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Thermococcus gammatolerans proteogenomics<p>The genome sequence of Thermococcus gammatolerans, a radioresistant archaeon, is described; a proteomic analysis reveals that radi-oresistance may be due to unknown DNA repair enzymes.</p>

Abstract

Background: Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It
is one of the most radioresistant organisms known amongst the Archaea. We report the determination and
annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a
proteomic analysis.

Results: T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements,
coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected
genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be
attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only
mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid
chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides
corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation.
Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights
into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this
archaeon are revealed through this genome and proteome analysis.

Conclusions: This work is the first archaeal proteome investigation done at the stage of primary genome
annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth
condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably
due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes.
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Background
Thermococcales are strictly anaerobic and hyperthermophilic
archaea belonging to the Euryarchaeota phylum. In this
order, three genera are distinguished: Pyrococcus [1], Ther-
mococcus [2] and Palaeococcus [3]. With about 180 different
species listed to date, the Thermococcus genus is the largest
archaeal group characterized so far. They have been isolated
from terrestrial hot springs, deep oil reservoirs, and are
widely distributed in deep-sea environments [4,5]; they are
considered as key players in marine hot-water ecosystems.
Thermococcus species are able to grow anaerobically on vari-
ous complex substrates, such as yeast extract, peptone, and
amino acids in the presence of elemental sulfur (S°), and yield
hydrogen sulfide. Several species are also capable of ferment-
ing peptides, amino acids or carbohydrates without sulfur
producing acids, CO2 and H2 as end products [6,7]. Recently,
some species such as Thermococcus strain AM4 and Thermo-
coccus onnurineus NA1 were shown to be capable of litho-
trophic growth on carbon monoxide [8,9]. In this case, the CO
molecule, probably oxidized into CO2, is used as energy and/
or carbon source.

Five Thermococcales genomes have been sequenced and
annotated so far: Pyrococcus horikoshii [10], Pyrococcus
furiosus [11], Pyrococcus abyssi [12], Thermococcus kodaka-
raensis KOD1 [13] and T. onnurineus NA1 [8]. Although their
respective gene contents are highly conserved, synteny analy-
ses have shown an extensive frequency of genomic DNA rear-
rangements in Thermococcales [14,15]. The relatively low
fraction of insertion sequence elements or repeats in Thermo-
coccus genomes contrasts with the fact that genome rear-
rangements are faster than normal protein sequence
evolution [13].

Some hydrothermal chimneys in which many thermophilic
prokaryotes were isolated were shown to be especially rich in
heavy metals [16,17] and exposed to natural radioactivity
doses hundreds of times higher than those found on the
Earth's surface [18]. Although such extreme conditions were
likely to have been much more common during the first
stages of life on Earth, they are deleterious and few data are
currently available regarding the strategies that thermophiles
use to live in such environments. The hyperthermophilic
archaeon Thermococcus gammatolerans was recently iso-
lated from samples collected from hydrothermal chimneys
located in the mid-Atlantic Ridge and at the Guyamas basin
[19,20]. T. gammatolerans EJ3 was obtained by culture
enrichment after irradiation with gamma rays at massive
doses (30 kGy). It was described as an obligatory anaerobic
heterotroph organism that grows optimally at 88°C in the
presence of sulfur or cystine on yeast extract, tryptone and
peptone, producing H2S. This organism withstands 5 kGy of
radiation without any detectable lethality [21]. Exposure to
higher doses slightly reduces its viability whereas cell survival
of other thermophilic radioresistant archaea drastically
decreases when cells are exposed to such radiation doses

[20]. Based on these data, T. gammatolerans is one of the
most radioresistant archaeon isolated and characterized thus
far. As Archaea and Eukarya share many proteins whose
functions are related to DNA processing [22], the radioresist-
ant T. gammatolerans EJ3 species is a unique model organ-
ism along the Archaea/Eukarya branch of the phylogenetic
tree of life. In contrast to the well-characterized Deinococcus
radiodurans, the radioresistant model amongst Bacteria
[23,24], the lack of knowledge on T. gammatolerans EJ3
urges us to further characterize this archaeon using the most
recent OMICs-based methodologies.

Although more than 50 archaeal genomes have been
sequenced so far, only a few archaea have been analyzed in
depth at both the genome and proteome levels. Halobacte-
rium sp. NRC-1 was the first archaeon to be analyzed for its
proteome on a genome-wide scale. A partial proteome shot-
gun revealed 57 previously unannotated proteins [25]. A set
of 412 soluble proteins from Methanosarcina acetivorans
was identified with a two-dimensional gel approach [26]. In
Aeropyrum pernix K1, 19 proteins that were not previously
described in the genomic annotation were discovered [27].
Halobacterium salinarum and Natronomonas pharaonis
proteomes were scrutinized with a special focus on amino-
terminal peptides or low molecular weight proteins [28-30].
Although labor-intensive, proteogenomic re-annotation of
sequenced genomes is currently proving to be very useful
[31]. Moreover, genome-scale proteomics reveals whole pro-
teome dynamics upon changes in physiological conditions.

Here we present a genome analysis of T. gammatolerans EJ3
and a detailed comparison with other Thermococcales
genomes. To gain real insights into the physiology of T. gam-
matolerans, we analyzed the proteome content of exponen-
tial- and stationary-phase cells by a liquid chromatography
(LC)-tandem mass spectrometry (MS/MS) shotgun approach
and semi-quantification by spectral counting. T. gammatol-
erans is the first archaeon whose genome and proteome have
been analyzed jointly at the stage of primary annotation. With
these results in hand and its remarkable radiotolerance, T.
gammatolerans is now a model of choice amongst the
Archaea/Eukarya lineage.

Results and discussion
Genome sequence
The complete genome sequence of T. gammatolerans has
been determined with good accuracy, with final error rate lev-
els of less than 2.4 × 10-05 before manual editing of 48 remain-
ing errors. It is composed of a circular chromosome of
2,045,438 bp without extra-chromosomal elements, and a
total of 2,157 coding sequences (CDSs) were identified (Table
S1 in Additional data file 1). Their average size is 891 nucle-
otides, comprising CDSs ranging from 32 (tg2073, encoding a
conserved hypothetical protein) to 4,620 amino acids
(tg1747, encoding an orphan protein).
Genome Biology 2009, 10:R70
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Genome annotation accuracy as evaluated by 
proteomics
We analyzed the proteome content of T. gammatolerans
grown in optimal conditions (rich medium supplemented
with S°) at two stages, exponential and stationary. Total pro-
teins were resolved by one-dimensional SDS-PAGE and iden-
tified by nanoLC-MS/MS shotgun analysis. From the large
corpus of MS/MS spectra (463,840) that were acquired,
170,790 spectra could be assigned to 11,056 unique peptides
(Table S6 in Additional data file 2). A total of 951 proteins
were identified with very stringent search parameters (at
least two peptides with P < 0.001; Table S7 in Additional data
file 2). Our experimental results clearly show that all MS/MS
identified peptides map to an entry in both the TGAM_ORF0
and TGAM_CDS1 databases (see Materials and methods),
corresponding to 44% of the theoretical proteome and to a
polypeptide coverage of 33% on average. Accordingly, all con-
fident MS/MS spectra protein assignments confirmed the
predicted genes, but we cannot exclude that a few new genes
encoding small and non-abundant proteins may be present as
such polypeptides typically resulted in a limited number of
trypsic peptides that can be difficult to detect. While 45% of
the theoretical proteome, composed of proteins ranging
between 10 and 40 kDa, is detected by mass spectrometry,
only 23% of proteins below 10 kDa are detected. This strong
bias indicates that there may be some doubt regarding the
real existence of some short annotated genes. Alternatively,
most of them may correspond to non-abundant proteins.

Translation start codon verification by mass 
spectrometry and amino-terminal modifications
After checking for trypsin and semi-trypsin specificities, we
found 290 different amino-terminal peptidic signatures
(Table S9 in Additional data file 3). They correspond to 173
different proteins. The start codon of 20 genes was incorrectly
predicted and was corrected. Out of the 173 proteins, 70
exhibit a methionine at their amino terminus, 98 start with
another amino acid, and 5 are found in both forms (Table S10
in Additional data file 3). The pattern for initial methionine
cleavage is standard and depends on the steric hindrance of
the second amino acid residue. As a result, polypeptides start
with Ala (29 cases), Gly (18 cases), Pro (14 cases), Ser (12
cases), Thr (12 cases) and Val (18 cases).

A restricted set (13%) of these proteins (23 of 173) were found
acetylated at their amino-terminal residue (Table S10 in
Additional data file 3). This post-translational modification
occurs for both cytosolic and membrane proteins. In contrast
to halophilic organisms [32], we found in T. gammatolerans
that the presence of an acidic amino acid (mainly Glu) in the
second (when Met is not removed) or the third position of the
polypeptide (when Met is removed) enhances the acetylation
process (8 cases out of 11, and 10 cases out of 12, respectively).
However, such a pattern does not imply acetylation as 25 pro-
teins were found exclusively unacetylated. Remarkably, both
acetylated and unacetylated amino termini were detected in

11 cases. In eukaryotes, three amino-terminal acetyltrans-
ferases, NatA, NatB, and NatC, have been described with
preferential substrates [33]. We did not find any homologues
of these acetyltransferase complexes in the T. gammatoler-
ans genome but did find three putative N-acetyltransferases
encoded by tg0455, tg1315, and tg1588. From the amino-ter-
minal peptidic signatures that were recorded in our shotgun
analysis, we deduced that T. gammatolerans encodes at least
a functional analogue of NatA, because acetylation occurs on
Ala, Gly, and Ser residues when the amino-terminal Met is
removed (12 cases out of 12 different acetylated proteins), and
a functional analogue of NatB that acetylates the Met residue
when a Met-Glu, Met-Asp, or Met-Met dipeptide is located at
the amino terminus of the protein. Such dipeptides are found
for 9 out of 11 acetylated proteins; the remaining 2 acetylated
proteins start with Met-Gln.

Genome features
Table 1 summarizes the general features of T. gammatoler-
ans compared with those of other sequenced Thermococca-
les. No significant differences in gene composition statistics
were seen for these genomes. Amongst Thermococcales, a
specific trait of Thermococcus genomes was noted when com-
paring the GC percentages of coding and inter-gene regions:
this difference rises to 10% for Thermococcus compared to
about 5% for Pyrococcus. As expected, average CDS identity
values reflect the phylogenetic distance relationships within
Thermococcales.

T. gammatolerans shares 1,660 genes with T. kodakaraensis
KOD1 whereas only 1,489 genes were found to be common
with T. onnurineus NA1, a number similar to that obtained
when T. gammatolerans is compared to Pyrococcus species.
This result is due to the lower size of the T. onnurineus NA1
genome, which is about 200 kb shorter than the other
sequenced Thermococcus genomes. Consequently, the three
Thermococcus genomes share only 1,416 common genes
(Table S2 in Additional data file 1). Remarkably, two-thirds of
the 74 genes conserved in T. gammatolerans and T. onn-
urineus NA1 but missing in T. kodakaraensis KOD1 encode
putative hydrogenase complexes that are present in several
copies in T. gammatolerans and T. onnurineus NA1
genomes, or encode conserved proteins of unknown function.
Among the six Thermococcales genomes, 1,156 genes are con-
served (Table S3 in Additional data file 1). They were obvi-
ously present in the common ancestor before the divergence
of Thermococcus and Pyrococcus. After searching for
sequence similarities and specific motifs and domains in pub-
lic databases, as defined in the Materials and methods, we are
able to propose a function for 1,435 T. gammatolerans CDSs.
Among the 722 remaining genes encoding hypothetical pro-
teins, 214 are conserved in all the six sequenced Thermococ-
cales. The products of one-sixth (120) of these genes were
experimentally detected by our proteomic detection
approach. T. gammatolerans possess a set of 326 genes
absent in other sequenced Thermococcales (Table S4 in Addi-
Genome Biology 2009, 10:R70
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tional data file 1). Among them, 98 are distributed in diverse
functional categories as predicted by sequence similarity, the
most important features being discussed below.

Paradoxical genome plasticity in Thermococcales
The six closely related and fully sequenced Thermococcales
species (three Thermococcus, T. gammatolerans, T. kodaka-
raensis, and T. onnurineus, and three Pyrococcus, P. abyssi,
P. horikoshii, and P. furiosus) enable insights into ongoing
genome evolution at a global scale since limited sequence
divergence enables the fate of most genes in each considered
lineage to be specifically tracked (Table 1 and Figure 1a). Most
rearrangement mechanisms identified so far are non-random
(for example, symmetry for replication-linked recombina-
tions [34,35], site specificity for mobile elements [15,36,37],
and recombination hotspots). For example, uneven fragmen-
tation rates were described in archaea from pairwise compar-
isons at replication termini regions of Pyrococcus species
[38], a situation already noted for bacterial genomes [39],
although this does not preclude that random recombination
prevails on a global genome scale. Determination of the chro-
nology of genome recombination events among the three
Pyrococcus species showed that, as a consequence, nucleo-
tidic sequences can evolve at increased rates [15]. Here, we
take advantage of the very high fraction of conserved genes
between six Thermococcales (approximately 58 to 73%; Fig-
ure 1b) to deduce the global number of reciprocal recombina-
tion events and their distribution patterns.

Pairwise genome scatter plots were determined to analyze
recombination patterns between genomes. They show two
different types of pattern (Figure 2, upper right), one in which
chromosomes co-linearity is recognizable (see Pyrococcus
pairs pab/ph/, pab/pf and ph/pf plots), and another where all

genes seem randomly scattered, except for a few islands of
syntenic blocks (see Pyrococci/Thermococci pairs plots: tg,
tk, ton versus pab, ph, pf, and Thermococcus pairs: tg/tk, tg/
ton and tk/ton). This is unexpected for Thermococcus pairs,
since the overall number of similar genes is very close in Ther-
mococcus and Pyrococcus species (approximately 71 to 73%
and approximately 67 to 73%, respectively; Figure 1b), and
their sequence similarity is very high (intra-Thermoccocus
identity range 69 to 77%; intra-Pyrococcus identity range 81
to 85%; Figure 1a).

In order to determine the global recombination trends, we
modeled a chromosome as a finite length segment disrupted
by N hits (recombination events), each hit generating N + 1
intervals (fragments or synteny blocks) whose size frequency
distribution obeys a power law when hits are at random (in
which Frequency = a × Fragment_sizeb, a and b being con-
stants). We determined synteny block length distribution for
every genome pair (Figure 2, bottom left), and, in all cases,
real distributions can be fitted to a power law model with
good statistical support (R2 range 0.88 to 0.95; coefficients of
determination given by least square regression analysis; Fig-
ure 1c). We conclude that all six Thermococcales genomes
exhibit random recombination distribution over the entire
genome. Although unlikely, it could result from the summa-
tion of several local and mutually compensating recombina-
tion hot spots/regions, but there is no evidenced for this at
this resolution. If we equate fragments of the model with real
synteny blocks, the random hits hypothesis allows us to deter-
mine the number of recombination events yielding the
observed distributions by summing the number of synteny
blocks (minus 1). The absolute number of recombination
events (Figure 1d) spans a rather narrow range (612 to 982
overall hits), which increases slightly when comparing intra-

Table 1

General features of the six sequenced Thermococcales species*

T. gammatolerans T. onnurineus T. kodakaraensis P. abyssi P. horikoshii P. furiosus

Genome size (nt) 2,045,438 1,847,607 2,088,737 1,765,118 1,738,505 1,908,256

Percentage coding 
regions

94.0% 91.7% 93.2% 93.1% 95.0% 93.8%

GC% 53.6% 51.2% 52.0% 44.7% 41.9% 40,80%

Intergene GC% 43.3% 42.4% 42.0% 39.6% 39.8% 35.8%

Number of CDSs 2,157 1,976 2,306 1,896 1,955 2,125

Gene overlaps† 237 (11%) 402 (20%) 557 (24%) 317 (17%) 712 (36%) 657 (31%)

Mean CDS length 
(nt)

891 857 844 918 854 842

Average CDS 
identity with T. 
gammatolerans%‡

100% 76.7% 77.2% 72.8% 71.2% 71.5%

tRNAs 46 46 46 46 46 46

rRNAs 2× 5S, 7S, 16S, 23S 2× 5S, 7S, 16S, 23S 2× 5S, 7S, 16S, 23S 2× 5S, 7S, 16S, 23S 2× 5S, 7S, 16S, 23S 2× 5S, 7S, 16S, 23S

*Data for the five Thermococcales strains were from GenBank. †Total number of overlaping genes and fraction of genes with overlaps (percentage in 
parentheses). ‡This refers to average identity percent values obtained by similarity matches with BLASTP. Nt, nucleotides.
Genome Biology 2009, 10:R70
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Thermococcales genome parameters defined in this studyFigure 1
Thermococcales genome parameters defined in this study. For each parameter, a chart for genome pairs (tg, T. gammatolerans; tk, T. kodakaraensis; ton, T. 
onnurineus; pab, P. abyssi; pf, P. furiosus; ph, P. horikoshii) is shown in the upper part of the panel, and a table of data used to build the chart is shown in the 
lower part of the panel. (a) Cross-genome average CDS identity. Values were determined by compiling identity percentage of each gene first hit in a 
BLASTP full genome cross-match, using 80% alignment length and 0.3 of maximum bit score threshold values (see Materials and methods). Values were 
then averaged by the total number of similar genes in each pair. (b) Percentage of similar (conserved) genes for each genome pair. Numbers of similar 
genes were determined as in (a). The number of conserved genes in each genome pair was then averaged by half of the sum of the total number of genes 
from both genomes. (c) Genome pair values of least squares line of best fit determination coefficients (R2) for synteny block length distribution (Figure 2, 
left bottom). (d) Total number of recombination events for genome pairs. These numbers are actually the total number of synteny blocks + 1 within each 
genome pair. (e) Average recombinations per gene (ARG) for genome pairs. The total number of recombination values (from (d)) was normalized by the 
number of conserved genes in each pair.
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and inter-genus recombination frequencies (intra-Thermo-
coccus hits 612 to 757; intra-Pyrococcus hits 712 to 837; Pyro-
coccus/Thermococcus 855 to 982). We further normalized
these values to cope with the number of conserved genes in
each genome pair, and defined the average number of recom-
binations per gene (ARG) as ARG = Total number of recom-
bination events/Number of conserved gene pairs in each

genome pair. The overall ARG range is greater then before
(0.39 to 0.78; Figure 1e) but, as expected, intra-genus ranges
remained narrow (intra-Thermococcus ARG = 0.39 to 0.48;
intra-Pyrococcus ARG = 0.53 to 0.59; Pyrococcus/Thermo-
coccus ARG = 0.63 to 0.78). These results uncover a paradox,
as smaller intra-Thermococcus ARG values correspond to
more dispersed plots than higher intra-Pyrococcus ARG val-

Thermococcus synteny analysesFigure 2
Thermococcus synteny analyses. Genome pair scatter plots are shown in the upper right. Similar genes (see Materials and methods) between all genome 
pairs (Tg, T. gammatolerans; Tk, T. kodakaraensis; Ton, T. onnurineus; Pab, P. abyssi; Pf, P. furiosus; Ph, P. horikoshii) were determined and their respective 
location on both genomes was plotted. Each dot represents a single gene. Coordinates are in nucleotides. Genome pair synteny block length frequency 
distributions are shown in the bottom left part. Synteny blocks within each genome pair were compiled, and their length frequency distributions were 
plotted on a log-log graph. In each plot, the equation of the least squares line of best fit is displayed, as well as the determination coefficient (R2) of the 
linear regression.
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ues. While an accurate measure of gene dispersion in pairwise
genome comparisons is not yet at hand, it seems undeniable
that high gene dispersion patterns are a consequence of the
smaller ARG ratios among Thermococci. As a control, we
determined the ARG ratios and scatter plots for three
sequenced Sulfolobus species (S. solfataricus P2, S. tokodai
and S. acidocaldarius; data not shown). In this case, very
high ARG ratios ranging from 0.81 to 0.91 were obtained (R2

range 0.95 to 0.96), although colinear regions on scatter plots
could still be distinguished between genome pairs.

To help explain this paradox, the integrity of the T. gamma-
tolerans chromosome can be questioned, since this strain has
been isolated after gamma ray irradiation of 30 kGy. Several
lines of evidence indicate that the chromosome did not
undergo notable rearrangements: first, chromosome recon-
stitution kinetics from 2.5 kGy up to 7.5 kGy never show any
alteration of the restriction patterns of repaired chromo-
somes (this work, [21] and not shown); second, its genome
sequence does not exhibit any significant error rate in terms
of number of frameshifts as well as pseudo-genes; third,
nucleotidic cumulative compositional biases of AT nucle-
otides at the third codon position (AT3 skew as defined in
[15]) display regular, nearly unperturbed patterns (data not
shown); and fourth, scatter plot patterns of the two other
Thermococcus species show that their recombination fate is
identical to that of T. gammatolerans. Altogether, these data
rule out the possibility that this behavior of T. gammatoler-
ans is an artifact, and substantiate that chromosomal shuf-
fling in Thermococcus species functions in a different mode
than that in Pyrococcus and Sulfolobus, the last two presum-
ably behaving in the expected way. As the decay of inter-spe-
cies chromosome colinearity should be a progressive process
under random conditions, long-range synteny should remain
visible even for extended rates of divergence.

Whether the peculiar chromosome shuffling behavior of the
Thermococci has any relation to the radiation-tolerance of T.
gammatolerans is not known at present, but a group of 100
genes found in all Thermococcus species and absent from all
Pyrococcus species (Table S5 in Additional data file 1) could
be involved in this phenotype, as well as some specific
genome nucleotidic compositional biases. We searched for
ubiquitous oligonucleotide motifs that could act in the same
way as Chi motifs, which influence double-stand break repair
in the RecBCD pathway [40,41]. Such items are characterized
by global over-representation and extended scattering across
the chromosome because their function depends on a statisti-
cal significance. Although identification of new motifs
remains challenging [42], if such motifs are present in Ther-
mococcus, they must be absent in Pyrococcus, or vice versa.
Indeed, we found two candidate octamers corresponding to
these criteria: AGCTCCTC is the most overrepresented motif
in 2 out of 3 thermococci, and the third most overrepresented
in the other (third) one. TCCCAGGA is the third most over-
represented motif in one pyroccoccus, the fifth most overrep-

resented in another pyrococcus and the tenth most
overrepresented motif in the third pyrococcus. Further char-
acterization of these genes and sequences should now be
undertaken to elucidate their roles and the molecular mecha-
nisms associated with them.

Mobile elements
An important feature of the T. gammatolerans genome is the
absence of genes encoding transposases found in other
Archaea, indicating they have not played a role in the evolu-
tion of the Thermococcus genomes. The genome of T. gam-
matolerans contains two virus-related regions, tgv1 (20,832
bp) and tgv2 (20,418 bp) (Figure 3). Both resulted from the
integration in the chromosome of a virus or a virus-related
plasmid by a mechanism comparable to that proposed for
pSSVx/pRN genetic elements found in Sulfolobus species
[43]. Both site-specific integrations occurred in a tRNAArg

gene and resulted in the partitioning of the integrase gene
(int) into two domains, each containing the downstream half
of the tRNA gene, which overlaps the 5' (intN) and the 3'
(intC) regions. These overlapped regions (48 bp) are pre-
dicted to contain attachment (att) sites of the integrase. A
perfect match between intN and intC was revealed in both
cases, indicating a recent integration event. The first virus-
related region encoded by the locus starting at the gene
tg0651 and ending at the open reading frame (ORF)
tgam05590 is closely related to the TKV2 and TKV3 genetic
elements found in T. kodakaraensis KOD1 [13] and to
another element present in P. horikoshii [10]. The respective
amino- and carboxy-terminal domains of the integrases are
well conserved within these three species, indicating close
homology between these mobile elements. Most of the genes
found in these loci encode conserved hypothetical proteins.
Those found over the 5' half of the genetic element appear to
be more conserved than those spanning the 3' half (Figure
3a). Several CDSs found in the 3' half of TKV2 and TKV3, as
well as in P. horikoshii, are missing in tgv1. Consequently,
among the genes with a functional assignment in T. kodaka-
raensis KOD1, only those coding for a predicted AAA-ATPase
(tg0662) [44] and the putative transcriptional regulator
(tg0667) are conserved in T. gammatolerans. Only three pro-
teins of tgv1 were found in our proteome survey (Tg0665 to
Tg0667), indicating a limited contribution of this virus-
related region to cell physiology in the culture conditions used
in this study.

Interestingly, the second virus-related region, tgv2, encoded
by the locus tg1617-tgam13283, as shown in Figure 3b, is unu-
sual in Archaea. In this case, the intN and intC integrase
domains have largely diverged from the tgv1/TKV2/TKV3
respective domains, suggesting a phylogenetic difference.
Moreover, 8 out of the 14 genes found in tgv2 are predicted to
encode proteins of known function: 3 AAA-ATPase proteins
(tg1619, tg1620, tg1626), a resolvase (tg1621), a nuclease
(tg1623) and a methylase (tg1624) of a type III restriction/
modification system, a putative ATP-dependent helicase
Genome Biology 2009, 10:R70
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belonging to the UvrD/REP family (IPR000212, tg1630), and
a protein (tg1629) that shares homology (24% identity, 44%
similarity) with RepA/MCM proteins encoded in plasmids
isolated from Sulfolobus neozealandicus [45]. Several of
these proteins (Tg1621, Tg1623, Tg1624, Tg1627, Tg1630) are
more frequently found in bacteria than in archaea, Tg1619,
Tg1620, Tg1626 being well distributed in archaea, whereas
Tg1618, Tg1622, Tg1625, Tg1628 have been exclusively found
in T. gammatolerans so far. Altogether, these results suggest
that tgv2 is a new type of virus-related plasmid integrated into
the T. gammatolerans genome. Both type III restriction/
modification system proteins and the conserved hypothetical
protein Tg1627 were expressed in the cells at a sufficient level
to be detected in our proteome analysis.

COG functional group distribution of the experimental 
proteome
Table 2 shows the distribution of proteins identified by mass
spectrometry among all predicted functional cluster of
orthologous groups (COG) categories. Out of the 1,101 pro-
teins listed in our mass spectrometry proteome analysis (less
stringent parameters), 795 (72%) are conserved in all Ther-
mococcales and 915 (83%) are common to the three Thermo-
coccus species. These proteins should represent the core
Thermococci proteome - that is, a set of expressed ancestral
traits - as proposed by Callister et al. [46]. While an additional

set of 253 proteins is conserved in at least another Thermo-
coccus species, 53 proteins are specific to T. gammatolerans.

Genes assigned to three COG categories are under-repre-
sented, with less than 40% of those detected falling into the
'no COGs', 'inorganic ion transport and metabolism', and
'defense mechanisms' categories. Such distribution may be
due to the growth conditions and/or the specific biochemical
properties of the proteins encoded by genes belonging to
these COG categories. Surprisingly, 83% of the genes of the
'signal transduction mechanisms' category, including several
encoding predicted Ser/Thr protein kinases, as well as genes
assigned to metallophosphoresterases and various AAA pro-
teins, were detected. This indicates that proteins belonging to
this category are probably necessary whatever the growth
conditions. In contrast with this observation, only a very
restricted set of phosphorylated peptides were detected (data
not shown). Further experiments are needed to examine the
post-translational modifications of these proteins more
closely. Among the 587 T. gammatolerans genes that code for
conserved hypothetical proteins and the 135 CDSs that spec-
ify orphans, 221 (38%) and 29 (22%), respectively, were
definitively validated by mass spectrometry. Interestingly,
from the subset of 214 conserved hypothetical proteins found
in all Thermococcales species, 120 were detected in our pro-
teome analysis, demonstrating that they are expressed in

Schematic representation of virus-related lociFigure 3
Schematic representation of virus-related loci. (a) tgv1 and (b) tgv2. Genes are indicated by arrows. Exclusive T. gammatolerans genes are not colored. 
Coordinates are in nucleotides. The respective att sequences of each locus are specified. CDS homologues found in T. kodakaraensis tkv2 and/r tkv3 virus-
like loci [13] are colored in blue (a). CDSs more frequently found in Bacteria than in Archaea are colored in green (b). CDSs well distributed in Archaea 
are colored in purple (b).
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classic culture conditions. In all these organisms they proba-
bly play important roles that remain to be discovered.

A biological duplicated analysis was carried out on the pro-
teome content of cells collected in the exponential phase and
compared to that of cells harvested during the stationary
phase. Spectral counting (Table S8 in Additional data file 2)
enables the proteins to be classified in terms of detection
level. On this basis, Tg0331, a putative solute binding protein
located on the border of a gene cluster identified as a dipep-
tide ABC-transport system, seems the most abundant pro-
tein. After taking into account the molecular weight of the
polypeptides, the putative glutamate dehydrogenases
Tg1822, Tg1823, and Tg0331 may be considered the three

most abundant proteins whatever the growth phase. Interest-
ingly, the conserved protein Tg2082, whose function could
not be predicted, is remarkable as it is amongst the 30 most
detected proteins. Figure 4 shows the cumulative number of
MS/MS spectra recorded against the number of proteins con-
sidered, but ranked from the most to the least abundant.
These data indicate that, in the exponential phase, only 46
proteins contributed to half of the total number of MS/MS
spectra recorded, while 147 and 437 proteins contributed to
75% and 95% of these spectra, respectively.

Growth requirements of T. gammatolerans EJ3
In contrast to what was previously described [20], T. gamma-
tolerans EJ3 is able to grow not only on complex organic

Table 2

COG distribution of the T. gammatolerans proteome

COG category Total number MS-proof number Total percentage MS-proof percentage MS-proof in category 
percentage

A: RNA processing and modification 1 1 0.05 0.05 100

T: Signal transduction mechanisms 18 15 0.83 0.7 83.33

J: Translation, ribosomal structure 
and biogenesis

163 119 7.56 5.52 73.01

F: Nucleotide transport and 
metabolism

54 38 2.5 1.76 70.37

C: Energy production and conversion 129 90 5.98 4.17 69.77

D: Cell cycle control, cell division, 
chromosome partitioning

19 13 0.88 0.6 68.42

E: Amino acid transport and 
metabolism

115 78 5.33 3.62 67.83

O: Posttranslational modification, 
protein turnover, chaperones

62 42 2.87 1.95 67.74

N: Cell motility 18 12 0.83 0.56 66.67

B: Chromatin structure and dynamics 3 2 0.14 0.09 66.67

H: Coenzyme transport and 
metabolism

65 43 3.01 1.99 66.15

I: Lipid transport and metabolism 23 14 1.07 0.65 60.87

L: Replication, recombination and 
repair

63 38 2.92 1.76 60.32

K: Transcription 98 59 4.54 2.74 60.2

Q: Secondary metabolite 
biosynthesis, transport and 
catabolism

14 8 0.65 0.37 57.14

G: Carbohydrate transport and 
metabolism

92 52 4.27 2.41 56.52

R: General function prediction only 289 150 13.4 6.95 51.9

M: Cell wall/membrane/envelope 
biogenesis

41 20 1.9 0.93 48.78

S: Function unknown 185 88 8.58 4.08 47.57

U: Intracellular trafficking, secretion, 
and vesicular transport

15 7 0.7 0.32 46.67

V: Defense mechanisms 21 8 0.97 0.37 38.1

P: Inorganic ion transport and 
metabolism

81 26 3.76 1.21 32.1

No COGs 588 178 27.26 8.25 30.27
Genome Biology 2009, 10:R70
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compounds in the presence of S° but also on a mixture of 20
amino acids or with sugars as carbon sources (Table 3). In the
latter case, cells do not require S° but, unlike P. furiosus [47],
T. gammatolerans is obviously not able as to grow on pep-
tides or amino acids without S°. We checked experimentally

that T. gammatolerans effectively grows like P. furiosus and
T. kodakaraensis KOD1 on complex media that contains
starch or maltodextrins as the main carbon source. Similarly,
growth using complex media containing pyruvate does not
require S° and, like in other Thermococcales species, proba-
bly leads to the production of hydrogen instead of hydrogen
sulfide when S° acts as final electron acceptor. In a medium
supplemented with peptides and S°, the generation time of T.
gammatolerans cells is 90 minutes and the stationary phase
is reached at a cellular density of 5 × 108 to 109 cells/ml. The
generation time is longer when cells grow on amino acids (4 h
in artificial seawater (ASW)-AA) or with sugars (5 h in MAYT-
P) and the cellular density is lower (1 to 2 × 108 cells/ml) than
with peptides and S°, indicating a preferential use of peptides
and S° for energy and synthesis.

Amino acid auxotrophy assays show that T. gammatolerans
does not require for growth any of the 12 following amino
acids: Ala, Asn, Asp, Glu, Gln, Gly, His, Ile, Pro, Ser, Thr and
Tyr (Additional data file 4). In accordance with auxotrophic
requirements, T. gammatolerans is able to grow on plate on
minimal ASW medium supplemented with nine essential
amino acids: Cys, Leu, Lys, Met, Phe, Trp, Val, Arg and Thr
and S°. In this case, one of these amino acids, such as Thr, had
to be added to the growth medium in a larger amount to be
used as carbon source. Casamino acids produced by acid
treatment lack Trp, Asn and Gln and, therefore, cannot be
used as sole carbon source for growth in minimal ASW
medium (Table 3).

T. gammatolerans EJ3 general catabolism as 
determined by inspection of its genome and proteome
We present here a predicted general metabolism of T. gam-
matolerans based on the high level identity of proteins (Fig-
ure 1a and Table 1) involved in pathways already
experimentally validated in other Thermococcales species
(Figure 5; Additional data file 5). Furthermore, we assume
that these pathways are active under our physiological growth
conditions (VSM medium with S°) since we detected the pres-
ence of a large majority of these proteins in our proteomic
studies. However, T. gammatolerans also contains specific
features that are discussed below.

In order to assimilate the proteinous substrates, the T. gam-
matolerans EJ3 genome encodes a putative extracellular
archaeal serine protease (tg2111), a pyrolysin homologue
(tg1044) [48] and a subtilisin-like protease (tg0368). Unlike
in the T. kodakaraensis KOD1 genome, no thiol protease gene
could be localized. Peptides generated by such proteases
might be imported through ABC-type transporters of the
dpp/opp family. Such a transporter (tg0383-385) is only
found in T. gammatolerans. The peptides would be further
digested by the numerous predicted proteins with proteolytic
or peptidolytic activities (leucine and methionine ami-
nopeptidases, carboxypeptidases, endopeptidases, dipepti-
dases). Amino acid transporters (tg0308, tg0963, tg1060,

Distribution of protein abundancesFigure 4
Distribution of protein abundances. The average number of MS/MS 
spectra was calculated for each protein from two normalized shotgun 
experiments done on cells harvested in the exponential phase (Table S8 in 
Additional data file 2). Normalization was done on total MS/MS spectra. 
The proteins were ranked as a function of their average number of MS/MS 
spectra from the most to the least detected. The graph reports the 
percentage of cumulative MS/MS spectra per number of proteins 
considered.
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Table 3

Carbon sources and S° requirements of T. gammatolerans EJ3

Growth

Carbon source Media Without S° With S°

Yeast extract and tryptone VSM, MAYT - +++

20 amino acids ASW-AA - ++

Casamino acids ASW-CASA - -

Yeast extract ASW-YE - +++

Tryptone ASW-T - +++

Peptone ASW-P - +++

Pyruvate ASW-AA-Pyr ++ ++

Pyruvate MAYT-P +++ +++

Starch MAYT-S + +++

Maltodextrins MAYT-Mdx + +++

Maltose MAYT-M - +++

Trehalose MAYT-T - +++

Glucose MAYT-G - +++

Lactose MAYT-L - +++

Serum bottles were inoculated at a final concentration of 5 × 105 cells/
ml and incubated at 85°C. Growth was recorded during 3 days. All 
tests were performed in triplicate. Final cellular density reached at the 
stationary phase: +++, >5 × 108 to 109 cells/ml of culture; ++, 1 to 2 × 
108 cells/ml of culture; +, 5 × 107 cells/ml of culture; -, no growth.
Genome Biology 2009, 10:R70
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tg1321, tg1756, and tg1855) ensure that T. gammatolerans
can grow using amino acids as the sole carbon source in the
presence of S° (or Cys). Among them, genes (tg0091, tg0092,
tg0094, tg0095) belonging to the Polar amino aid uptake
transporter (PAAT) family, putatively involved in glutamine
transport, are only found in the Archaea in T. gammatoler-
ans.

According to the amino acid auxotrophies mentioned above,
genes coding for proteins of the biosynthetic pathways of ten
amino acids (Ala, Asn, Asp, Glu, Gln, Gly, His, Ser, Thr and
Tyr) were identified (Additional data file 4). Genes involved
in His (tg1607 to tg1614) and Tyr (tg1589 to tg1598) biosyn-
thesis pathways were found clustered as in the other Thermo-
coccales. Like T. kodakaraensis, genes involved in Ile, Pro,
Arg, Leu, Phe and Val biosynthesis are missing in T. gamma-
tolerans. However, this species is able to grow without Ile and

Pro. Such discrepancy between gene content and auxotrophic
requirements may be explained by novel pathways for Ile and
Pro biosynthesis that remain to be discovered. In contrast to
T. kodakaraensis, neither methionine nor cysteine synthases
could be predicted in the T. gammatolerans genome. This
explains the auxotrophy observed for sulfur-containing
amino acids. Moreover, the genes involved in the non-con-
ventional prokaryotic Lys biosynthesis pathway through α-
aminoadipic acid [49] could not be identified. In addition,
only the last enzyme of the Trp biosynthesis pathway (tg1811),
tryptophane synthase, was detected by similarity whereas the
whole pathway is encoded by clustered genes in T. kodakara-
ensis. Even if the cells grew in a rich medium, we observed
with the shotgun proteomics approach most of the enzymes
involved in the biosynthesis pathways of the ten non-essential
amino acids. This is somewhat surprising as numerous ABC
amino acid transporters are also found, and suggests that the

Predicted general metabolism and solute transport in T. gammatoleransFigure 5
Predicted general metabolism and solute transport in T. gammatolerans. (a) Modified Embden-Meyerhof glycolytic pathway. (b) Pyruvate degradation. (c) 
Pentose phosphate synthesis and carbon dioxide fixation. (d) Pseudo tricarboxylic acid cycle. (e) Amino acid degradation. (f) Oxygen and reactive oxygen 
species detoxication. The transporters and permeases deduced from the annotatable CDSs are grouped by substrate specificity: anions (blue), amino acids/
dipeptides (green), cations (pink), heavy metal or drug (black), carbohydrates (yellow) and unknown (grey). Dashed lines represent pathways not yet 
experimentally validated in Thermococcales species. Red illustrates proteins only found in T. gammatolerans or shared with T. onnurineus (Mhy1, Mhy2 and 
F420 dehydrogenase). A detailed legend of Figure 5, including gene ID, is available in Additional data file 5.
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cells maintained a subtle compromise between import and
biosynthesis of these compounds.

The amino acids extracted from peptides or imported by
transporters are metabolized by transaminases and four dis-
tinct ferredoxin oxidoreductases (pyruvate:ferredoxin oxi-
doreductase (pyruvate:ferredoxin oxidoreductase, 2-
oxoisovalerate:ferredoxin oxidoreductase, indolepyru-
vate:ferredoxin oxidoreductase, 2-ketoglutarate:ferredoxin
oxidoreductase) into their corresponding CoA derivatives
[50]. Deamination occurs in a glutamate dehydrogenase-cou-
pled manner that differs from other Thermococcales species;
this is because in T. gammatolerans glutamate dehydroge-
nase is probably not monomeric as we identified by similarity
two genes (tg1822, tg1823) corresponding to a split glutamate
dehydrogenase, a situation reminiscent of that found with
Methanosarcina mazei genes MM3297 and MM3298. These
compounds are then further transformed into the corre-
sponding acids by acetyl-CoA synthetases and succinyl-CoA
synthetases, respectively [13,51]. This final step, consisting of
the conversion of acetyl-CoA/succinyl-CoA into acids, pro-
duces energy through concomitant ADP phosphorylation. A
unique feature of T. gammatolerans among Thermococcales
species is the presence of an acetate CoA ligase (EC 6.2.1.1;
tg0230) that may produce ATP and acetate from acetyl-CoA
and CO2 or, conversely, could transform acetate into acetyl-
CoA accompanied by AMP formation. Interestingly, this pro-
tein is among the most abundant found in T. gammatolerans
as judged by the spectral counting recorded in our proteome
analysis. Why this protein is so abundant remains to be deter-
mined. Alternatively, T. gammatolerans may also metabolize
2-oxoacids (Figure 5) through ferredoxin oxidoreductases
into the corresponding aldehydes as proposed by Ma et al.
[52]. Aldehydes would be subsequently oxidized by a tung-
sten-containing aldehyde:ferredoxin oxidoreductases (candi-
dates genes include tg1913 and tg1732) or transformed into
alcohol by alcohol dehydrogenase (a candidate gene being
tg1572). In order to explore the proteome of this organism,
cells were cultivated in a rich-medium containing peptides
and S°. Consequently, all the proteins assigned to these differ-
ent pathways are found.

As mentioned before, T. gammatolerans can also use differ-
ent sugars to grow (Table 3); S° is not required in this case.
Since T. gammatolerans encodes extracellular α-amylase
(tg0222) [53], pullulanase (tg1752) and several putative amy-
lopullulanases (tg0603, tg0690, tg1390), this strain may be
able to cleave α-1,4 and α-1,6 bonds between glucose units
found in starch or maltodextrins. In contrast to P. abyssi and
P. horikoshii, we could not identify in the T. gammatolerans
genome any candidate involved in β-glucan degradation
[10,12]. Maltooligosaccharides produced by α-glucan degra-
dation could be imported by a MalEFGK transporter
(encoded by genes tg0600, tg0601, tg0602, and tg0604; Fig-
ure 5) as observed in P. furiosus [54]. T. gammatolerans does
not grow on maltose or trehalose (Table 3), which is consist-

ent with the absence of the α-glucoside ABC-transport sys-
tem, which is dedicated to maltose or trehalose uptake in P.
furiosus [54]. Imported oligosaccharides are then reduced
into monosaccharides by intracellular α-glucanotransferase
(preferentially Tg1711 rather than Tg2132, as indicated by our
spectral count approach) [55], maltodextrin phosphorylase
(tg1772) and α-glucosidase (tg1709) [56]. Interestingly,
among the proteins identified by our shotgun proteomics
approach, all these proteins (except tg0222 and tg0602) were
synthesized despite sugar or pyruvate being omitted from the
culture medium. We assume they are constitutively expressed
or, alternatively, are induced either by sugars secreted by the
cells or by traces found in peptone and/or the yeast extract.

Among the proteins identified by our shotgun proteomics
approach, we found most of the enzymes involved in the
archaeal modified Embdem-Meyerhof pathway [57] and the
non-oxidative pentose phosphate pathway [58]. Moreover, as
recently described in T. kodakaraensis [59], the CO2 formed
by catabolism could be a substrate for the RuBisCo enzyme
(Tg1751), which together with the AMP phosphorylase
(Tg1786) and the ribose-1,5 biphosphate isomerase (Tg1633)
produces 3-phosphoglycerate, thus activating the glycolysis/
neoglucogenesis pathways. These proteins are abundant in
the cells, as revealed by our proteome analysis.

Hydrogenases and other related membrane-bound 
complexes
A large variety of hydrogenase complexes exist in T. gamma-
tolerans but their nature and composition differ to those
found in T. onnurineus and also in other Thermococcales.
They are grouped within five clusters of genes (Figure 6). Like
in all other sequenced Thermococcales species, T. gammatol-
erans encodes orthologues of the membrane-bound hydroge-
nase (Mbh) and membrane-bound oxidoreductase (Mbx)
complexes [60] (Table S12 in Additional data file 6). The H2-
evolving Mbh pumps protons across the membrane and the
resulting proton gradient is used by ATP synthase to form
ATP. Although experimental evidence is lacking, it was pro-
posed that the Mbx complex reduces ferredoxins and
NAD(P), the latter being used by the NAD(P)H elemental sul-
fur oxidoreductase (NSR) to reduce S° into H2S [61]. Since
most of the Mbx subunits (12 out of 13) and the NSR ortho-
logue (tg1050) are found in our proteome, we assumed that T.
gammatolerans likely reduces S° into H2S this way. Almost
all Mbh subunits (9 out of 14) have also been identified in the
proteomic analysis. Based on our semi-quantitative estima-
tion of the amount of proteins in cells harvested during the
exponential phase, Mbx components seem to be more abun-
dant than Mbh subunits (appearing in 717 MS/MS spectra
versus 83 MS/MS spectra, respectively). The same ratio was
found in cells harvested during the stationary phase. These
results indicate that Mbx is probably preferentially used in
the culture conditions used for this proteomic study, in agree-
ment with previous observations made with P. furiosus [61].
In this archaeon, the genes encoding Mbh subunits were
Genome Biology 2009, 10:R70
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found to be rapidly down-regulated in the presence of S° [61],
impairing H2 production. After data normalization to take
into account the size of each polypeptide, we noted in our
spectral count that the J, K, and L subunits are the most
detected of the Mbx subunits. We observed a drastic change
in Mbx subunit ratio when the cells changed from the expo-
nential to the stationary phase. While the F, G, H, H' and M
subunits are abundant in the former phase, they are not
detected at all in the latter. Williams et al. [62] showed that
Mbx and Mbh genes of P. furiosus grown with maltose are dif-
ferentially expressed after irradiation. The Mbh complex is
down-regulated whereas Mbx is up-regulated. Such anti-cor-
related regulation may be necessary to re-adapt metabolism
quickly, a trait probably common to all Thermococcales spe-
cies.

As shown in Figure 6, several other membrane-bound com-
plexes containing numerous proteins homologous to Mbh
subunits were identified on a sequence similarity basis and in
a genome context. We propose the existence of at least two
new membrane-bound complexes, which we name here
membrane-bound complex 1 (Mbc1) and Mbc2 (Table S13 in
Additional data file 6). Mbc1 (tg0048 to tg0054) is probably

anchored at the membrane because of the presence of Mbh A-
D and MbhF-G-like proteins. A Mbh H-like subunit, related
to the NADH dehydrogenase NuoL from many organisms and
the HyfB subunit of hydrogenase 4 from Escherichia coli, was
found. Mbc2 (tg1241 to tg1249) probably comprises six equiv-
alent anchor subunits together with three other proteins that,
like in Mbc1, are encoded in the close neighborhood of the
membrane subunits. None of these proteins contains the con-
served cysteine motifs chelating Fe or Ni that are usually
found in other hydrogenase or oxidoreductase subunits. We
detected in the shotgun proteomics analysis only two subu-
nits composing the Mbc1 complex and no Mbc2 components.
These two complexes appeared to be much less abundant
than Mbh and Mbx in the culture conditions used.

A second locus encodes a formate hydrogenlyase (Mhy1)
closely related to that recently described in T. litoralis [63]
(Table S14 in Additional data file 6). It is composed of a for-
mate dehydrogenase and a type-3 hydrogenase. Another
putative hydrogenlyase (Mhy2) is encoded by the cluster
tg0056 to tg0065 (Table S15 in Additional data file 6). It is
composed of a formate dehydrogenase and a new hydroge-
nase. As shown in Figure 6, both hydrogenlyases share almost

Schematic representation of the loci encoding five membrane-bound complexesFigure 6
Schematic representation of the loci encoding five membrane-bound complexes. Genes are indicated by arrows. Coordinates are in nucleotides. The 
genes are colored according to their structural homology (formate hydrogenlyase 1 and 2 in grey; Mbh/Mbx in red, Mbc1 and Mbc2 in green, CODH in 
purple, maturation proteins in blue). Exclusive T. gammatolerans genes are not colored.
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the same subunits. A subunit involved in proton translocation
is duplicated (Mhy2C and Mhy2C'), resulting in the presence
of three such homologous subunits taking into account
Mhy2D. This feature resembles that of bacterial type-4 hydro-
genase, which also contains three orthologous subunits
(HyfB, HyfD, and HyfF). Likewise, a gene coding for a for-
mate transporter gene (FocA; tg0055) is found at the 3' end of
the Mhy2 cluster, as in E. coli. In the culture conditions used,
no subunits of hydrogenlyase II were detected. This result is
comparable to what was reported from the proteome analysis
of T. onnurineus [8] and for T. litoralis, where the genes
encoding hydrogenlyase I were found to be down-regulated
when supplying peptides with S° [63]. Interestingly, by com-
parative genomics of Mhy loci, we discovered additional con-
served genes (tg0056, tg0241, TON_0273, TON_1572,
PAB1398.2n) located at the 3' end of the operons in T. gam-
matolerans, T. litoralis and P. abyssi. As these genes encode
a short polypeptide (that we named MhyI), they were not con-
sidered during T. litoralis formate hydrogenlyase I annota-
tion [63]. A comparison of MhyI sequences shows that the
proteins have diverged even if several amino acids are con-
served (Additional data file 7). We propose that these proteins
may be additional hydrogenlyase subunits or play a role in
regulation of these complexes. Several copies of hydrogenases
were also found in T. onnurineus [8] but their distribution in
the genome as well as their complexity in terms of subunit
content differ between both species. As an example, the T.
onnureinus hyg4-1 locus encodes a homologue of Mhy1 clus-
tered with some subunits of the Mbc2 complex. Further anal-
yses will be necessary to elucidate their respective roles in cell
physiology.

The origin of formate remains obscure in archaea. In contrast
to T. kodakaraensis, T. gammatolerans does not encode a
pyruvate formatelyase able to produce formate and acetyl-
CoA from pyruvate [13]. In the other Thermococcales species,
anaerobic peptide fermentation likely produces formate
through an as-yet uncharacterized pathway. Kletzin and
Adams [64] showed that aldehyde:ferredoxin oxidoreductase
is able in vitro to use formaldehyde as substrate to produce
formate. This protein, encoded in T. gammatolerans by
tg0122, was detected in our proteomic studies. Another
hypothesis already suggested for two methanogenic archaea
is that an association of formate dehydrogenase with the
FAD420-reducing dehydrogenase produces formate by the
reduction of CO2 with hydrogen [65,66]. In this light, the effi-
ciency of several metabolic pathways in T. gammatolerans
could be directed by the cellular concentration of H2, formate
and F420.

Surprisingly, no gene encoding soluble heterotetrameric
NiFe-hydrogenase was detected by sequence similarity in the
T. gammatolerans genome while one or two (Hyh1 and
Hyh2) are found in all hitherto sequenced Thermococcales
(Table S12 in Additional data file 6). Their respective roles are
unclear. It was proposed that they could serve to recycle H2

and reduce NADPH for biosynthesis [60,67]. The tg0066 to
tg0068 locus specifies a heterotrimeric reducing F420H2

hydrogenase. This enzyme is found only in T. onnurineus and
archaeal methanogens, where it is involved in carbon dioxide
reduction via the methane metabolic pathway (reviewed in
[68]). The intracellular pool of reduced F420 in methane-
forming cells is in equilibrium with the H2 concentration in
the medium [69]. Therefore, F420-linked processes would be
directly coupled to H2 levels. Further experiments will be nec-
essary to conclude if this enzyme compensates for the absence
of Hyh1 and Hyh2 in T. gammatolerans.

Like in T. onnurineus, T. gammatolerans has putative CO
dehydrogenase (CODH) genes (CooC, CooF, CooS), suggest-
ing that this organism is also able to oxidize CO into CO2.
Such activity was previously described in Thermococcus sp.
strain AM4, which is phylogenetically close to T. gammatol-
erans [9], but the genes were not characterized. Lee et al. [8]
failed to detect the genes by PCR in seven other Thermococ-
cus species. Consequently, we report here evidence of CODH
in a second Thermococcus species. Interestingly the CooC
and CooS proteins are present in cells even if they grow in a
rich medium supplied with S°, while CooS was strongly down-
regulated in T. onnurineus and no CODH subunits were
detected [8]. In this species, the CODH genes are encom-
passed in a large cluster (TON_1016 to TON_1031) contain-
ing a transcriptional regulator and homologous subunits of
both Mbc2 and hydrogenlyases. As shown in Figure 6, this is
not the case in T. gammatolerans. Consequently, the regula-
tion and the role of CODH may differ in both species.

Hydrogenase maturation systems
The T. gammatolerans genome encodes homologues of the
known bacterial proteins HypA, HypC, HypD, HypE, HypF,
and HycI, which are involved in the insertion of the heterodi-
nuclear center into [Ni-Fe] hydrogenases. The corresponding
genes are in the vicinity of the Mhy1 locus (Table S16 in Addi-
tional data file 6; Figure 6). Of note, the HypB GTPase essen-
tial for nickel insertion in conjunction with HypA in Bacteria
(reviewed in [68]) is missing in all Thermococcales species.
Hydrogenase activity can be partly restored in a hypB E. coli
mutant by supplying high concentrations of Ni2+ into the
medium [70]. As the sequenced Thermococcus species have
been isolated from various deep-sea vents rich in various
metal elements, the absence of a gene encoding a HypB-like
protein may be a consequence of the presence of sufficient
nickel concentrations in the Thermococcus biotope. Finally,
genome analyses also show the presence of two genes encod-
ing HypC-like proteins in T. gammatolerans and two copies
of a gene encoding a HypD-like protein in T. onnurineus,
which probably results in structural differences in the hydro-
genase complexes of these two species.

Detoxification systems
The T. gammatolerans genome includes genes for several
detoxification enzymes. By analyzing sequence similarities,
Genome Biology 2009, 10:R70
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we could assign a thioredoxin reductase (tg0180), a glutare-
doxin-like protein (tg1302) and two peroxiredoxins (tg1253,
tg1220), which could allow the archaeon to cope with oxida-
tive stress. In order to eliminate the superoxide ions, several
mechanisms have been proposed for archaea. One mecha-
nism involves ferrocyanides, formate and the superoxide
reductase [71]. Several transporters of iron and formate are
present, as well as the superoxide reductase enzyme. Another
alternative pathway has been described in which the superox-
ide reductase is associated with rubredoxin and rubrerythrin
[72], but no gene encoding rubredoxin could be identified in
T. gammatolerans. Interestingly, this organism harbors
genes (tg1232 to tg1233) encoding proteins similar to cyto-
chrome bd ubiquinol oxidase and homologous to the bacterial
CydAB [73]. This enzyme functions as a quinol oxidase and
protects anaerobic processes from inhibition by oxygen [74].
To our knowledge, we report here the first description of
these genes in a Thermococcales species. Moreover, the genes
are located in the close neighborhood of a putative operon
coding for several proteins described as involved in the ubiq-
uinone synthesis pathway (Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway ko00130): a methyltransferase
belonging to the ubiE/COQ5 family (EC:2.1.1.-; Tg1226), 3-
octaprenyl-4-hydroxybenzoate carboxy-lyase (EC:4.1.1.-;
Tg1231) and 4-hydroxybenzoate polyprenyltransferase (EC
2.5.1.-; Tg1230). These proteins are homologous to counter-
parts found only in thermophilic bacteria such as Geobacter
sulfurreducens PCA, Desulfovibrio desulfuricans G20, Sym-
biobacterium thermophilum, Moorella thermoacetica ATCC
39073 and Aquifex aeolicus. The genes have probably been
acquired by horizontal gene transfer.

Known DNA repair arsenal in T. gammatolerans
Since T. gammatolerans exhibits a radioresistance still une-
qualled in archaea, and to draw a consistent picture of the
DNA repair arsenal of this organism, we searched for the
presence of genes involved in DNA replication, repair or
recombination described in other archaea, or detected
through sequence similarities, specific motifs and domains in
public databases.

The proteins involved in DNA replication in other archaea
(cdc6, RF-C, MCM, primase, polymerases B and D, Fen1
endonuclease, GINS, RPA proteins, helicases, topoisomer-
ases, and so on; reviewed in [75]) are all found in T. gamma-
tolerans (Table S1 in Additional data file 1). On the other
hand, a distant counterpart of the protein Din2 found in the
genome of P. abyssi is missing. T. gammatolerans, as with
other thermophilic archaea, has mechanisms to control the
pool of nucleotides, and to correct or modify bases or to delete
them, creating abasic sites that can be repaired by a base exci-
sion repair pathway. T. gammatolerans possesses the genetic
information for a nucleoside triphosphate phosphohydrolase
(tg0168; EC 3.6.1.15) homologous to Saccharomyces cerevi-
siae Hamp1p [76], an ADP ribose pyrophosphatase (tg1861),
a homologue of mutT previously characterized in the

archaeon Methanococcus janashii [77], a 3-methyladenine
DNA glycosylase-related protein (tg1192, IPR004597) and
also a homologue of the T. kodakaraensis O6-methyl guanine
methyl transferase (tg0325) [78] that directly corrects lesions
on DNA. Putative type III (IPR005759; Tg1277), IV
(IPR001719; Tg1446), and V (IPR007581; Tg0915) endonu-
cleases, which act at abasic sites generated by high tempera-
ture-induced depurination, several predicted DNA
glycosylases (Tg0543, Tg1653, Tg1814, IPR05122) and AP
endonucleases (Tg0205, Tg0740, Tg1637, IPR001719) are
also found as well as the Kae1 protein (Tg0271), which was
recently found to be a new AP-lyase protein acting in vitro at
apurinic sites [79]. Five homologous proteins involved in the
nucleotide excision repair pathway in Pyrococcus were iden-
tified (reviewed in [80]): Tg1658 (XPB-rad25 helicase homo-
logue), Tg0797 (XPD-rad3 helicase homologue), Tg1167 (XPF
nuclease), and Tg1199 (XPG/Fen1-like nuclease). Homo-
logues of archeal proteins that may be involved in T. gamma-
tolerans double-stranded DNA break repair through
homologous recombination include: Tg0130/RadA protein
[81], which may possesses, as in Sulfolobus and Pyrococcus,
a DNA-dependent ATPase activity and catalyze strand
exchange in vitro [82,83], RadB (Tg2074; a truncated version
of RadA that may, as in Pyrococcus, regulate homologous
recombination proteins [84]), Tg1742 and Tg1743 (homo-
logues of the Rad50-Mre11 archaeal proteins [85]), Tg1741
(homologue of the Sulfolobus NurA nuclease) [86,87] and
Tg1744 (HerA/Mla-like bipolar helicase) [88,89]. The four
last genes are found in many thermophilic archaea and the
proteins from P. furiosus form, in vitro, an initiator complex
that generates the single strand extremities necessary for
homologous recombination [90]. Moreover, T. gammatoler-
ans also encodes homologues of the resolvase Hjc (Tg0717)
[91], two ligases (Tg1718, Tg2005) and also several putative
nucleases belonging to distinct families: tg0136 and tg1824
code for predicted thermonucleases (IPR006021), Tg0864 is
a homologue of the Methanococcus janashii recJ-like single-
stranded exonuclease [92] and Tg1631 contains a TOPRIM
domain found in various type IA and II topoisomerases,
DnaG-type primases, OLD family nucleases and RecR pro-
teins [93]. Finally, tg1177 encodes a predicted excinuclease
ABC C subunit (IPR000305). A set of genes that may consti-
tute a novel 'thermophile-specific' DNA repair system [94]
was found to be induced by gamma irradiation in P. furiosus
[62]. Further in silico analysis showed that these proteins are
homologous to CRISPR (clustered regularly interspaced
short palindromic repeat)-associated proteins [95]. It could
also be the same for tg1298, which encodes a putative nucle-
ase clustered in the genome with one CRISPR locus. Finally,
a homologue of Rad55 (ST0579) described in S. tokodaii [96]
is encoded by tg0280. Here, we report that T. gammatoler-
ans encodes six paralogues of tg0280 (tg0108, tg0530,
tg0616, tg0617, tg0996, tg1736) that, like RadB, are com-
posed only of a highly conserved ATPase domain with an
average size of 230 amino acids. Whether these recA-like pro-
Genome Biology 2009, 10:R70
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teins are involved in repair pathways has to be investigated,
as well as their respective roles.

Several lines of evidence suggest that DNA repair genes may
be constitutively expressed in archaea. Constant cellular
amounts are probably necessary to maintain genome integ-
rity and cope with environmental stresses [62,97]. Several,
but not all, were detected in our protein catalog prepared for
non-irradiated cells, suggesting they are constitutively
expressed in T. gammatolerans. The predicted nucleases
Tg0864, Tg1177, Tg1631, both ligases (Tg1718, Tg2005), the
endonucleases, AP-lyases and glycosylases Tg0271, Tg0543,
Tg1192, Tg1446, Tg1637, Tg1814 (putatively involved in base
excision repair), Tg0130, Tg0280, Tg1742, Tg1743, Tg1744
and Tg2074 (presumed to be involved in double-strand DNA
break repair) were detected while NurA (Tg1741) was not at a
sufficient level to be identified. The absence of nucleotide
excision repair proteins in the protein catalog (with the
exception of Tg1199) indicates that these proteins are in low
amounts in the cells and may be specifically synthesized in
some given environmental conditions.

We investigated the recovery of irradiated T. gammatolerans
cells in a rich medium containing peptides and S° (VSM-S°)
and under nutrient-limiting conditions (20 amino acids sup-
plemented with S° (ASW-S°)) [21]. In the latter case, cells
became more sensitive to gamma rays, with a survival of only
0.001% at a dose of 7,500 Gy. In a rich culture medium, D.
radiodurans and D. geothermalis withstand higher doses of
irradiation than T. gammatolerans [98]. On the other hand,
in minimal culture medium, an irradiation dose of 3,000 Gy
is lethal for D. radiodurans [99]. Exponentially growing T.
gammatolerans cells exhibit a similar behavior [21]. Since T.
gammatolerans is also able to grow in the presence of sugar
and without S° (MAYTP), we tested here the viability of the
cells in such growth conditions. Cell survival in both MAYTP
and VSM-S° media are almost the same whatever the phase
considered: 100% viability until 2,500 Gy and 0.1% survival
at 7,500 Gy (Figure 7). The slight survival increase observed
in VSM-S° compared to in MAYTP is probably due to a pro-
tective effect of the added sulfur in VSM-S° [100]. We con-
clude from these observations that the radioresistance of T.
gammatolerans is not drastically influenced by the metabolic
pathways used (peptide degradation versus sugar-based
metabolism) nor correlated with the generation time. Gener-
ation times in MAYTP and VSM-S° media differ: 5 h and 1.5
h, respectively. Figure 8 shows the kinetics of reconstitution
of shattered chromosomes after a 2,500 Gy exposure (100%
survival). Whereas 4 h were required for reconstitution when
cells were grown in VSM-S° [21], 7 h were needed for cells
recovering in MAYTP. As the survival rates are the same in
both conditions (100%), we confirmed that the speed of
genome restoration after irradiation is not a key parameter
for survival, at least in the growth conditions used. In a rich
medium, the rates of irradiated DNA recovery appear to be
slower than those reported for D. radiodurans [101,102]. As

Percentage survival of T. gammatolerans after gamma radiation in different mediaFigure 7
Percentage survival of T. gammatolerans after gamma radiation in different 
media. MAYTP cells were irradiated in the exponential phase (blue 
squares) or the stationary phase (red circles) under anaerobic conditions. 
These values are a mean of three independent experiments. Other survival 
curves were taken from [21].
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Chromosomal repair kinetics of exponentially growing T. gammatolerans cells in MAYTP following irradiation at a dose of 2.5 kGyFigure 8
Chromosomal repair kinetics of exponentially growing T. gammatolerans 
cells in MAYTP following irradiation at a dose of 2.5 kGy. Time 0 
represents an incubation of 5 minutes at 85°C. Genomic DNA was 
visualized after digestion by the rare cutting enzyme SwaI. The ND lane 
corresponds to non-digested genomic DNA of non-irradiated cells. The '-' 
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New England Biolabs, Ipswich, MA, USA) was used as reference. The size 
of several bands is indicated by arrows.
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shown in Table S17 in Additional data file 8, only a few repair
genes in T. gammatolerans have homologues in both Deino-
coccus sequenced genomes, but archaeal DNA repair sys-
tems, as well as other mechanisms involved in DNA
metabolism, are similar to their eukaryotic counterparts and
not to those found in bacteria. D. radiodurans encodes effi-
cient DNA repair systems but several proteins involved in
these pathways remain to be identified [24,102]. Analysis of
the transcriptome of D. radiodurans revealed a group of
genes that are up-regulated in response to either desiccation
or ionizing radiation [103]. The five most highly induced
genes in response to each stress encode proteins of unknown
function and their inactivation indicates that they play roles
in radioresistance in recA-dependent and recA-independent
processes, but none have homologues in T. gammatolerans.
However, among hypothetical proteins, one cannot exclude
the presence of functional analogues that play comparable
roles in the cell. Despite increasing literature on this subject,
DNA repair mechanisms in Archaea are less well documented
than those found in bacteria. Many proteins, and sometimes
entire pathways, are either missing or encoded by genes that
remain to be identified [80,104]. In every sequenced genome,
approximately 20 to 30% of the genes are orphans or code for
conserved proteins with unknown function, which may be
specific DNA-interacting proteins still to be characterized.

Finally, as shown throughout the numerous studies of D.
radiodurans, radioresistance is the result of numerous fac-
tors such as a high Mn/Fe ratio, which protects proteins from
oxidation, as well as nucleoid condensation limiting diffusion
of radiation-generated DNA fragments [105,106]. Therefore,
radioresistance is not restricted to DNA repair efficiency [24].
Further genomic studies performed on T. gammatolerans
will be crucial to discover the different cellular mechanisms
responsible for its radiotolerance.

Conclusions
We report here the T. gammatolerans genome sequence and
the first archaeal genome-wide proteome investigation per-
formed at the sequence annotation stage. The T. gammatol-
erans genome does not encode any transposase elements but
harbors a new virus-related element. This study has allowed
us to unravel this archaeon's metabolism under rich medium
growth conditions. Even if T. gammatolerans is grown with
peptides and S°, numerous metabolic pathways appear to be
active, including those involved in sugar catabolism and
amino acid metabolism. Moreover, this archaeon possesses
the common arsenal of DNA repair proteins found in other
Thermococcales. T. gammatolerans shares 1,606 common
genes with T. kodakaraensis but the latter is much more sen-
sitive to gamma rays, with a survival rate comparable to those
of Pyrococcus species (data not shown).We did not detect any
duplication, nor additional genes, related to DNA repair. The
genomic context of the corresponding genes does not give any
clues about the existence of new specific genes that could

explain massive DNA repair. We show that T. gammatoler-
ans cells repair damage caused by gamma radiation with the
same efficiency whatever the culture phase. Moreover, sur-
vival is comparable when cells use peptides or sugars while
the generation time is longer when cells grow without S°.
When cells are irradiated, damage to the Mbh and Mbx com-
plexes and various other transporters could be the most dele-
terious. A large amount of irradiation may affect not only the
ability to internalize substrates necessary to produce energy
and repair and recycle cellular damaged compounds, but also
to remove reduced cofactors that are in excess. The T. gam-
matolerans genome encodes several membrane-bound com-
plexes (formate hydrogenlyases 1 and 2, Mbc1, Mbc2). In
contrast to Mbh and Mbx, most of these proteins are not
detected by nano-LC-MS/MS, which is indicative of their rel-
atively low abundance in standard growth conditions. Irradi-
ation may enhance the expression of hydrogenlyases that
convert formate into protons and CO2. Moreover, the CODH
genes, which are expressed even if cells do not grow in a lim-
ited-nutrient medium and under a CO atmosphere, may
increase the pool of CO2 for cell metabolism. The carbon diox-
ide provides a carbon source for metabolism via the Rubisco,
the produced protons being used for ATP synthesis. Finally,
one specific feature of T. gammatolerans is the presence of
numerous systems of cellular detoxification to cope with reac-
tive oxygen species produced by gamma rays. In contrast to
other Thermococcales, homologues of the bacterial cydAB
genes were found and may be specifically synthesized after
irradiation. Altogether, these results show that T. gammatol-
erans is a new model of choice for studies of radioresistance
in archaea.

Materials and methods
Strains, media and growth conditions
T. gammatolerans EJ3 was grown in serum bottles under
anaerobic conditions at 85°C either in complex organic
medium (VSM) supplemented with S° (2 g/l) or in MAYT
medium as described in [107] supplemented with 5 g/l pyru-
vate (MAYTP medium). Growth assays were performed in
synthetic media (ASW: artificial sea water) supplemented
with a mixture of 20 amino acids [108] or supplemented with
specific proteinous substrates (Casamino acids, yeast extract,
tryptone and peptone) at a concentration of 5 g/l in the pres-
ence or absence of S°. Growth assays were also tested in the
nutrient-rich complex medium (MAYT) supplemented with
sugar carbon sources (5 g/l) in the presence or absence of S°.
VSM is composed of 20 g/l NaCl, 0.25 g/l KCl, 0.05 g/l NaBr,
0.02 g/l boric acid, 0.01 g/l SrCl2·6H2O, 0.5 g/l trisodium cit-
rate, 3 g/l PIPES (piperazine-1,4-bis(2-ethanesulfonic acid)),
1 g/l yeast extract, 4 g/l Bactotryptone, 5 ml 20% MgSO4, 1 ml
5% CaCl2, 1 ml 5% KH2PO4. The pH was adjusted to 6.8 by
addition of NaOH. Media were sterilized by autoclaving and
transferred into individual serum bottles. Air contained in the
bottles was first removed using a vacuum and then replaced
by N2. To reduce the oxygen dissolved in the medium,
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Na2S·9H2O at a 0.1% final concentration was added until the
color of resazurin sodium salt (1 mg/l) became clear. Typi-
cally, serum bottles were inoculated at a cellular density of 5
× 105 cells/ml and incubated at 85°C. Growth tests were per-
formed in triplicate. Growth was recorded during 3 days.

Genome sequencing and assembly
T. gammatolerans genome sequencing was initiated by con-
structing several bacterial artificial chromosome (BAC)
libraries (insert sizes of 50 to 75 kb) and two shotgun libraries
of different sizes (inserts of 3 and 10 kb) that together
achieved a tenfold coverage of the 2 Mb genome, as estimated
by pulse field gel electrophoresis. Primary end-sequencing
yielded about 32,000 reads that could be assembled in 10
contigs ranging between 35 and 487 kb, which covered more
than 90% of the genome. Then, 'gap-closure' and 'finishing'
phases were performed with several successive steps of
primer walks, totaling 328 synthesized oligonucleotides used
for sequencing on 171 distinct templates. Assembly, quality
assessments and contig editing were performed with the
phred/phrap/consed package [109-111].

Gene prediction, annotation and comparative 
genomics
Genome annotation and analysis were performed using a cus-
tom genome annotation WEB-based platform [112-114]. The
complete sequence and annotation of the genome can be
accessed using [GenBank:CP001398]. Semi-automated
annotation was performed to identify genes by sequence sim-
ilarity and coding probability using BLASTP [115] and GLIM-
MER version 2 [116], taking into account ORFs exceeding 90
nucleotides. Manual annotation was completed within the
platform using a wide range of integrated tools. Similarity
and motif searches were performed in the following databases
using the mentioned tools: GenBank nr, SwissProt version
41.0, and the COG databases COG + KOG (7 eukaryal
genomes) using BLASTP; CDD version 2.10 [117], COG ver-
sion 1.0, KOG version 1.0, Pfam version 11.0, and SMART ver-
sion 4.0 using rpsBlast; INTERPRO version 12.1, PRINTS
version 38.0, PROSITE version 19.10, PFAM version 19.0,
PRODOM version 2004.1, SMART version 5.0, TIGRFAMs
version 4.2, GO, SSF version 1.65, PIRSF version 2.68,
GENE3D version 3.0, and PANTHER version 6.0 using Inter-
proscan v4.2 [118]; transmembrane regions using modhmm
version 0.91 [119]; pattern matches in Pfam version 8 using
HMMER [120]; and tRNAs were identified using tRNA-
scanSE [121].

For genome comparative analysis, homologous genes were
defined following pairwise comparisons of BLASTP similarity
levels between genomes pairs [122], with threshold values of
80% alignment length for each pair member and 0.3 of max-
imum bitscore to accept a gene pair as homologous. Addition-
ally, gene pairs having an expected P-value = 1e-30 and failing
only one of the other criteria were included in the homolo-
gous gene list. This procedure avoids discarding gene pairs

for which alignment length or percentage bitscore falls just
below used thresholds, or in which one gene pair member, but
not the other, contains an indel or intein.

Synteny graphs were drawn using homologous gene pair
coordinates plotted one against another to give scatter plots
of conserved sequences [34,116]. Almost identical scatter
plots were obtained using BLASTN of 10 kb chopped genomes
or by using MUMmer software [116] (not shown).

The number of genome pair recombination events was calcu-
lated as follows: we first defined synteny blocks as any succes-
sion of 1, 2,. N homologous genes (as defined above) having
an identical organization in both genomes, and then the fre-
quency of synteny block lengths was compiled. The frequency
distributions thus obtained were fitted to power-law type dis-
tributions whose robustness was estimated by calculating the
coefficient of determination (R2) with a least squares proce-
dure. Consequently, assuming that the observed distributions
were generated by a finite number of random events (recom-
bination hits), the number of recombination events within
each genome pair is simply given by summing the total
number of synteny blocks.

Protein extracts, SDS-PAGE, and in-gel proteolysis
T. gammatolerans cellular pellets from five replicated cul-
tures in VSM-S° medium were resuspended in a lysis buffer
containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM DTT,
20 mM spermine, 3 mM TRIS/HCl (pH 7.5), and Complete
protease inhibitor cocktail (1 tablet for 10 ml; Roche, Basel,
Switzerland). Cells were disrupted by sonication at 4°C and
cell debris were then removed by centrifugation. Proteins
were eventually concentrated (10×) by trichloroacetic acid
precipitation. Proteins (30 and 300 μg) dissolved in LDS
sample buffer (Invitrogen, Carlsbad, CA, USA) were resolved
by SDS-PAGE with 4 to 12% gradient and 12% NuPAGE (Inv-
itrogen) gels. Gels were stained with Coomassie Safe Blue
stain (Invitrogen) and then each lane excised into 25 regions
(approximately 2.5 mm × 10 mm). Each band was treated and
proteolyzed with trypsin as described in [123].

LC-MS/MS analysis
LC-MS/MS experiments were performed on a LTQ-Orbitrap
XL hybrid mass spectrometer (ThermoFisher, Waltham, MA,
USA) coupled to an UltiMate 3000 LC system (Dionex-LC
Packings, Sunnyvale, CA, USA). Peptide mixtures (0.5 to 5
pmol) were loaded and desalted online in a reverse phase pre-
column (C18 Pepmap column, LC Packings), and resolved on
a nanoscale C18 Pepmap TM capillary column (LC Packings)
at a flow rate of 0.3 μl/minute with a gradient of CH3CN/0.1%
formic acid prior to injection into the ion trap mass spectrom-
eter. Peptides were separated using a 90 minute gradient
from 5 to 95% solvent B (0.1% HCOOH/80% CH3CN). Sol-
vent A was 0.1% HCOOH/0% CH3CN. The full-scan mass
spectra were measured from m/z 300 to 1,700 with the LTQ-
orbitrap XL mass spectrometer operated in the data-depend-
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ent mode using the TOP7 strategy. In brief, a scan cycle was
initiated with a full scan of high mass accuracy in the orbitrap,
which was followed by MS/MS scans in the linear ion trap on
the seven most abundant precursor ions with dynamic exclu-
sion of previously selected ions.

Database mining and mass spectrometry data 
deposition
Using the MASCOT search engine (version 2.2.04), we
searched all MS/MS spectra against two protein sequence
databases, TGAM_ORF0 and TGAM_CDS1. TGAM_ORF0 is
the compilation of sequences produced by translating the
longest possible ORFs bordered by a start and a stop codon as
defined by the bacterial and plant plastid genetic code [124],
and having at least 30 amino acids. It comprises 17,656
polypeptide sequences, totaling 1,634,020 amino acids, with
an average of 92 amino acids per polypeptide. The
TGAM_CDS1 database is a subset of the TGAM_ORF0 data-
base comprising the 2,157 predicted CDSs, totaling 632,575
amino acids with an average of 293 amino acids per protein.
These two databases are accessible at [112]. Searches for tryp-
sic peptides were performed with the following parameters:
full-trypsin specificity, a mass tolerance of 5 ppm on the par-
ent ion and 0.7 Da on the MS/MS, static modifications of car-
boxyamidomethylated Cys (+57.0215), and dynamic
modifications of oxidized Met (+15.9949). The maximum
number of missed cleavages was set at 2. All peptide matches
with a peptide score of at least 25 (average threshold for P <
0.001 with the CDS database) were filtered by the IRMa
1.16.0 parser. A false-positive rate of 0.55% was estimated
using a decoy database when considering a protein validated
with at least one peptide with score above 50. The false-posi-
tive rate was 0.00% when considering a protein validated
with at least two peptides (very stringent conditions). Further
data analyses were performed at an average threshold for P <
0.001: semi-trypsin specificity (peptide scores of at least 36),
phosphorylated Ser, Thr, and Tyr (+79.9663; peptide scores
of at least 31), formylation and acetylation of protein amino
termini (peptide scores of at least 31).

Mass spectrometry data were deposited in the PRIDE Pro-
teomics IDEntifications database [125] under accession num-
bers [PRIDE:#9212 to #9218], and are freely available at
[126].

Semi-relative protein quantification
The number of MS/MS spectra per protein was determined
from three independent experiments conducted in similar
conditions. The three data sets were normalized with the total
number of spectra recorded in each experiment, and com-
pared with the ACFold method described recently [127]. For
this, we used the PatternLab software with false discovery
rate, fold cut-off, and P-value cut-off set at 0.01, 2.0, and 0.01,
respectively. The data are presented per class and fold change
(Table S8 in Additional data file 2). A total of 843 proteins
were detected in these data sets. Among the 270 proteins that

satisfied statistical criteria, 80 were found with a low absolute
ACFold value, 125 were found to be more abundant in the
exponential phase and 65 were more abundant in the station-
ary phase.

Cell survival and DNA repair kinetics after gamma 
irradiation
T. gammatolerans cells from MAYTP cultures were incu-
bated on ice, harvested (2,000 g, 20 minutes at 4°C), and
resuspended in a limited volume of freshly reduced medium
in order to concentrate them tenfold. Equal samples of cells
(0.8 ml) were introduced into Hungate tubes, and then irra-
diated on ice at a rate of 42.5 Gy per minute using a 137Cs
gamma ray source (IBL637 CisBio International, Institut
Curie, Orsay, France). The same number of non-irradiated
control cells was incubated on ice without irradiation. Follow-
ing irradiation, serial tenfold dilutions were prepared in
freshly reduced medium until a cellular density of 0.1 cells per
tube. One milliliter of each of these dilutions was used to inoc-
ulate serum bottles containing 24 ml of fresh medium. These
cultures were then incubated at 85°C for a maximum of 9
days. They were checked every 24 h for presence or absence of
growth by optical microscopy using a Thoma counting cham-
ber. Cell survival was evaluated according to the last positive
dilution where cells were able to restore a high cellular den-
sity culture (>107 cells/ml) by comparison of dilutions of non-
irradiated cells used as an internal reference. All dilutions
were performed in duplicate and three biological replicates
were checked. To follow the DNA-repair kinetics, irradiated
and non-irradiated control cells were incubated at 85°C in
MAYTP medium at a density of at least 107 cells/ml. At regu-
lar post-irradiation incubation times (each hour), samples
were taken to prepare DNA plugs as described in [100] at a
cellular density of 108 cells per plug. Plugs were then washed
in 10 mM TRIS/HCl, 1 mM EDTA, pH 8.0 buffer and stored
at 4°C in this solution. Just before digestion, plugs were
extensively washed in sterile water, incubated 1 h in the buffer
of the restriction enzyme supplied by the manufacturer (New
England Biolabs, Ipswich, MA, USA) and then digested for 6
h at 30°C with 40 units of SwaI enzyme in a volume of 100 μl
per plug. The restriction enzyme was inactivated by incuba-
tion at 65°C for 20 minutes. Digested chromosomal DNA was
analyzed on 1% agarose gels in 89 mM TRIS/Borate, 2 mM
EDTA, pH 8.3 buffer using a CHEF-MAPPER electrophoresis
system (Bio-Rad, Hercules, CA, USA) under the following
conditions: 5.5 V/cm, 10°C, with a linear pulse of 40 s and a
switch angle of 120° (-60° to +60°), for 30 h. Pulsed field gel
electrophoresis kinetics are representative of at least two
independent experiments.

Abbreviations
ARG: average number of recombinations per gene; ASW:
artificial seawater; CDS: coding sequence; CODH: CO dehy-
drogenase; COG: cluster of orthologous groups; LC: liquid
chromatography; Mbc: membrane-bound complex; Mbh:
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