Research

Zebrafish reward mutants reveal novel transcripts mediating the
behavioral effects of amphetamine

Katharine J Webb™", William HJ Norton™, Dietrich Triimbach?,
Annemarie H Meijer$, Jovica Ninkovic*¥, Stefanie Topp*', Daniel Heck?,
Carsten Marr", Wolfgang Wurst*, Fabian J Theisf, Herman P Spaink? and
Laure Bally-Cuif™

Addresses: “Department Zebrafish Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research
Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany. "Center for Integrated Protein Science (Munich),
Institute of Developmental Genetics, Technical University - Munich, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany. “Institute of
Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse,
Neuherberg, 85764 Germany. $Institute of Biology, University of Leiden, Leiden, 2300 RA The Netherlands. TInstitute for Bioinformatics and
Systems Biology, Helmholtz Zentrum Miinchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg,
85764 Germany. ¥Current address: Institute of Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for
Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany.

Correspondence: Katharine J Webb. Email: katharine.webb@helmholtz-muenchen.de. Laure Bally-Cuif. Email: bally@helmholtz-
muenchen.de

Published: 31 July 2009 Received: 12 May 2009

Genome Biology 2009, 10:R81 (doi:10.1 186/gb-2009-10-7-r81) i‘z‘é:;i d',%{”;jyzgggg

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2009/10/7/R81

© 2009 Webb et dl,; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Addiction is a pathological dysregulation of the brain's reward systems, determined by several complex genetic
pathways. The conditioned place preference test provides an evaluation of the effects of drugs in animal models, allowing the
investigation of substances at a biologically relevant level with respect to reward. Our lab has previously reported the
development of a reliable conditioned place preference paradigm for zebrafish. Here, this test was used to isolate a dominant
N-ethyl-N-nitrosourea (ENU)-induced mutant, no addiction (nadin¢325¢), which fails to respond to amphetamine, and which we
used as an entry point towards identifying the behaviorally relevant transcriptional response to amphetamine.

Results: Through the combination of microarray experiments comparing the adult brain transcriptome of mutant and wild-type
siblings under normal conditions, as well as their response to amphetamine, we identified genes that correlate with the mutants'
altered conditioned place preference behavior. In addition to pathways classically involved in reward, this gene set shows a
striking enrichment in transcription factor-encoding genes classically involved in brain development, which later appear to be re-
used within the adult brain. We selected a subset of them for validation by quantitative PCR and in situ hybridization, revealing
that specific brain areas responding to the drug through these transcription factors include domains of ongoing adult
neurogenesis. Finally, network construction revealed functional connections between several of these genes.

Conclusions: Together, our results identify a new network of coordinated gene regulation that influences or accompanies
amphetamine-triggered conditioned place preference behavior and that may underlie the susceptibility to addiction.
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Background

Addiction, which can be broadly defined as a pathological
state characterized by the compulsive seeking and usage of a
drug in spite of adverse consequences, is a major societal
problem. In the USA alone, more than 23 million Americans
are concerned, with societal costs reaching 1.4 million dollars
over the life of each addict [1]. Addictive drugs include a large
number of substances (such as stimulants, alcohol and opi-
ates) acting through different cellular mechanisms, but which
all trigger a sequence of widespread, long-lasting conse-
quences on brain physiology, most of which are only partially
understood. The complexity of these plastic events makes it
difficult to efficiently care for patients, and current treat-
ments have little power to avoid relapse. As a consequence, a
major goal of drug abuse research is to identify the key molec-
ular mechanisms underlying the development of compulsive
drug use, which may then be medically targeted for better
treatments.

The mechanisms underlying drug addiction utilize a succes-
sion of physiological responses that begin with the activation
of the brain's reward pathway - a feature common to all drugs
of abuse. The reward system, largely based on dopamine sig-
naling projecting to forebrain centers [2], signals a pleasura-
ble experience, which then tends to be repeated. The
transition from drug use to addiction [3] occurs gradually and
involves both neuro- and synaptic plasticity. These long-last-
ing adaptive changes persist even after withdrawal of the
drug, and they are likely to underlie the persistent tendency to
relapse [4]. In addition, several other circuits - in particular
the stress axis and the learning and memory circuitry - have
been implicated in the reinforcement of drug use or addiction
and in the cognitive processes underlying addiction [5]. One
powerful approach to understand which molecular altera-
tions contribute to the development and expression of the
successive addiction-related behaviors has been the use of
microarray expression profiling. Combined with the in silico
assembly of regulatory networks, this high-throughput analy-
sis can provide a comprehensive picture of the changes in
gene expression that may underlie the different steps towards
drug addiction. In the case of psychostimulant drugs, for
example, microarray analyses have demonstrated the occur-
rence of important transcriptional changes that differ over
time, clearly distinguishing acute from chronic drug use or
withdrawal. In models as varied as human post-mortem
brains from cocaine abusers and mice or rats of different
genetic backgrounds, changes related to molecular pathways
controlling neurotransmitter signaling (including a downreg-
ulation of the dopamine D2 receptor), signal transduction,
ion-gated channel activity, cytoskeletal structures, extracellu-
lar matrix remodeling, synaptogenesis, axonal dynamics and
cell metabolism [6-8] (reviewed in [9,10]) have been identi-
fied.

Because a major step in the development of addiction is the
switch from drug use to drug abuse, we aimed to gain insight
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into the mechanisms triggering the initiation of addictive
behavior. Towards this aim, we focused on commonalities in
the effects of abused drugs, hence on their early effect on the
reward pathway. Based on previous observations demon-
strating that the response of the reward system increases with
expectancy (thus, it is subject to auto-amplification) [11], we
reasoned that a major susceptibility factor in the transition
from drug use to abuse might be the intensity of the initial
reward response. In order to narrow-down transcriptional
approaches to this process, recent analyses compared the
transcriptional effects of several drugs [12], or made use of
mice carrying alterations in the function of genes postulated
to be relevant to reward. For example, the transcriptional
effects of cocaine have been compared in mice lacking the
dopamine D1 receptor (necessary for the sensitization to
cocaine) versus their wild-type siblings [7], in mice overex-
pressing the immediate early transcription factors CREB or
AfosB (both of which are involved in mediating the acute
effects of cocaine) [13] and in Cdks knock-out mice (Cdks is a
downstream target of AfosB) [14].

We aimed to provide an unbiased insight into this question,
without a priori selection of a regulatory pathway, while
remaining clearly associated with the reward behavioral out-
put. To achieve these goals, we initiated a functional study of
the reward pathway in zebrafish, a vertebrate model amena-
ble to random mutagenesis and behavioral screening. Reward
behavior is an ancestral behavior, conserved throughout ver-
tebrate phyla, and the underlying neurotransmitter pathways
are shared between species [15-18]. We chose to use the psy-
chostimulant amphetamine as it directly stimulates the
reward pathway (largely via altering the function of the
dopamine transporter Dat [19], which elicits limited physical
dependency, and on the behavioral assay known as condi-
tioned place preference (CPP)). This test, in which association
with the pleasurable effect of a drug modifies an animal's
choice for a specific environmental cue, has been classically
used as a read-out of the functionality of the reward system
[20].

We recently developed a robust assay for amphetamine-
induced CPP behavior in adult zebrafish, and demonstrated
the role of acetylcholine signaling in the sensitivity to
amphetamine-induced reward [17,21]. Here, relying on evi-
dence suggesting genetic components in the susceptibility to
addiction (reviewed in [22-24]), we used this assay in a N-
ethyl-N-nitrosourea (ENU) mutagenesis screen, successfully
isolating an amphetamine-resistant mutant in the CPP test,
no addiction (naddne32s6; hereafter referred to as nad). This
mutation is dominant and nad heterozygotes fail to change
their place preference upon repeated amphetamine adminis-
tration. In zebrafish, amphetamine does not trigger a locomo-
tor response [17], and lack of CPP is the only phenotype that
we could associate with the nad mutation to date. We next
used this mutant in a three-step expression profiling para-
digm comparing the transcriptional response of wild-type
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The dominant mutant naddme325¢ shows no response to amphetamine, but a normal initial place preference. (a) Conditioned place
preference (%) of 24 individuals of a nadde3256é family (generation F3), showing 12 mutants and |2 siblings. Mutants were defined as showing no or a
negative change in place preference. Siblings were defined as having a change in place preference of 5% or over. The last two bars represent the means for
both groups. The difference between the means is statically significant (t-test with unequal variances; P = 2.3E-07). (b) Initial place preference (%) for the
same 24 individual fish. The last two bars represent the means for both groups. There is no significant difference between the two means (two sample
unequal variance t-test P = 0.45). Error bars represent the one fold of the standard error.

animals upon CPP-stimulating amphetamine administration
with that of nad mutants receiving either drug or a saline con-
trol solution. We discovered a set of 139 genes that respond to
amphetamine in wild-type animals, but respond inappropri-
ately in nad mutants without being altered under basal con-
ditions in either genotype. In addition to genes involved in
pathways classically associated with reward, this gene set
shows a striking enrichment in transcription factors that are
specifically known for their involvement in brain develop-
ment. We validated a subset of these genes using quantitative
PCR (qPCR) and in situ hybridization, thereby revealing an
association of these gene expressions with neurogenic zones
of the adult brain, which is also apparent in the mouse. We

developed a database linking zebrafish genes to information
on orthologous gene interactions, which we then used to dem-
onstrate that many of these genes contribute to a common
regulatory network. Together, our results identify a pattern of
coordinate gene regulation that may underlie or accompany
the development of CPP behavior upon amphetamine admin-
istration and, hence, may contribute to generating a suscepti-
bility background towards the development of addiction.
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Figure 2 (see previous page)

'Reward pool' genes characterize the transcriptional response to amphetamine-triggered CPP. (a) Diagram of differentially expressed genes
from microarray experiments. Individual microarray experiments were combined to reveal a reward pool. A comparison of the differential expression
from two experiments showed no bias in the direction of expression. Pool | shows the genes differentially expressed in 'wild type with amphetamine
versus wild-type without amphetamine'. Pool 2 represents genes differentially expressed in 'mutant with amphetamine versus sibling with amphetamine'.
Pool 3 represents genes differentially expressed in 'mutant without amphetamine versus non-mutant siblings without amphetamine'. The genes in pool 3
were subtracted from pool 2 in order to eliminate basal differences between mutants and siblings, not due to amphetamine administration. The
intersection of the remaining genes in pool 2 and the genes in pool | forms the 'reward pool'. The genes in this pool are differentially expressed in both
experiments - that is, they are involved in the wild-type response to amphetamine, as well as the non-response to amphetamine in the mutant. (b)
Comparison of the direction of regulation (up or down) of transcripts from the reward pool for the experiments wt+/wt- and mut+/sib+. No bias towards

a particular pattern can be observed.

Results

The mutant nad fails to respond to amphetamine-
induced reward

To recover mutants of the amphetamine response, we
designed an ENU mutagenesis screen making use of the
amphetamine-based CPP test for adult zebrafish [21]. Briefly,
in this test, the psychostimulant amphetamine is associated
with the initially non-preferred side of a two-color tank. The
repeated administration of amphetamine causes a switch in
the place preference of the fish: even in the absence of drug,
the animal will now prefer the amphetamine-paired side of
the tank. As previously demonstrated using adults hetero-
zygous for the achesbs5 mutation, this test is robust enough to
detect dominant mutations affecting amphetamine-triggered
preference [17]. To recover new dominant mutations of this
type, we screened F1 animals generated from ENU-treated Fo
males for their place preference response to amphetamine.
Potential mutants were then out-crossed to wild-type fish and
their F2 progeny was retested at adulthood. From 396 F1 ani-
mals tested (corresponding to 396 genomes), 4 animals failed
to change their place preference upon amphetamine adminis-
tration while showing normal initial place preference without
drug (not shown). One of these potential mutants transmitted
this phenotype to 50% of its progeny, following the expected
Mendelian distribution for dominant genetic traits (Figure
1a). To date, this transmission has been stable over more than
five generations and is detectable equally well in both the AB
and the polymorphic AB/Tii background [21], arguing for a
bona fide dominant mutation. Importantly, the initial place
preference in mutants does not differ from that of their sib-
lings (Figure 1b), demonstrating their normal response to the
visual cues of the test tank. Following drug treatment,
amphetamine brain content is also similar in mutant fish and
their siblings (not shown). We named this mutation no addic-
tion (naddnes2s6),

A distinct gene expression signature underlies the
abnormal behavioral response of nad mutants to
amphetamine

Previous experiments based on candidate gene or microarray
analysis demonstrate that amphetamine treatment has an
impact on gene expression (for a review, see [10]). These gene
expression changes are likely to mediate or reflect a large part
of amphetamine's actions on multiple biological processes,

one of which is to activate the reward pathway. The design of
our mutant screen further implies that the effect of ampheta-
mine on CPP development is impaired in nad (see Discussion
for the possible behavioral meanings of nad). Thus, the
changed transcriptional response of nad to the drug can help
identify the genes meaningful to the response to ampheta-
mine.

We designed three microarray comparisons to specifically
isolate such genes (Figure 2a; see Additional data files 1 to 3
for complete gene lists). In a first comparison, we found 1,214
genes to be differentially expressed between wild-type fish
that received amphetamine treatment triggering CPP versus
fish that received a control, saline treatment (experimental
conditions identical to those described above; microarray
experiment 1, 'wt+/wt-"; Figure 2a, purple group). To extract
genes meaningful to CPP development from this pool, we next
identified the transcripts that were differentially affected by
amphetamine in nad versus their wild-type siblings. Analysis
of the microarray data for this second comparison showed
that 958 genes were differentially expressed between mutants
and wild-type siblings upon amphetamine treatment (experi-
ment 2, 'mut+/sib+'; Figure 2a, pink group). However, as
these are likely to include basal transcriptional differences
between mutants and wild-type fish (that is, transcriptional
differences that are not triggered by amphetamine adminis-
tration), we performed a third microarray comparison
between mutants and their siblings without amphetamine
(experiment 3, 'mut-/sib-'; Figure 2a, green group). We found
1,223 genes to be differentially expressed under these condi-
tions, which we then took to represent the basal differences
between the mutants and their siblings. Of these, 356 were
also differentially expressed in the experiment 'mut+/sib+'
and were then subtracted from this group to recover genes
characterizing the different response of mutants versus sib-
lings to amphetamine. This subtraction resulted in the pool
'mut+/sib+ minus mut-/sib-'. The intersection of the pools
'mut+/sib+ minus mut-/sib-' and 'wt+/wt-' was taken to form
the 'reward pool' - that is, genes that both characterize the
wild-type response to amphetamine and that display an
altered response (that is, they respond less or more than in
wild type) in the mutant with amphetamine, correlating with
the failure of CPP in this genotype. This pool comprises 139
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Figure 3

Categorization of the 139 genes contained in the reward pool. (a) Gene Ontology (GO) term enrichment analysis for terms included in the
category 'biological process'. Terms were considered to be significantly enriched if the adjusted P-value was < 0.05. Redundant terms have been excluded.
(b) Bar graph comparing the amount of genes assigned to a particular category as a percentage of all genes that could be assigned one or more GO terms.

The depicted categories were chosen from the analysis in (a). For the experiment wt+/wt- 517 genes were assigned a GO term, for mut+/sib+ 386, for
mut-/sib- 493 and for the reward pool 56.
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genes, which are listed and functionally annotated in Addi-
tional data file 4.

Of the 139 genes in the reward pool, 17% were upregulated in
both 'mut+/sib+' and 'wt+/wt-' (Figure 2b). Transcription of
these genes is increased in wild-type fish upon amphetamine
treatment and excessively increased in the mutants. Con-
versely, 24% of the 139 genes were down-regulated in both
experiments; hence, their transcription is normally down-
regulated upon amphetamine treatment, and is excessively
down-regulated in the mutants. Finally, a majority of the
genes (59% of 139) responded to amphetamine in an opposite
manner between wild-type and mutant fish (24% of the 139
genes were up-regulated in mut+ compared to sib+, but
downregulated in wt+ compared to wt-, and 35% were down-
regulated in mut+ compared to sib+ and up-regulated in wt+
compared to wt-). These genes failed to be down- or up-regu-
lated, respectively, in the mutants upon amphetamine treat-
ment.

The reward pool is significantly enriched in
transcription factor-encoding genes

In order to further investigate the mechanisms involved in
reward, Gene Ontology (GO) enrichment analyses categoriz-
ing the genes in the organizing principle 'biological process'
were performed on each of the individual experiments and
the reward pool (Figure 3; Additional data file 5). We found
that the reward pool contains a high proportion of genes
encoding functions previously related to reward or the transi-
tion to addiction, such as neurotransmitter signaling path-
ways, ion channels and regulators of neuronal and synaptic
plasticity (see Additional data file 4 and Discussion). In order
to characterize processes specific to the rewarding effects of
amphetamine, we also searched for particular enrichments in
the reward pool over the other three gene sets. Enriched cat-
egories in the reward pool (Figure 3a) and individual experi-
ments (Additional data file 5) are compared in Figure 3b. The
most striking result was that the term 'transcription' was
enriched across all groups, but displayed a further relative
increase in the reward pool. This was also the case for the
term 'development’, and, in fact, both superordinate catego-
ries largely overlapped in their gene content (see Figure 3a for
a list of proteins encoded by these genes). Thus, the involve-
ment of transcription factors previously recognized for their
relevance in developmental processes distinguishes the
reward response to amphetamine (and its failure in nad) over
other transcriptional effects of amphetamine treatment.

Amphetamine-responding genes can be validated by
quantitative PCR and classified as acute and/or chronic
responders

The proteins encoded by individual genes annotated in the
zebrafish genome (Ensembl release zvy [25] and ZFIN [26])
are listed in Figure 3a corresponding to each term for the
reward pool (see Additional data file 5 for the GO term enrich-
ment in the individual array experiments). We chose ten
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genes for validation based on GO enrichment analysis and lit-
erature searches: ahria, dlxia, emxi, foxgi, gfiib, heris,
lhx8, slc6as, soxga and tbri. As developmental transcription
factors have not been recognized as a signature of the behav-
ioral response to amphetamine in previous studies, our selec-
tion was largely biased towards this category: nine of the
chosen genes encode transcription factors (ahria, dixiaq,
emx1, foxg1, gfiib, heris, lhx8 (previously lhxy), soxg9a and
tbri), four of which have been assigned the GO term 'develop-
ment' (heris, foxg1, emx1 and dlx1a). In addition to their gen-
erally prominent role during brain development, strong
arguments to choose these genes were: the maintenance of
expression of their orthologues in the adult mammalian brain
(respectively in mouse, Ahr, DIx1, Emx1, Foxg1, Gfi1, Hess,
Lhx8, Soxg and Tbri1) [27-35]), suggesting an extended role in
controlling brain physiology; and their comparable expres-
sion patterns in both mouse [32,36-42] and zebrafish [43-48]
and our unpublished data), at least during brain develop-
ment, arguing for conserved functions in these species. In
addition, we chose to test slc6as as a representative of the
neurotransmitter pathway genes recovered in the reward
pool. slc6as encodes the glycine neurotransmitter trans-
porter GlyT2, which is involved in the reuptake of glycine at
the synapse.

In a first step, expression of these genes in the wild-type adult
brain was confirmed using in situ hybridization. All ten tran-
scripts gave strong signals in the brain, including the telen-
cephalon (Additional data file 6). Specifically, the expression
of gfi1b and heris is restricted to the ventricular areas of the
telencephalon (Additional data file 6e, f), diencephalon, and
midbrain (not shown). dlx1a, emx1, foxg1, lhx8, slc6as, soxoa
and tbri1 are expressed in restricted areas of the brain, includ-
ing subdomains of the pallium and/or subpallium in the tel-
encephalon (Additional data file 6b-d, g-j). Overall, the
regional expression of these genes is in keeping with their
known expression in the adult mammalian brain (see Discus-
sion). ahria is expressed ubiquitously throughout the brain
(Additional data file 6a; and data not shown).

Next, qPCR was used to validate the differential expression of
seven of these ten genes upon amphetamine administration
(emx1, foxg1, gfi1b, heris, lhx8, slc6as and sox9a). Five of
these genes (emx1, foxg1, heris, slc6as and sox9a) were first
re-tested on the original RNA used for the microarrays. All
were differentially regulated in the same direction as in the
microarray for both wt+/wt- and mut+/sib+, thus validating
our microarray experiments (Figure 4a, b; Additional data file
7). We next tested all genes using new RNA samples. Our
experimental design for the arrays involved four injections of
amphetamine alternating with three doses of saline solution,
with the last amphetamine injection given 30 minutes before
death. We hypothesized that this would allow us to identify
genes reacting to any or just acute or chronic amphetamine
administration. As previous studies showed differences in the
reaction of transcriptional levels to these different treatments
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Validation using quantitative PCR. Individual genes with different biological roles were selected from the reward pool (Figure 3a) for qPCR using
original RNA from (@) wt+/wt- and (b) mut+/sib+. The qPCR experiment revealed selected genes showed expression changes similar to those seen in the
microarray results. The figures show box plots of relative gene expression, where the top and the bottom of each box indicate the 75th and 25th
percentiles, respectively, whereas the dotted line represents the median. Asterisks indicate that the probability of the alternative hypothesis (that the
difference between sample and control groups is only due to chance (P(H/)) being correct is < 0.05 (see also Materials and methods).

Genome Biology 2009, 10:R81



http://genomebiology.com/2009/10/7/R81

[49], we conducted qPCR experiments on the 7 above-
selected genes using brains from fish that had been injected
once (acute) or 18 times once daily (chronic) with ampheta-
mine, with the last administration 30 minutes before death.
The results are depicted in Figure 5a, b (see also Additional
data file 7). emx1 and gfiib appeared differentially expressed
upon acute amphetamine administration, while there was no
difference in foxg1, heris, lhx8, soxg9a and slc6as expression
between acute-treated and untreated samples. However, all
seven genes were differentially expressed upon chronic
amphetamine administration, always in the same direction as
in the arrays. These results further validate our arrays and, in
addition, suggest that the amphetamine administration pro-
cedure used to trigger a CPP response in this work is closer to
a chronic than to an acute paradigm.

A subset of the reward pool genes is visibly modulated

in situ by amphetamine

As demonstrated above, qPCR using total RNA extracted
from whole brains was used to validate and extend the results
of our microarrays. However, this approach does not provide
information as to which regions of the brain are transcrip-
tionally affected by the drug. In situ hybridization was next
performed on brain sections of fish chronically injected with
amphetamine or saline solution (once a day for 18 days). Of
the ten genes selected above, the expression of foxgi, gfiib,
heri5 and [hx8 were visibly changed upon amphetamine
administration. The expression of gfitb and heris, which
characterize the ventricular zone in all brain subdivisions,
was completely and consistently down-regulated throughout
the brain (Figure 6a-d; Additional data file 8a-d). The expres-
sion of foxg1 and [hx8 were affected in a region-dependent
manner. foxg1 transcription was reduced in the ventrolateral
thalamic nucleus, and eliminated at the midline in the ventral
zone of the periventricular hypothalamus and the parvocellu-
lar preoptic nucleus - no expression changes were detected
throughout the remainder of the brain (Figure 6e, f; Addi-
tional data file 8e, f). The expression of [hx8 was also much
reduced in this latter domain upon amphetamine treatment,
but was unchanged elsewhere in the brain (Figure 6g, h;
Additional data file 8g, h). The reduction or increase of
expression of the other six selected genes, indicated by the
array and qPCR data, was not visible using in situ hybridiza-
tion (not shown). As in situ hybridization is not a quantitative
technique, it is possible that changes in expression must be
large before they can be observed using this method.
Together, these results highlight that ventricular domains of
the adult brain are major areas responding to an ampheta-
mine administration paradigm activating the reward path-
way, and identify gfi1b, heris, lhx8 and foxg1 as prominent
transcriptional targets in these domains.

We finally aimed to determine whether genes of the reward
pool could be functionally connected. We developed a data-
base (ZFISHDB) linking zebrafish genes to functional anno-
tations and relationships via the STRING database. From the
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139 genes of the reward pool, 53 could be attributed to a clus-
ter of orthologous genes; 25 interactions were found between
18 of these genes (Figure 7). In particular, eight of the tran-
scription factors, of which five have demonstrated roles in
brain development (Dlxia, Emx1, Lhx8, Sox9a and Tbr1),
could be functionally connected, suggesting that ampheta-
mine may re-use a developmental network in mediating
reward in the brain.

Discussion

A major unsolved problem in the field of drug addiction is the
characterization of the transcriptional changes underlying
the switch from drug use to drug abuse. In this study we used
an unbiased paradigm to identify a subset of genes involved in
reward activation and its behavioral output. Our approach
does not rely on the prior selection of a particular pathway,
but rather on a mutant (nad) whose only phenotype is the
lack of CPP behavioral response to amphetamine. Although
we have not yet identified the mutation underlying this phe-
notype, we were able to extract a subset of 139 genes from the
general transcriptional response to amphetamine that
respond abnormally to amphetamine in the mutant, correlat-
ing with a failure to develop CPP after amphetamine treat-
ment. transcriptional regulation of these genes is, therefore,
associated with reward-triggered CPP behavior. We validated
the microarray using both qPCR and in situ hybridization,
thereby identifying neurogenic areas as potentially significant
for the response to amphetamine. Our analysis highlighted
the predominance of transcription factors in the response to
amphetamine. These genes have been recognized for their
function during brain development in both zebrafish and
mouse, and are also expressed in the adult brain, pointing to
the re-use of a developmental network as a potentially impor-
tant component of reward behavior.

Behavioral significance of the reward pool

Based on a subset of genes recovered in our array, we used
gPCR to show that our experimental conditions mimic
chronic amphetamine administration. These genes therefore
represent early but not acute transcriptional changes induced
by the drug. We do not know, however, whether these
changes are long-lasting. Our experimental design also
allowed us to focus on a biologically relevant dose of amphet-
amine with regard to activation of the reward pathway.
Finally, the non-response of nad mutants suggests that the
expression changes recovered are, in part, linked to CPP
behavior, although their functional significance with regard
to the development of CPP was not addressed in this study.
Several parameters underlie CPP behavior and might be
altered in nad, such as the functionality of the reward path-
way itself and the associative learning process involved in
CPP, but also changes in tolerance or sensitization to reward-
ing or motivational events. We have not noticed any other
behavioral or morphological alterations in nad, and also
failed to observe differences in gross neuroanatomy and the
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Figure 5

Validation and categorization of transcripts in acute and/or chronic response to amphetamine using quantitative PCR. gPCR was
performed on the brain of fish injected with one dose (acute) or 18 doses of amphetamine (chronic). (a) Two genes, gfilb and emx |, were downregulated
after one dose of amphetamine. (b) The remaining transcripts were down- or up-regulated in the same direction as the microarray in the chronic
situation. The figures show box plots of relative gene expression, where the top and the bottom of each box indicate the 75th and 25th percentiles,
respectively, whereas the dotted line represents the median. Asterisks indicate that the probability of the alternative hypothesis (that the difference
between sample and control groups is only due to chance (P(H/)) being correct is < 0.05 (see also Materials and methods).
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organization of several neurotransmitter systems in this
mutant (including dopamine and serotonin, revealed by tyro-
sine hydroxylase and 5-hydroxytryptamine immunocyto-
chemistry, respectively; data not shown). Nevertheless, nad
animals may exhibit yet other deficient responses to amphet-
amine that might become apparent if we test later stages of
the addiction process, such as the maintenance of drug use,
withdrawal or relapse. Whether nad mutants are also resist-
ant to other addictive drugs that primarily act through differ-
ent molecular cascades than psychostimulants, such as
opiates [50], and whether the genes of the reward pool are
correlatively also transcriptionally modified upon adminis-
tration of these drugs, remain further very important ques-
tions. It will be essential to assess these points in the future to
better connect the genes of the reward pool to behavioral
function.

Identification of amphetamine-induced transcriptional

changes with no indication of toxic effects

Importantly, we did not find any evidence of genes linked to
cell-stress or cell-death, either in individual experiments or in
the reward pool. This is in accordance with other microarray
expression profiling studies, such as [49], which found little
evidence of such genes upon chronic drug treatment. In con-
trast, many such genes were recovered upon acute adminis-
tration of psychostimulants (and other drugs like morphine
[51]), which may be due to the direct neurotoxic effects of
amphetamine or cocaine. Likewise, immediate early tran-
scription factors such as Erg2, Krox24, c-fos, c-jun and CREB,
which are often transiently up-regulated following adminis-
tration of drugs of abuse (reviewed in [9]), were enriched in
neither individual experiments nor the reward pool. This con-
firms that our gene sets reflect transcriptional changes result-
ing from chronic rather than acute amphetamine action and
may mediate the link to the different aspects of addiction. The
category of genes related to the biological function 'response
to stimulus' was enriched upon drug administration over
saline in both wild-type and mutants. However, these genes
were filtered out in the reward pool, confirming that they
reflect a pharmacological response to the administration of
chemical compounds that is unlikely to be altered in nad and
so might not be involved per se in the development of behav-
ioral alterations upon drug taking.

We decided to extract RNA from whole brains, rather than
choosing specific anatomical regions. This approach was
based on several considerations. Firstly, in addition to acting
on the dopaminergic and serotonergic systems, amphetamine
raises extracellular levels of glutamate [52] and noradrena-
line [53] and these circuits are widely distributed throughout
the brain. Secondly, the use of zebrafish makes it difficult to
precisely predict where relevant expression changes are to be
expected. Although the neurochemical aspects of reward
behavior, including CPP, are evolutionarily conserved
[18,50,54-56], some of the main neurotransmitter pathways
involved in these behaviors show divergent spatial organiza-
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tion between species. For example, the dopaminergic neurons
projecting to the zebrafish subpallium (which is hypothesized
to be an equivalent of the mammalian basal ganglia, including
the nucleus accumbens) are located in the diencephalic pos-
terior tuberculum, unlike in mammals where these neurons
lie in the ventral tegmental area of the midbrain [57]. Like-
wise, the zebrafish brain, as in many other vertebrate classes
[58-60], harbors widespread serotonergic clusters as apposed
to the single mammalian raphe nucleus [61]. However, as dis-
cussed below, we complemented our microarray experiments
with in situ hybridization in order to allow us to investigate
spatial changes in the expression of recovered transcripts and
to identify relevant brain areas responding to amphetamine.

Transcriptionally regulated pathways and reward
behavior

Most microarray analyses of reward and addiction to psycho-
stimulants have been conducted in rodents. In addition, one
transcriptome analysis of the adult zebrafish brain was
recently published, comparing the effects of ethanol and nic-
otine during withdrawal [54]. It is not possible to analyze all
these results side by side given the variety of drugs and drug
administration protocols used and in the length of time
allowed following drug exposure. Nevertheless, a general out-
come was the response to chronic drug use of molecular path-
ways controlling neurotransmitter signaling (including
receptors, transporters and signal transduction components),
ion channels and regulators of neuronal activity and plasticity
events such as synaptic function or extracellular matrix
remodeling [9,13,62-65]. Our manual annotation of the 139
reward pool genes allowed us to identify related mammalian
genes in most cases (84 of 139), and to postulate a function
based on gene homology or on predicted protein structure for
an additional 8 genes (92 of 139), so that our data can be
directly compared to previous work. Of the functionally anno-
tated genes of the reward pool, 28 belong to the categories
above and 14 have already been linked to reward or addiction
(Additional data file 4).

Affected genes related to neurotransmission include those
encoding the epsilon subunit of the nicotinic acetylcholine
receptor (chnre) and glycine transporter 2 (slc6as, formerly
glyT2), and LOC793458, which encodes peptide YYb (PYYb)
[66]. All three pathways have been directly or indirectly
implicated in reward [67]. We found chnre expression to be
increased upon amphetamine administration in the wild-type
and excessively increased in nad animals. Therefore, amphet-
amine may confer enhanced excitability properties on acetyl-
choline target neurons via a novel composition of the
acetylcholine receptor, which could be linked to the develop-
ment of the CPP response. Glycine is a major modulator of
NMDA receptor-mediated signaling and glutamate neuro-
transmission is a determining factor in psychostimulant (and
other) addictions (for reviews, see [68-70]). It has also been
implicated in the regulation of neuronal differentiation, neu-
ral network plasticity and synapse dynamics. We found that
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Figure 6

Candidate genes validated using in situ hybridization. (a, c) gfilb and herl5 are expressed in ventricular zones throughout the brain, including in
the midline of the telencephalon. (b, d) Upon chronic amphetamine administration, this expression is visibly down-regulated, and this throughout the brain
(see also Additional data file 8a-d). Upon amphetamine administration, (f, h) the expression of foxg/ and Ihx8 is reduced in the parvocellular preoptic
nucleus, posterior part (PPp) (foxg! and Ihx8) and in the ventral zone of the periventricular hypothalamus (Hv) (foxg!), when compared to (e, g) the brains
of animals injected with a saline solution. The expression pattern of these genes remains unchanged in other brain areas upon amphetamine administration
(Additional data file 8e-h). Scale bars = 100 um in all panels. D = dorsal telencephalic area; Hv = ventral zone of the periventricular hypothalamus; mt =
midline of the telencephalon; PPp = parvocellular preoptic nucleus, posterior part; V = ventral telencephalic area; VL = ventrolateral thalamic nucleus.
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slc6as/glyT2 is increased in wild-type and excessively
increased in nad animals upon amphetamine administration.
Hence, chronic amphetamine administration may modify the
amount of glycine at the synapse via Sle6as activity, with pos-
sible consequences on the development or reinforcement of
amphetamine-triggered reward. In mammals, PYY antago-
nizes the orexigenic and anxiolytic effect of Neuropeptide Y,
which can itself elicit CPP reward behavior [71]. We observed
pyy-b expression to be down-regulated by amphetamine in
wild-type but not nad animals. Down-regulation of pyy-b
could reinforce the activity of Neuropeptide Y, thereby con-
tributing to the development of reward, while its lack of
response in nad animals might mediate the resistance of this
mutant to CPP behavior.

Seven genes encoding proteins related to axonal or synaptic
dynamics were also recovered in the reward pool (Additional
data file 4). Among these, two belong to families that may be
directly relevant to addiction or drug use: Dr. 83111, encoding
a protein highly similar to Neuregulin 1 and a Drebrin-like
protein-encoding gene (Dr. 76820). Neuregulin 1 signaling
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plays a prominent role in synapse plasticity in the mature
brain by controlling excitatory and inhibitory synaptic trans-
mission [72-74], which might underlie the propensity
towards drug abuse [75]. In humans, it has also been identi-
fied as a susceptibility factor for schizophrenia, a disease
often co-morbid with substance use disorder. We found that
Neuregulin 1 was strongly up-regulated by amphetamine in
wild-type animals, and massively down-regulated in nad.
This differential response may play a role in the different CPP
behavioral response of nad. Drebrin, an F-actin-binding pro-
tein enriched in dendritic spines, is essential for spine mor-
phogenesis and activity-dependent synaptic targeting of
NMDA receptors [76-79]. Both the morphology and density
of dendritic spine in the ventral tegmental area, nucleus
accumbens and motor cortex are altered by amphetamine
and cocaine [80]. We found that expression of Drebrin is
increased upon amphetamine administration in wild-type
animals, but fails to be upregulated under the same condi-
tions in nad mutants, suggesting that altered changes in den-
dritic spine remodeling accompany the resistance of nad to
amphetamine.
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Figure 7

Network view of 18 genes from the reward pool functionally linked by the ZFISHDB database. Nodes are connected if functional interactions
between the genes are provided by the cluster of orthologous genes (COG) mode of the STRING database. The GO terms listed are not exhaustive. The
genes that have a mouse homologue and were thus included in the analysis, but which were not linked to other genes in the pool, are listed separately on
the right. In addition, herl5, tsc2 and mhcluea, for which the program did not find suitable mouse homologues, but for which we manually checked for

associates with the other genes in the network, are also listed.
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Genes encoding components of the dopamine pathway were
not identified in our experiment, although amphetamine is
considered to primarily increase extracellular dopamine lev-
els in the forebrain [81,82]. In drug-addicted subjects, the
concentration of dopamine receptors (namely D2) is lowered
on the cell surface as revealed by imaging studies [83]. How-
ever, corresponding changes in gene expression have not
been consistently reported, suggesting that the modulation of
the dopamine pathway may not occur at the level of transcrip-
tion [9]. Alternatively, microarray sensitivity may be insuffi-
cient to detect functionally relevant but small amplitude
changes in the expression of weakly expressed factors such as
dopamine signaling components [10]. In support of this,
although our microarray chips contained a large representa-
tion of genes encoding transporters, receptors, and synthesis
and metabolism enzymes for most neurotransmitters
(including dopamine, glutamate, noradrenaline, 5-hydrox-
ytryptamine, Neuropeptide Y, acetylcholine, glycine and opi-
ates), we only obtained reproducible hybridization, indicating
sufficient expression, for a few of these genes (Additional data
files 1 to 3). From these, apart from chnre and slc6as (dis-
cussed above), only glutamate transporter 5A and neuropep-
tide Y receptor Y7 showed significantly modified expression
upon chronic amphetamine exposure (an up-regulation in
both cases). However, because similar changes were observed
in nad mutants, these two genes were not present in the
reward pool and so are unlikely to account for the non-devel-
opment of CPP in nad.

nad mutants highlight the importance of brain
developmental transcription factors in the CPP
response to amphetamine, and point to a link between
amphetamine administration and the control of adult
neurogenesis

An exciting new contribution of our work is to highlight the
importance of transcription factors implicated in develop-
ment in the response to amphetamine-triggered reward. The
category 'transcription' was further enriched in the reward
pool over individual experiments and so was prominently
revealed by our combined microarray strategy. The signifi-
cance of transcription factors is further strengthened in that
all genes classified under 'development' in this analysis are
also transcription factors (Figure 3b), and is supported by
several validations. Firstly, all chosen transcription factors of
the reward pool tested by qPCR (n = 6) displayed changes in
transcription levels upon amphetamine administration in
wild-type animals and, in four cases, these changes were
severe enough to be detected by in situ hybridization. The
altered response of these four genes upon drug treatment in
mutants compared to wild-type was also validated by qPCR.
Secondly, several of these genes (Ahri, Dlx1, Foxgi, Hess,
Soxg and Tbri1) have been related to drug use or administra-
tion in mammals in other studies [62,67,84-87]. Finally,
these genes appear to be functionally connected according to
the ZFISHDB software; thus, they may participate in a com-
mon regulatory network. Strikingly, all these genes have rec-
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ognized roles during vertebrate brain development and also
display persistent expression in the adult brain (Additional
data file 6), including the mouse brain (see below), suggesting
that their relevance for reward-induced behavior could be
extended to adult mammals.

Together, these observations suggest that the development of
CPP behavior may rely on the regulation of developmental
genes that possibly maintain a modulatory role during adult-
hood, perhaps contributing to brain plasticity. Brain plastic-
ity is thought to contribute to the learning of addictive
behaviors and can underlie long-lasting changes mediating
the persistent effects of addiction [88], and several recent
reports show that embryonic factors can be recycled in the
adult to regulate brain plasticity (for example, [89]). Thus, it
is possible that the transcription factors identified in our
reward pool are normally reused for modulatory or adaptive
processes in the adult, and would here contribute to plasticity
events triggered by the drug during the development of CPP.
It will be crucial to test the function of these factors in the
adult brain, also in the light of behavioral assays, to under-
stand the functional relation between their functional regula-
tion and the stepwise development of addiction behavior.

Classically, the modulatory events believed to underlie addic-
tion involve synaptic or signaling plasticity. The gene regula-
tion network we uncovered can also serve as a valuable entry
point towards identifying further plasticity process(es) that
might underlie the different behavioral effects of ampheta-
mine in wild-type animals versus nad mutants. Our results
highlighting developmental transcription factors suggest that
fundamental cellular reconfigurations might also contribute
to plasticity. In addition, expression of these factors in the
mouse and fish brain, and functional assessments in mouse,
all point towards a prominent role during neurogenesis.
dlx1a/Dlx1 is expressed in the developing mouse ventral fore-
brain where it controls the formation of GABAergic neurons
[36]. In the adult brain, it is involved in maintaining hippoc-
ampal interneurons [30]. Emx1 participates in the regionali-
zation of the embryonic mouse cortex and the production of
neuronal subtypes [37,38], and adult mice mutant for Emxi1
exhibit impaired hippocampal neurogenesis [29]. Mouse
Lhx8 is required for the development and maintenance of
forebrain cholinergic neurons [32,39]. Mouse Sox9 is present
in the stem cells of the peripheral and central nervous system,
is essential for gliogenesis [90] and has also been isolated as
a co-factor for proneural genes [91]. Tbr1 expression charac-
terizes a freshly postmitotic state in the formation of glutama-
tergic pyramidal projection neurons of the developing mouse
neocortex [41], and is maintained during adult hippocampal
neurogenesis [33]. AhR (aryl hydrocarbon receptor) overex-
pression in developing neurons has been linked to premature
differentiation [92]. Finally, although Her15 (and its mouse
orthologue Hess) and Foxg1 have not been connected to other
transcription factors based on the literature co-citations used
by our database, both genes are also expressed in embryonic
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neuroepithelial progenitors where they are involved in pro-
genitor maintenance [93-96]. Later, FoxG1 is strongly
expressed in areas of adult neurogenesis, including the sub-
ependymal zone of the lateral ventricle and the dentate gyrus
of the hippocampus, and juvenile mice haploinsufficient for
FoxG1 show impaired hippocampal neurogenesis [27]. Hes5
expression has also been described in astrocytes in neuro-
genic zones of the adult mouse brain [28]. Together, these
data suggest that most of the transcription factors recovered
in the reward pool are linked by their function or at least their
expression at one or the other step of neurogenesis control,
including in the adult brain. Although we do not yet have a
complete account of zebrafish gene expression patterns at the
single cell level, our observations are in agreement with this
hypothesis in adult fish as well: all the transcription factor-
encoding genes investigated in this study have in common
that they are expressed in all or part of the adult forebrain
ventricular zone (Additional data file 6), which has been dem-
onstrated to be neurogenic [97-101]. The expression profiles
of heris and gfi1b are particularly striking due to their strict
restriction to the ventricular zone (Additional data file 6e, f)
and their massive down-regulation upon chronic ampheta-
mine treatment (Figure 5). emx1, sox9a and tbr1 are also
noteworthy for their prominent expression in the neurogenic
area of the lateral pallium (Additional data file 6¢, I, arrows;
and data not shown), an area thought to be the functional
equivalent of the hippocampus [102,103].

A link between adult neurogenesis and drug abuse has been
previously investigated, although with mixed results. Overall,
the effect of amphetamine on proliferation during chronic
application remains to be examined, although chronic
cocaine use has been shown to decrease cell proliferation in
the germinal zone of the adult mouse hippocampus [104,105]
(for reviews, see [105,106]), while withdrawal from cocaine
self-administration triggers accelerated maturation of adult
newborn hippocampal neurons [107]. Given the postulated
function of adult hippocampal neurogenesis in the acquisi-
tion and consolidation of memories (including their spatial
and contextual components), these alterations could play a
role in the cognitive processes associated with the develop-
ment, reinforcement or relapse of addiction. Our results
strongly suggest that amphetamine also triggers changes in
adult neurogenesis (this paper, and KJW, unpublished obser-
vations), which might involve or result in the changes in tran-
scription factor expression that we observed. It is now
important to investigate this point in detail. Our experimental
strategy relying on the lack of behavioral response of nad
mutants further stresses that the regulation of these tran-
scription factors might directly or indirectly link ampheta-
mine and behavior. However, it seems unlikely that the
development of CPP observed after 7 days, and which fails in
nad mutants, could already result from an effect of ampheta-
mine on adult neurogenesis. Newborn neurons require at
least 3 weeks to be incorporated into active circuits in the
adult mouse and our previous data suggest a similar time-
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frame in zebrafish [97]. It is possible, however, that rapid
alterations of the ventricular zone by amphetamine could
indirectly affect the physiology of neurons in the vicinity, for
instance by altering the trophic support normally provided by
ventricular radial glia cells leading to an effect on CPP. These
changes could be modified in the nad mutant. Alternatively,
modified neurogenesis upon amphetamine administration
could account for later behavioral changes, a hypothesis that
remains to be tested in our mutants.

Conclusions

Our experimental strategy based on the nad mutant, which
fails to respond to amphetamine in the CPP test, allowed the
first identification of a subset of amphetamine-regulated
transcripts linked to the reward response. This pool contains
gene categories previously linked to the use of addictive
drugs, thereby validating our data. Enrichment analyses, con-
firmed by qPCR and in situ hybridization, highlighted a set of
genes encoding transcription factors within this pool, most of
which are involved in brain development, and which can par-
tially be organized into a network of functional interactions.
Together, we propose that the re-use of a developmental tran-
scription factor-mediated network accompanies or underlies
the behavioral response to amphetamine in the adult brain.
Some of these factors, expressed in adult neurogenic domains
and dramatically down-regulated by amphetamine, can fur-
ther serve as valuable new entry points into studying the link
between neurogenesis and addiction.

Materials and methods

Animals and maintenance

Adult zebrafish were kept in the fish facility as described in
Kimmel et al. [108]. For practical reasons (ease of intraperi-
toneal injections) all experiments were performed on
females. In preliminary experiments, we did not notice any
difference in the response of males and females to D-amphet-
amine for a given genotype [21]. Throughout the experiment,
care was taken to perform procedures involving animals, such
as place preference measurements and injections, at the same
time of the day. Mutagenesis, mutant screening and array
experiments involving mutants and siblings were performed
on fish of the AB background. Mutant fish were maintained in
this background throughout the study. Behavioral experi-
ments on wild-type fish were conducted on an intercross
background between AB and Tiibingen (Ti). The AB and Tii
lines are both wild-type lines. AB fish have been inbred over
more than 100 generations to date [26], and Ti fish over
approximately 25 generations. Both lines, as well as their
common progeny (AB/Tii), are sensitive to amphetamine
with a similar dose-response and perform equally well in the
CPP test [21]. They have been used here for reasons of availa-
bility.
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ENU mutagenesis and screening for dominant
mutations affecting reward

Adult males of the AB strain were subject, over a 4-week
interval, to four 1-hour incubations in 3 mM ENU. Three
weeks after this treatment, F1 animals were generated by
pair-wise mating of ENU mutagenized males with AB
females. The specific locus rate at this stage was estimated to
be 1/670 against the golden (slc24a5) locus. Three- to nine-
month-old F1 animals were screened for their change in place
preference in response to 40 pg/g D-amphetamine (through-
out the text referred to as amphetamine), as described below.
Of the 396 F1 adults that were screened, 4 failed to respond to
amphetamine, although they exhibited normal place prefer-
ence without drug and, hence, could recognize the visual cues
of the test tank. They also displayed normal amphetamine
content in the brain after injection, as measured using dena-
turing high-performance liquid chromatography (not
shown). These animals were considered potential dominant
amphetamine-resistant mutants and were crossed against
wild-type AB fish to test for transmission of the phenotype.
The behavior of 20 F2 adults from these crosses was again
assessed in the CPP test in response to amphetamine. For one
of these four F1 candidate mutants, 50% non-responders
were obtained in the F2 and all further generations, arguing
for a bona fide dominant mutation. We refer to this mutation
as naddnes2s6,

Behavioral assays

The CPP experiment was performed according to Ninkovic
and Bally-Cuif [21]. Briefly, the fish were habituated to a
biased two-part chamber (days 1 to 2), followed by the deter-
mination of the initial place preference (day 3). Subsequently,
for test animals, amphetamine injections (40 uM; days 4, 6
and 8) were paired with the initially non-preferred side of the
chamber, and control injections of saline solution (days 5 and
7) were paired with the initially preferred side. Control ani-
mals are injected with saline every day but likewise paired
with the initially non-preferred side on days 4, 6 and 8 and
with the initially preferred side on days 5 and 7. On day 9 the
final place preference was measured. Conditioning was esti-
mated as in Ninkovic and Bally-Cuif [21] as the change in
place preference before and after treatment, relative to the
place preference before treatment. Within a mutant family,
fish were designated as mutant (mut) when there was no
change or a negative change in place preference after amphet-
amine administration. Fish were designated as wild-type sib-
lings (sib) when the percentage of change was higher than 5%.
If the percentage of change was between 0 and 5%, the fish
were not included in the microarray analysis in order to avoid
incorrect phenotyping.

Microarray study design and data analysis

The experimental design of this study was aimed at the iden-
tification of genes that respond differently to amphetamine
treatment in wild-type zebrafish and the reward mutant nad.
In order to identify the signature gene set for the interaction

Genome Biology 2009, Volume 10, Issue 7, Article R8I

term genotype*amphetamine treatment, we examined three
biological contrasts: the response of wild type (wt) on
amphetamine (experiment 1); the differential gene expres-
sion in the presence of amphetamine between wild type and
mutant (experiment 2); and the base line difference in tran-
scription between wild type and mutant (experiment 3). The
animals used in the different experiments were all aged
between 6 and 12 months and were manipulated as follows.
Experiment 1: wt+, AB fish subjected to the CPP behavioral
assay and sacrificed 30 minutes after the final amphetamine
injection (the day after place preference determination; day
10); wt-, AB control fish of the CPP behavioral assay (with
control saline injections at the same time points as the wt+
fish were injected with amphetamine). Experiment 2: mut+,
AB animals from a nad family of the F6 generation (obtained
from pairing a nad/+ F5 heterozygote fish and an AB fish)
identified as mutant based on the CPP assay and sacrificed 30
minutes after the final amphetamine injection on day 10;
mut-, siblings identified as wild type in the same experiment,
and treated exactly the same as the mut+ fish with regard to
amphetamine administration. Experiment 3: mut-, AB ani-
mals from a F5 nad family identified as mutant in the CPP test
and left without drug for 2 months afterwards; sib-, siblings
identified as wild type in the same experiment and left with-
out drug for 2 months.

One-color Agilent microarray experiments were performed
using three biological replicates for each condition. Each rep-
licate contained the RNA from four to five pooled brains.
Microarray data were imported into Rosetta Resolver 7.1
(Rosetta Biosoftware, Seattle, Washington, USA) and ana-
lyzed using the Rosetta error model for gene expression anal-
ysis. The Resolver system calculates ratios for the Agilent
intensity microarrays by combining all pairwise ratios of the
individual sequence data making up the numerator (for
example, treatment replicates) against those making up the
denominator (for example, the control replicates) of the spec-
ified ratio. The calculations begin with scaling the intensity
signals for each sequence relative to the average intensity sig-
nal of the entire array. For each sequence, the two scaled
intensity values for each pairwise ratio are then converted to
the logarithmic scale and the averaging and ratio computa-
tion is performed on the logarithms. The sequence errors are
accordingly propagated through the log-transformation and
averaging. This propagated error is used to determine the sta-
tistical significance of the final logarithm of the ratios, that is,
the P-values corresponding to differential expression are cal-
culated based on the log(ratio). In the Rosetta analysis, first
our microarray data were subjected to default intensity error
modeling and results from triplicate experiments were com-
bined using the default intensity experiment builder. Next,
ratio experiments were built from the intensity data using the
Agilent/Intensity-pairwise ratio builder with the control
group (salt for experiment 1 and wild type for experiments 2
and 3) as baseline. Data were analyzed at the level of UniGene
clusters (UniGene build #105). The resulting P-values from
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the Rosetta error model for gene expression analysis were
adjusted for multiple testing using the method of Benjamini
and Hochberg to control the false discovery rate. P-values
were corrected with the p.adjust function in R statistical soft-
ware. The significance cut-offs were set at P < 0.01 (Ben-
jamini and Hochberg adjusted P < 0.1) and absolute fold
change > 1.5. The false discovery rates at the initial P-value
cut-off of < 0.01 are, for each experiment: experiment 1, <
0.0816; experiment 2, < 0.07302; experiment 3, < 0.0504.
Venn diagrams were constructed using the 'compare biosets'
function of Rosetta resolver.

RNA extraction and microarray study design

Total RNA was extracted from whole brains using RNeasy
Mini Kit (Qiagen GmbH, Hilden, Germany) following the
protocol 'Purification of Total RNA from Animal Tissues'. For
the disruption and homogenization step, brains were dis-
sected and immediately frozen in liquid nitrogen. Then, 600
ul buffer RLT was added to each brain and the tissue was
homogenized using a needle and syringe. The samples were
individually controlled for RNA quality and genomic contam-
ination using 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA), according to the manufacturer's instructions.
Samples from four to five brains were then pooled to generate
a single replicate. The animals used in the different experi-
ments were all aged between 6 and 12 months.

RNA amplification, labeling and hybridization

The RNA samples were amplified with the Agilent Low Input
Linear Amplification kit PLUS, One Color (Agilent Technolo-
gies). The labeling, hybridization and data extraction were
performed at ServiceXS (Leiden, The Netherlands). Briefly,
500 ng total RNA in an 8.3 ul volume was mixed with 1.2 pl of
T7 promoter primer. Primer and template were denatured by
incubating at 65°C for 10 minutes and annealed by placing the
reaction on ice. The first strand reaction was performed by
adding a master mix containing 5x First Strand Buffer, dithi-
othreitol, 10 mM dNTP mix, RNaseOUT, and Moloney
murine leukemia virus reverse transcriptase, and incubated
at 40°C for 2 hours. The Moloney murine leukemia virus
reverse transcriptase was inactivated by incubation at 65°C
for 15 minutes and the samples were directly transferred to
ice. Samples were labeled by adding 2.4 ul cyanine 3-CTP. In
vitro transcription was initiated by addition of the IVT Mas-
termix containing 4x transcription buffer, dithiothreitol,
NTP mix, 50% polyethylene glycol, RNaseOUT, inorganic
pyrophosphates, T7 RNA polymerase and incubated at 40°C
for 2 hours. Qiagen RNeasy mini spin columns were used for
purification of the labeled cRNA as described in the Agilent
user manual. After amplification and purification, the sam-
ples were checked for RNA concentration and dye incorpora-
tion on the Nanodrop ND-1000 by using 1 pl of the 60 pl
elution solution (nuclease-free water). Hybridization and
washing was performed using the standard Agilent protocol.
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The microarray slides were custom designed by Agilent Tech-
nologies. The slides contained, in total, 43,371 probes each 60
oligonucleotides long. Of these probes, a total of 21,496 were
identical to the probes present on the Agilent probe set that is
commercially available under catalog number 013223_D.
Most of the additional probes were designed using the eArray
software from Agilent Technologies [109]. Settings used were
the following: base composition methodology, best probe
methodology and design with 3' bias. The Agilent Danio rerio
transcriptome was used as a reference database. A small
number of probes were manually designed in order to obtain
gene-specific probes for members of larger gene families. The
complete design of the microarrays has been submitted to the
Gene Expression Omnibus (GEO) database, under the plat-
form submission number [GEO:GPL7735].

Microarray imaging and data analysis

Scanning of the microarray slides was performed using the
Agilent dual laser DNA microarray scanner. The microarray
data were processed from raw data image files with Feature
Extraction Software version 9.1, protocol GE1-v1_9g1(Agilent
Technologies). The microarray slides were custom designed
by Agilent Technologies as described in Stockhammer et al.
[110]. Unigene lists of individual experiments can be found in
Additional data files 1 to 3. All microarray data were submit-
ted to the GEO database [GEO:GSE14399].

Gene Ontology term enrichment analysis

GO term enrichment analysis was performed on differentially
expressed genes (P < 0.01; fold change <-1.5 or > 1.5) from the
individual experiments, as well as on the reward pool. Lists of
differentially expressed genes were imported into Pathway
Studio (Ariadne Genomics, Rockville, MD, USA). Before anal-
ysis the ResNet 5.0 database of this software was extended to
include the zebrafish protein annotation. The Pathway Studio
program determines the human, rat and mouse orthologues
of the zebrafish transcripts, using the BLAST best reciprocal
hit method. This information is used to perform the enrich-
ment analysis, in which Pathway Studio calculates the statis-
tical significance of the overlap between the input list and a
GO group by applying Fisher's exact test. The resulting P-
value depends on the extent of overlap between the input list
and a group as well as the sizes of the list and a group. In addi-
tion, we performed a Bonferroni correction for P-values cal-
culated from Fisher's exact test by using the p.adjust function
in the package 'stats’ of the statistical software R [111]. We
considered a GO term to be statistically significant if the cor-
responding adjusted P-value is < 0.05.

Assessment of the functional interactions between
recovered genes

Functional interactions between zebrafish genes in the
reward pool were inferred from the STRING database [112].
STRING integrates and scores information derived from
high-throughput experiments, genomic context, and previous
knowledge such as text-mining of abstracts. For zebrafish, the
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number of interactions is small compared to better annotated
species like mouse or human. In order to enrich the interac-
tions in our gene set, we transferred interactions from orthol-
ogous genes as provided by the cluster of orthologous genes
mode of STRING, where the information of orthologous
groups of proteins relies on an extended version of the COG
database [113]. The ZebraFish Interaction SearcH DataBase
(ZFISHDB) integrates all interactions between clusters of
orthologous genes, relying on STRING 7.0. It allows the input
of a set of fish genes and outputs interactions between those
genes with a STRING combined score above 0.8. In addition,
ZFISHDB offers a gene ontology filter to reduce the size of
large data sets. It is publicly available [114]. Genes without
mouse homologues are not considered by the present version
of the database.

Quantitative real-time PCR

Total RNA was extracted from whole brains using the RNeasy
Mini Kit (Qiagen). The qPCR experiments and the statistical
analysis were performed using the LightCycler 1.2 system
(Roche, Basel, Switzerland) and the relative expression soft-
ware tool REST [115] as previously described [116]. Briefly,
the statistical model used by this software is a pair-wise fixed
reallocation randomization test. The software returns the
probability of the alternative hypothesis (P(H1)), which is
that the difference between sample and control groups is due
only to chance. For each test 50,000 randomization iterations
were applied and an associated probability (P-value) of P <
0.05 was considered significant. Real time PCR experiments
were performed in replicates of eight. The list of used primers
and probes is provided in Additional data file 9.

In situ hybridization

In situ hybridization was performed on 5- to 6-month-old
AB/Tii fish that had either been treated with amphetamine
(40 uM) or saline solution, once a day, for 18 days. Animals
were sacrificed and the brains were removed after fixation in
4% paraformaldehyde. Dissected brains were then postfixed
in 4% paraformaldehyde overnight. The brains were then
embedded in albumin-gelatine:sucrose denatured with glu-
taraldehyde. Cross-sections of 70 um were made using a
vibratome, after which the sections were washed in PBS-0.1%
Tween-20 and dehydrated through a methanol series. In situ
hybridization was performed according to published proto-
cols [117] for whole-mount embryos, followed by staining for
alkaline phosphatase activity using Nitro-Blue Tetrazolium
(NBT)-  5-Bromo-4-Chloro-3-Indolyl-Phosphate  (BCIP)
(Roche, Basel, Switzerland). Initially, one brain was used per
treatment. All sections were photographed and correspond-
ing sections were compared between treatments. The in situ
hybridization for genes, the expression patterns of which
showed a visible difference between amphetamine treatment
and control, was repeated once. Sections were photographed
with an Axioplan2 stereomicroscope and processed using the
Axiovision 4.1 software (Zeiss). To generate probes, partial
c¢DNAs for the genes of interest were cloned from PCR prod-
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ucts (PCR conditions available upon request; PCR primers
provided in Additional data file 10) into pCRII-TOPO (Invit-
rogen, Karlsruhe, Germany); for heris) or pSC-A-amp/kan
using the StrataClone PCR Cloning Kit (Stratagene, La Jolla,
CA, USA); for all other genes) following the manufacturers'
instructions. All clones were verified by sequencing. The RNA
probes were synthesized following published protocols [117].

Abbreviations

CPP: conditioned place preference; ENU: N-ethyl-N-nitro-
sourea; GEO: Gene Expression Omnibus; GO: Gene Ontol-
ogy; NBT: Nitro-Blue Tetrazolium; qPCR: quantitative PCR.
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