analysis in [4],
as well as in the present study, with sequence and muta-
tion data from 20,661 genes, from the CCDS, RefSeq,
and Ensembl databases. We do not consider the copy-
number alterations or the expression profiles, detected
via microarrays, respectively serial analysis of gene
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expression (SAGE) on these samples in [4]. We note
that the candidate cancer genes (CAN-genes) given in
[4] were established using additional data from the
examination of 21 of the genes mutated in the Discovery
Screen in 83 additional glioblastoma tumors, comprising
the Prevalence Screen; this data was also not considered
in the current study. In the dataset considered in the
current study, a total of 748 mutational events were pre-
sent in 685 genes in 21 tumor samples. The gene with
the most events was TP53, with 12 mutations in ten
samples. The total number of events per tumor varied
between 12 and 63 (median is 35), indicating some
degree of heterogeneity between patients.
We use functional gene groups and pathways con-

tained within the well-annotated MetaCore database
[16], which includes metabolic pathways and signaling
pathways, as well as other cellular functions and
processes.

Controlled simulations
We considered two kinds of data-generating mechan-
isms for the null distributions in our simulations: One
where the data on genes present in the ‘null’ gene sets
were obtained by a permutation, and one where they
were generated according to prespecified mutation rates
representing likely scenarios for passenger mutations. In
the case of the permutation null, we started with the
events in [4], excluded those from the known ‘moun-
tains’ (TP53, PTEN, RB1, EGFR), and permuted the
remaining mutations among genes, while choosing the
context of mutations by using weights corresponding to
the expected number of mutations given by the passen-
ger rate.
After the null dataset was obtained by one of these

two methods, we spiked in 12 gene sets, of sizes 25,
100, and 250 genes, with probabilities of being altered in
a given patient of 0.25, 0.50, 0.75 and 0.90. We artifi-
cially created these gene sets using hypothetical genes.
To generate realistic genes we sampled nucleotide com-
positions and sequencing coverage from the real genes
in [4]. For each of the spiked-in sets and each sample,
we generated a number from the Uniform(0,1) distribu-
tion to decide whether or not the gene set was altered
in the respective sample (depending on whether the ran-
dom number was larger or smaller than the probability
of being altered). In both simulation scenarios, the
mutated genes and their contexts were chosen so that
on average, the proportions of mutations of different
types are the same as they are among passengers.

Additional material

Additional file 1: Notations, derivations, and theorems used for the
patient-oriented methods.

Additional file 2: Cumulative distribution functions (cdf) of P-values
for the patient-oriented method with the permutation null without
heterogeneity, for 10,000 null samples, using the number of events
in the 21 glioblastoma samples from [4].

Additional file 3: Comparison of the main patient-oriented methods
(passenger null without heterogeneity) to the gene-oriented
method on the dataset in [4].

Additional file 4: Analyses on three more datasets.
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