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Pseudomonas fluorescens genome comparisons<p>Comparison of the genome sequences of three Pseudomonas fluorescens strains reveals a heterogeneity reminiscent of a species com-plex rather than a single species</p>

Abstract

Background: Pseudomonas fluorescens are common soil bacteria that can improve plant health
through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome
sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P.
fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight
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into genes used by P. fluorescens in its natural environment and an improved understanding of the
ecological significance of diversity within this species.

Results: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable
divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic
and average amino acid identity analyses showed a low overall relationship. A functional screen of
SBW25 defined 125 plant-induced genes including a range of functions specific to the plant
environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains.
The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling
Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and
distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome.

Conclusions: P. fluorescens genomes are highly diverse. Strain-specific regions around the
replication terminus suggest genome compartmentalization. The genomic heterogeneity among the
three strains is reminiscent of a species complex rather than a single species. That 42% of plant-
inducible genes were not shared by all strains reinforces this conclusion and shows that ecological
success requires specialized and core functions. The diversity also indicates the significant size of
genetic information within the Pseudomonas pan genome.

Background
Pseudomonas fluorescens is a physiologically diverse species
of opportunistic bacteria (gamma-proteobacteria) found
throughout terrestrial habitats. The species contributes
greatly to the turnover of organic matter and, while present in
soil, is abundant on the surfaces of plant roots and leaves. Of
the plant-colonizing strains, some, such as isolates SBW25
and Pf-5, positively affect plant health and nutrition [1-3].
The mechanistic bases of these effects remain unclear, but are
known to include the production of plant growth hormones,
the suppression of pathogens (especially fungi and oomyc-
etes) detrimental to plant health via competitive and/or allel-
opathic effects, and the direct elicitation of plant defense
responses [4].

It has been argued that exploitation of these plant growth pro-
moting bacteria in agriculture requires an improved under-
standing of the determinants of ecological performance,
particularly persistence [5]. To this end, in vivo expression
technology (IVET) promoter trapping strategies were devised
and implemented to identify plant-induced and soil-induced
genes [5-9]. In these early studies a number of coding
sequences (CDSs) of ecological relevance were found to be
up-regulated, including a type III secretion system [10,11], a
cellulose biosynthetic locus [6] and a number of CDSs
involved in metabolism and protective responses [12-17].
However, the ability to comprehensively identify ecologically
important sequences was limited in these previous studies by
the use of incomplete genome libraries and the lack of whole
genome sequences.

The genome sequence of a single isolate of P. fluorescens, Pf-
5, has been reported [18]. Although a large number of genes
involved in nutrient uptake/degradation and biocontrol were
identified in Pf-5, the true diversity within this species was

not revealed. To address this issue and to enhance our under-
standing of the functional ecology of P. fluorescens, we have
determined the complete nucleotide sequences of two strains
from different environmental origins.

SBW25 was isolated in 1989 from the leaf surface of a sugar
beet plant grown at the University Farm, Wytham, Oxford,
UK [19]. In addition to its use in the study of microbe-plant-
soil interactions, SBW25 has become an important model
organism for studies on evolutionary processes (for example,
[20,21]). Pf0-1 was isolated in 1987 from loam soil in Sher-
born, Massachusetts, USA [22].

Here we report the genome sequences of SBW25 and Pf0-1
and the results of a comparative analysis of P. fluorescens that
includes isolate Pf-5. Our data reveal hitherto unrecognized
diversity [23], with the three strains sharing only 61.4% of
genes. We also identify highly abundant families of repetitive
DNA sequences and describe more than 100 genes that show
elevated levels of expression in the plant environment. These
plant-induced genes provide a snapshot of how P. fluorescens
perceives and responds to the plant environment and reveals
conservation of strategies among strains for the enhancement
of ecological performance.

Results and discussion
P. fluorescens SBW25 and Pf0-1 genome architecture
The general features of the genomes of P. fluorescens SBW25
(6,722,539 bp) and Pf0-1 (6,438,405 bp) are summarized in
Table 1. SBW25 is predicted to encode 6,009 CDSs, with a
coding density of 88.3%. The genome of Pf0-1 has 5,741 CDSs
with a coding density of 90%. These findings compare to
6,144 CDSs predicted for Pf-5 (7,074,893 bp and 88.7% cod-
ing density) [18].
Genome Biology 2009, 10:R51
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Alignments of the whole genome sequences of P. fluorescens
strains SBW25, Pf0-1, and Pf-5 revealed that the only long-
range synteny among these genomes is confined to the origin
of replication, with a gradual deterioration in both synteny
and sequence conservation towards the replication terminus
(Figure 1). There is also evidence of extensive reciprocal
recombination around the terminus of replication, as com-
monly seen in other bacterial genomes [24] (Figure 1). Nei-
ther bacterium contains an accessory element (note that
plasmid pQBR103 for which the complete sequence was
recently reported [25] was acquired by SBW25 during a field
release experiment [26], but this plasmid is not present in the
originally isolated strain).

Intra- and inter-species variation among Pseudomonas 
genomes
Reciprocal FASTA analysis was used to identify orthologous
gene sets shared among the three genomes. The distribution
of genes and orthologues among the three P. fluorescens
strains is non-random, with strain-unique genes being more
common towards the replication terminus (Figure 1). This
organization is similar to the accessory loci near the end of the
arms (termini) of the linear chromosome in Streptomyces
coelicolor A3(2), which are highly variable in both length and
composition [27]. Of the total coding capacity, genes con-
served among all three P. fluorescens isolates comprise 3,642
CDSs, representing 59.3%, 60.6% and 63.4% of the coding
capacity in Pf-5, SBW25 and Pf0-1, respectively (Figure 2). A
large proportion of the P. fluorescens genes (from 1,111 to
1,490 CDSs (22% to 27% of total coding capacity)) are found
in just one genome (Figure 2). This finding contrasts with
Pseudomonas aeruginosa, where the five sequenced isolates
share a conserved core of 5,021 genes with only 1.4% (strain
C3719) to 8.2% (strain PA2192) of genes unique to any one
isolate [23]. It is possible that the overall low level of variation
among the sequenced P. aeruginosa isolates reflects a bias
created by restricting sampling solely to clinical isolates. If
true, then it may be that the highly variable genomes of P. flu-
orescens are more representative of the true diversity of the
Pseudomonas genus.

When the reciprocal FASTA analysis was extended to include
11 other sequenced Pseudomonas species the conserved gene
complement of these 14 Pseudomonas genomes was just
1,705 CDSs. This pseudomonad core gene-set falls below that
previously estimated for the gamma-proteobacteria as a
whole (2,049 CDSs [28]), underscoring the highly variable
nature of this genus. This is also highlighted in Figure 3,
which shows a majority rule consensus tree from the results
of individual maximum likelihood analyses of the 1,705 core
CDS amino acid datasets. The data strongly support the clas-
sification of P. aeruginosa, P. putida, and P. syringae isolates
into species groups, with at least 95% of the single gene trees
supporting the species distinction. In contrast, support for
the classification of the three P. fluorescens isolates as a single
species was relatively weak, supported by only 57% of single
gene trees. Support for the intra-group relationships are not
strong for any of the species examined and most likely reflects
recombination among strains of each species [29]. Indeed,
evidence of recombination in a number of different Pseu-
domonas species, including P. aeruginosa [30], and P. fluo-
rescens [31] has been reported.

Average amino acid identities (AAIs) [32] were calculated
using the pair-wise orthologous sets of CDSs from the three P.
fluorescens strains as well as three P. aeruginosa strains and
three P. syringae pathovars (Figure 4; Table 2). It is evident
that the AAIs of the P. fluorescens strains are considerably
lower than those found in P. aeruginosa and P. syringae and
fall between the limits of genera and species as defined by
Konstantinidis and Tiedje [32]. In addition, while unique
sequences in each genome were excluded from AAI analyses,
the relatively low number of orthologous sequences within
the P. fluorescens genomes further calls the species grouping
of these strains into question. However, we note that the AAI
of orthologues located close to the replication origin ranges
from 84.6% to 85.6%, whereas the AAI range for orthologues
nearer the replication terminus is 75% to 77.5%: the genome
wide AAI ranges from 82.2% to 83.4%. These regional differ-
ences require consideration before using AAI to infer related-
ness.

Table 1

General characteristics of the genomes of P. fluorescens strains SBW25, Pf0-1 and Pf-5

P. fluorescens strain SBW25 Pf0-1 Pf-5*

Number of bases 6,722,539 bp 6,438,405 bp 7,074,893 bp

Number of CDSs 6,009 5,741 6,144

Pseudogenes 88 9 NA

Coding percentage 88.3% 90% 88.7%

%GC 60.5 60.62 63.3

tRNAs 66 73 71

rRNA genes (clusters) 16 (5) 19 (6) 15 (5)

Intergenic repeat families 6 (with a total of 1,199 repeats) 9 (with a total of 231 repeats) 5 (with a total of 748 repeats)

*See Paulsen et al. [18]. NA = not analysed.
Genome Biology 2009, 10:R51
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Comparison of amino acid matches between the complete six-frame translations of the whole genome sequences of P. fluorescens Pf0-1, SBW25 and Pf-5 genomesFigure 1
Comparison of amino acid matches between the complete six-frame translations of the whole genome sequences of P. fluorescens Pf0-1, SBW25 and Pf-5 
genomes. The analysis was carried out using Artemis Comparison Tool and computed using TBLASTX. Forward and reverse strands of DNA are shown 
for each genome (dark grey lines). The red bars between the DNA lines represent individual TBLASTX matches, with inverted matches colored blue. 
Graphs show the density of CDSs with orthologues in the other two P. fluorescens strains (red and green lines). Window size is shown on the graphs. The 
thin grey lines show the genome average orthologue density. The white boxes on the DNA lines represent the variable regions around the termini as 
defined by these graphs (SBW25, 2.7 Mb; Pf0-1, 2 Mb; and Pf-5, 2.65 Mb). Blue and pink boxes represent the position of atypical regions and prophage, 
respectively.
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Comparison of amino acid matches between the complete six-frame translations of the whole genome sequences of P. fluorescens Pf0-1, SBW25 and Pf-5 genomesFigure 2
Venn diagram comparing the gene complements of P. fluorescens strains SBW25, Pf0-1 and Pf-5. The numbers of unique and shared CDSs are presented. 
Numbers in parenthesis are insertion sequence elements and pseudogenes. Pie charts indicate the absolute numbers divided into functional categories (see 
legend) for the complete gene complement of SBW25, the CDSs in common with the other two strains plus the core gene complement for all three.
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Based on the genomic criteria provided by Goris et al. [33] for
defining species, the three P. fluorescens strains could indeed
be different species. In fact, our analysis is in agreement with
previous studies that have shown - based on gyrB and rpoD
nucleotide sequences - P. fluorescens to be a complex com-
posed of two major lineages [34], with Pf-5 and Pf0-1 belong-
ing in the P. chlororaphis and SBW25 in the P. fluorescens
lineage. Similar conclusions have come from DNA-DNA
hybridization and average nucleotide identity scores [33] and
the genome signature (genome-specific relative frequencies
of dinucleotides) [35]. Given the small sample of genomes, it

seems premature to redefine the species 'P. fluorescens' at
this time. It should also be noted that our analysis shows the
three P. fluorescens strains to group more closely to each
other than to any other member of the Pseudomonas genus
(Figure 3; Table 2).

Functional analysis of the SBW25 gene complement
Analysis of the conserved genes present in the three P. fluo-
rescens strains provides results that are typical of other soil
dwelling bacteria [36,37]. For example, SBW25 and Pf0-1
carry an abundance of regulatory genes (>300 each), and

Phylogenetic tree of 14 different Pseudomonas species, based on 1,705 conserved genes: Pseudomonas fluorescens strains SBW25 (SBW25), Pf0-1 (Pf01) and Pf-5 (Pf5); Pseudomonas aeruginosa strains PAO1 (P_aer_PAO1), PA14 (P_aer_PA14) and PA7 (P_aer_PA7); Pseudomonas syringae pv. syringae B728a (P_syr_syr), pv. tomato DC3000 (P_syr_tom) and pv. phaseolicola 1448A (P_syr_pha); Pseudomonas putida strains GB1 (P_put_GB1), F1 (P_put_F1), W619 (P_put_W619) and KT2240 (P_put_KT24); and Pseudomonas stutzeri strain A1501 (P_stut)Figure 3
Phylogenetic tree of 14 different Pseudomonas species, based on 1,705 conserved genes: Pseudomonas fluorescens strains SBW25 (SBW25), Pf0-1 (Pf01) and 
Pf-5 (Pf5); Pseudomonas aeruginosa strains PAO1 (P_aer_PAO1), PA14 (P_aer_PA14) and PA7 (P_aer_PA7); Pseudomonas syringae pv. syringae B728a 
(P_syr_syr), pv. tomato DC3000 (P_syr_tom) and pv. phaseolicola 1448A (P_syr_pha); Pseudomonas putida strains GB1 (P_put_GB1), F1 (P_put_F1), W619 
(P_put_W619) and KT2240 (P_put_KT24); and Pseudomonas stutzeri strain A1501 (P_stut). Numbers on nodes represent percentages of individual trees 
containing that relationship. The scale bar corresponds to the number of substitutions per site.
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genes encoding motility and chemotaxis-related functions
(>100 each) as well as genes specifying membrane and trans-
port functions (>1,000 each).

Also typical for pseudomonads, the genomes of SBW25, Pf0-
1 and Pf-5 lack 6-phosphofructokinase, required for conver-
sion of β-D-fructose 6-phosphate to β-D-fructose 1,6-
bisphosphate (although the gene for 1-phosphofructokinase
is present) and these strains are therefore unlikely to carry
out glycolysis. Nonetheless, each genome possesses genes
predicted to specify the enzymes phosphogluconate dehy-
dratase and 2-keto-3-deoxygluconate 6-phophate aldolase,
which are necessary for utilization of glucose via the phospho-
rylative Entner-Doudoroff pathway.

The extreme diversity evident in these three P. fluorescens
isolates - both in gene content and sequence conservation -
made a full metabolic reconstruction impractical in the con-
text of P. fluorescens as a species. Such a reconstruction
requires a greater number of complete genome sequences and
an improved understanding of the nature of the P. fluores-
cens species. Instead, we focused on the direct identification
of genes associated with colonization and survival in the plant
environment using an IVET promoter-trapping strategy. This
approach is the first step in a functional test of the prediction
that the gene classes commonly associated with soil bacteria
(outlined above) are determinants of their ecological per-
formance. Previous attempts have exploited the IVET pro-
moter-trapping strategy to identify genes up-regulated in the
plant rhizosphere and soil environments [5-7]. While provid-
ing insight into a set of functionally significant genes, these
studies have been based on the screening of partial genomic
libraries and, therefore, the full spectrum of plant-soil-

induced genes has not been identified. In order to obtain a
comprehensive set of genes specifically active in the plant-soil
environment, a full genome survey of plant- and rhizosphere-
induced genes (collectively referred to as environment induc-
ible loci (EIL)) in SBW25 was undertaken using the IVET
strategy developed by Gal et al. [6]. This strategy selects EIL
on the basis of their ability to drive the expression of a pro-
moterless copy of the reporter gene dapB ('dapB) - a gene
required for the biosynthesis of diaminopimelate (DAP),
which is an essential component of the peptidoglycan layer of
the bacterial cell wall. Active EIL fusions to 'dapB allow
growth by complementing a dapB deletion in the SBW25 host
strain used for these experiments. The distribution of EIL in
SBW25 is shown in Figure 5a, and putative Pf0-1 orthologues
are shown in Figure 5b. EIL classified by function, and puta-
tive orthologues in Pf0-1 and Pf-5, are given in Supplemen-
tary Table 1 in Additional data file 1.

EIL were identified by screening a library consisting of
33,000 clones (62 independent ligation reactions) and ana-
lyzed in pools of 250 on Beta vulgaris (sugar beet) seedlings.
Given a genome of 6.7 Mbp, a random library of 3 to 5 kb frag-
ments, and assuming 3,000 promoters in the SBW25
genome, then the chance of a promoter not being included in
this study is less than 0.01 (based on the Poisson distribu-
tion).

The plant-inducibility of the EIL-'dapB fusion strains recov-
ered by IVET selection was verified for each of the 125 IVET
fusion strains by their inability to grow on M9 (glucose) min-
imal medium in the absence of DAP (thus demonstrating that
the fusions are transcriptionally silent in vitro). The ability of
each fusion strain to colonize both the rhizosphere and the
phyllosphere of non-sterile sugar beet seedlings was then re-
checked (strains colonizing these environments contain
fusions to genes that are transcriptionally activated in the
plant environment) [6,11]. SBW25ΔdapB and an IVET nega-
tive-control strain, PBR393 [38], were used as controls and
no colony forming units of either strain were recovered from
either the rhizosphere or phyllosphere. Every putative
SBW25ΔdapB strain carrying an EIL-'dapB fusion grew in
the rhizosphere (the size of the initial inoculum more than tri-
pled in the rhizosphere over the course of 3 weeks); 90 of
these IVET fusion strains were also able to grow in the phyl-
losphere (cells recovered from the phyllosphere underwent at
least 3 doublings in 3 weeks). Growth of all EIL-fusion strains
was significantly impaired in M9 (glucose) minimal medium.
These tests verify that the EIL fusions are expressed by
SBW25 on plant surfaces, and that the EIL promoters are
dependent on the plant environment for expression. Further
studies to determine the precise function of individual EIL in
the plant environment are on going.

The 125 genes shown to be specifically up-regulated in planta
represent all major classes of genes found in SBW25: Pf0-1
and Pf-5 each have orthologues of 83 of the 125 IVET-identi-

Table 2

AAIs of the orthologous CDSs of P. fluorescens and P. aeruginosa 
strains and P. syringae pathovars

Strain pairing AAI

P. fluorescens

Pf0-1/Pf-5 82.786

SBW25/Pf0-1 81.784

SBW25/Pf-5 81.589

P. aeruginosa

PA7/PA14 94.974

PA7/PAO1 95.070

PA14/PAO1 98.887

P. syringae

pv. syringae/pv. phaseolicola 94.238

pv. syringae/pv. tomato 92.025

pv. phaseolicola/pv. tomato 92.597

AAI, amino acid identity.
Genome Biology 2009, 10:R51
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fied genes. Of these, 73 genes are common to all three P. fluo-
rescens strains (Supplementary Table 1 in Additional data file
1). These data confirm the importance of previously recog-
nized activities [6], and those predicted from genome
sequence analysis, including nutrient acquisition and scav-
enging, cell envelope function, metabolism, stress response,
and detoxification. Interestingly, when compared with the
results of a previously conducted (small scale) study using the
DAP-based IVET strategy [6], only 4 of the 25 EIL recovered
in that study were identified here. These included the cellu-
lose biosynthetic locus wss (recovered on six independent
occasions in this study), fliF, glcA and fadE (Supplementary
Table 1 in Additional data file 1). The reasons for the relatively
low overlap between the two studies is unclear, but perhaps
reflects subtle differences in conditions for plant propagation,
although the differences are more likely to reflect the particu-
larly stringent criteria applied in this study in order for a
putative plant-induced locus to qualify as an EIL. Nonethe-

less, of importance is the fact that genes of the same func-
tional classes were obtained in both screens.

No validated 'dapB IVET fusions were obtained for genes
within the Rsp type III secretion system, which was previ-
ously identified by a different (pantothenate-based) IVET
selection strategy [5]. Its low level of expression in the rhizo-
sphere [11] is likely to be insufficient to restore competitive
growth in the DAP-based promoter trapping strategy used in
this study.

Regulators form a large class of EIL: the 17 predicted regula-
tory components include a sigma factor, LysR-type regula-
tors, two component sensing systems, a di-guanylate cyclase,
and a phosphodiesterase. Also included in this collection is an
operon defined by EIL037 (PFLU1114-1111) whose four CDSs
show remarkable complexity: a compound GGDEF/EAL/
CheY protein (PFLU1114), followed by a predicted cyto-
chrome C551 peroxidase precursor (PFLU1113), followed by

Average amino acid identities between pairs of P. syringae, P. aeruginosa, and P. fluorescens strainsFigure 4
Average amino acid identities between pairs of P. syringae, P. aeruginosa, and P. fluorescens strains. The strain designations for the P. fluorescens and P. 
aeruginosa isolates and pathovar designations for the P. syringae isolates are as described for Figure 3. Genus and species boundaries are those used by 
Konstantinidis and Tiedje [32].
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two compound histidine kinases (PFLU1112 and PFLU1111).
That this and other regulatory loci are actively transcribed
outside of the laboratory environment supports the generally
held assumption that the abundance of regulatory genes in
Pseudomonas is important for life in complex environments
[39].

Another notable 'dapB IVET fusion is EIL082, which falls
within a previously unrecognized non-ribosomal peptide syn-
thetase (NRPS) biosynthetic gene cluster (PFLU3215 to
PFLU3228) present in the non-core region of SBW25. The
non-ribosomal peptide produced by this enzyme complex is
specific to SBW25, because no orthologues of these NRPS
genes exist in Pf0-1 or Pf-5. Interestingly, Pf0-1 also possesses
a novel NRPS gene cluster (Pfl01_2265-2267) not present in

SBW25 or Pf-5. There are three NRPS biosynthetic clusters in
SBW25, four in Pf0-1 and three in Pf-5, including the pyover-
dine biosynthesis cluster. The similarity shared amongst
these clusters is limited to conservation of the functional
domains, with no full length identities. There is little conser-
vation of the order of the functional domains. The production
of pyoverdine is one of the defining characteristics for P. flu-
orescens and yet the genome has shown great diversity both
in the pyoverdine clusters and in the other non-ribosomal
peptides that are made by P. fluorescens.

Genes with no significant matches to DNA or protein
sequences in public databases comprise approximately 10%
of the IVET fusions. On the basis of in silico analyses, the
majority of these genes are predicted to encode membrane-

Circular genome maps of P. fluorescens strains SBW25 and Pf0-1Figure 5
Circular genome maps of P. fluorescens strains SBW25 and Pf0-1. (a) P. fluorescens SBW25. From the outside in, the outer most circle shows atypical 
regions (blue boxes) and prophage-like regions (pink boxes) numbered according to Supplementary Table 3 in Additional data file 3; circle 2, scale line (in 
Mbps); circles 3 and 4 show the position of CDSs transcribed in a clockwise and anticlockwise direction, respectively (for color codes, see below); circle 
5, location of IVET EIL fusions (black); circle 6, graph showing density of CDSs with orthologues (red) and those unique to SBW25 (green) compared to P. 
fluorescens Pf0-1 (window size 50,000 bp, step size 200); circle 7, P. fluorescens SBW25 variable region (green line); circle 8, IR1_g inverted repeats (dark 
blue); circle 9, R0 family of intergenic repeats (navy blue); circle 10, R2 family of intergenic repeats (light blue); circle 11, R5, R30, R178 and R200 families 
of intergenic repeats (aqua); circle 12, repeat deserts (ReDs; grey boxes); circle 13, GC skew (window 10,000 bp). CDSs were color-coded according to 
the function of their gene products: dark green, membrane or surface structures; yellow, central or intermediary metabolism; cyan, degradation of 
macromolecules; red, information transfer/cell division; cerise, degradation of small molecules; pale blue, regulators; salmon pink, pathogenicity or 
adaptation; black, energy metabolism; orange, conserved hypothetical; pale green, unknown; and brown, pseudogenes. Note that IR1_g repeats were not 
included in the ReD analysis because, based on their structure, we could not exclude the possibility that many of them simply represent transcription 
termination sequences. Where some ReDs appear to contain R-family repeats (for example, ReDs at about 6.1 Mb) there is actually more than one ReD, 
separated by a very small DNA region, that cannot be resolved in the figure. (b) P. fluorescens Pf0-1. From the outside in, outer most circle shows atypical 
regions (blue boxes) and prophage-like regions (pink boxes) numbered according to Supplementary Table 4 in Additional data file 3; circle 2, scale line (in 
Mbps); circles 3 and 4 show the position of CDSs transcribed in a clockwise and anticlockwise direction, respectively (for color codes, see above); circle 5, 
orthologues of SBW25 EIL - those EIL that are antisense in SBW25 are indicated by orthologues to the predicted CDSs on the sense strand; circle 6, graph 
showing density of CDSs with orthologues (red) and those unique to Pf0-1 (green) compared to P. fluorescens SBW25 (window size 50,000 bp, step size 
200); circle 7, P. fluorescens Pf0-1 variable region (green line); circle 8, IR1_g inverted repeats (dark blue); circle 9, R5 family of intergenic repeats (navy 
blue); circle 10, R6 family of intergenic repeats (light blue); circle 11, R0, R1, R6-partial, R26, R30, R69, and R178 families of intergenic repeats (aqua); circle 
12, GC skew (window 10,000 bp).
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associated proteins, suggesting their interaction with the
external environment through uptake, export, or signaling.

A large class of EIL are fusions of non-predicted genes, ori-
ented in the opposite direction to transcription of predicted
CDSs (40 in total; see class XI, Supplementary Table 1 in
Additional data file 1). 'Antisense' fusions of this type have
been described previously [5,40]. It is possible that some of
these fusions highlight in silico gene prediction errors; how-
ever, careful examination of these fusions renders this
unlikely. Moreover, in a previous study both the sense CDS
and antisense IVET fusion were found to encode proteins;
furthermore, the IVET-identified 'antisense' gene was shown
to be important for efficient colonization of soil [41]. We
refrain from further speculation as to the significance of these
'antisense' fusions, but such a substantial number suggests
there is much yet to learn about the potential role of these
genes in the function of bacteria in their natural environ-
ments.

Despite evidence for a highly variable accessory region
towards the terminus of replication, the distribution of EIL in
SBW25 appears to have little or no bias toward any particular
genomic location (Figure 5a, b). The 31 genes defined by
EIL055 to EIL096 are within the variable region (see below)
of the SBW25 genome while the remainder are within the core
region. This even distribution indicates that many of the
mechanisms favoring success in natural environments are

conserved, while individual strains appear to possess acces-
sory traits that are likely to confer niche-specificity.

Repeat families
Whole genome alignments of SBW25, Pf0-1, and Pf-5 showed
evidence for extensive within-genome recombination. In
many bacteria this is driven by recombination between repeat
sequences. However, in none of the P. fluorescens genome
rearrangements were the recombined sequences flanked by
rRNAs, tRNAs or known insertion sequence elements. To
identify repetitive DNA sequences that may explain this
intragenomic recombination, an exhaustive search for such
sequences in SBW25, Pf0-1, and Pf-5 was performed.

Analysis of SBW25 revealed the presence of 4,357 repeat
sequences representing 11.91% of the genome. These repeti-
tive sequences ranged in size from 24 to 357 bps and com-
prised 1,199 intergenic repeats, 922 inverted repeats (IR1_g),
and 2,236 intragenic repeats. This type of repeat expansion
has been seen in other systems, where it is associated with a
relaxation of selection on the genome. This can be associated
with a recent change in niche, and the resulting evolutionary
bottleneck [42,43], or with reduced selection because of small
effective population size and absence of recombination [44].
However, as discussed below, this is not thought to apply
here. The intragenic repeat families represent coding
sequences for conserved protein domains within over-repre-
sented protein families; 1,293 represented just 4 protein
domain families (as defined by Pfam; see Materials and meth-

Table 3

Characteristics of the intergenic repeat elements present in P. fluorescens SBW25, Pf0-1, and Pf-5

Repeat family Size (bp) G+C% SBW25 Pf0-1 Pf-5 Structure

R0 89 59.81 612 36 - IRs: 24 bp

R1 80 68.31 - 9 621 IRs: 30 bp

R2 110 66.52 516 - 4 IRs: 43 bp

R5 50 65.07 2 52 -

R6 177 59.09 - 50 - IRs: 34 bp

R6-partial 120 59.61 - 9 - -

R26 352 60.76 - 20 - -

R30 120 58.47 4 15 - -

R69 62 64.67 - 12 - -

R87 58 68.94 - - 106 -

R178 101 61.86 18 28 9 IRs: 11 bp (internal)

R200 320 60.25 47 - 8 -

Total elements - - 1,199 231 748 -

Inverted repeats*

IR1_g 23-28 66.52 125 -

IR1_g 21-28 64.7 922 -

IR1_g 23-27 65.2 36 -

* IRg_1 elements vary slightly in size, but all match closely with the consensus sequence and structure.
Genome Biology 2009, 10:R51
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ods) - ABC transporter, AMP-binding enzyme, response reg-
ulator receiver domain and the GGDEF domain.

The P. fluorescens intergenic repeat elements comprised 12
families on the basis of sequence conservation (Supplemen-
tary Figure 1 in Additional data file 2). An analysis of their dis-
tribution and frequency (Table 3) within and between
genomes shows examples of both strain-specific and species-
specific families. The repeat families R0 and R2 are repre-
sented more than 500 times in SBW25, but are either absent
or rarely present in Pf0-1 or Pf-5. Conversely, repeat family R1
is abundant in Pf-5, but rarely present in Pf0-1 and absent
from SBW25; repeat family R6 is present in Pf0-1 and absent
from the genomes of the other two strains.

Structural organization of the P. fluorescens intergenic 
repeats
Detailed analysis of the repeat sequences revealed that five
families possess a complex structure consisting of two identi-
cal inverted repeats (IRs) that flank a variable size core region
(Table 3). The IRs generally show a higher average G+C con-
tent than the genome as a whole (64.7%; the genome average
is 60.5%), while the G+C% content of the variable core region
sequences is closer to the genome average. Structural predic-
tions made with these repeat sequences show that they read-
ily form hairpin secondary structures, with the IRs forming
the stem and the variable core region forming the loop.

Three repeat families, R0, R2 and IR1_g, are of particular
interest given their disproportionately high numbers in
SBW25 relative to Pf0-1 and Pf-5 (Table 3). The IRs of R0 and
R2 are identical to those found flanking two different inser-
tion sequence elements unique to strain SBW25 at locations
50373465038275 (PFLU4572A) and 63871926388340
(PFLU5832), respectively. It is possible that the IRs of repeat
families R0 and R2 are recognized by the two insertion
sequence element-encoded transposases in trans, which
might explain why the elements have become over-repre-
sented in the SBW25 genome. If this is true, then these
repeats are likely to represent miniature inverted-repeat
transposable elements (MITEs), only very few of which have
been reported in bacteria [45].

In addition to the ability to form stem-loop structures, the
IR1_g repeats also possess the consensus sequence for the
repetitive extragenic palindromic repeats (REP) family,
which were originally thought to be specific to P. putida
KT2440. The functional significance of the Pseudomonas
REPs awaits elucidation, but they may play a role in tran-
scription termination or provide binding sites for the DNA
gyrase [46].

Since many of these repeat families can form stem-loop struc-
tures, they have the potential to act as transcriptional termi-
nators. We therefore examined the transcription orientation
of the genes flanking repeat elements to look for bias. In

describing this analysis we use 'Head' to refer to the 5' end of
a CDS and 'Tail' to refer to the 3' end. Using this nomenclature
there are four transcriptional orientation states (including
CDSs on both the forward and reverse DNA strands) for the
CDSs that lie on either side of a repeat element: Tail-repeat-
Head (forward strand) (→ →), Tail-repeat-Tail (→ ←), Tail-
repeat-Head (reverse strand) (← ←) and Head-repeat-Head
(← →). We compared the frequency of each of the four states
with all CDS pairs that lacked an intervening repeat element.
The frequency of the four orientation states among CDS pairs
that flank repeat elements was significantly different from
that of CDS pairs that do not (SBW25, P < 0.0005; Pf0-1, P =
0.016; Pf-5, P < 0.0005). For those CDS pairs that do not
flank repeat elements the Tail-Head (forward and reverse
strand) orientation is predominant; for CDS pairs flanking
repeats the most frequent orientation is the Tail-repeat-Tail
(Supplementary Figure 2 in Additional data file 2). The Tail-
repeat-Tail bias is prevalent for the largest three of the six
intergenic repeat families present in SBW25 and for five of
the nine repeat families in Pf0-1 (Supplementary Figure 3 in
Additional data file 2). The selective pressure for the non-ran-
dom distribution of repeats may derive from the predicted
stem-loop (transcription terminator-like) structure; insertion
of a repeat with a stem-loop structure between Tail-Head ori-
ented CDSs within an operon would cause termination, thus
disrupting these transcriptional units. The Tail-repeat-Tail
biased distribution of these repeats probably reflects a 'least
worst' location as insertion is less likely to cause aberrant
transcription termination since termination of convergent
transcription is likely to occur anyway. In addition, the Head-
repeat-Head state, which could potentially disrupt promoters
for one or both genes, occurs at a low frequency, particularly
in SBW25 and Pf-5. These data would also suggest that the
expansion of the intergenic repeats has been subject to selec-
tion. Consequently, it is unlikely that the repeat expansion
seen in P. fluorescens results from the organism having been
through an evolutionary bottleneck (this scenario is generally
associated with random distribution of repetitive sequences)
[43] and more likely that it is linked to a lack of selection
against increased genome size.

P. fluorescens repeat deserts
Evident from the genome analysis are large regions of the
SBW25 genome that lack any complex repeat families (R-
family repeats; Table 3). We refer to these as repeat deserts
(ReDs; Figure 5a). The SBW25 genome harbors 60 ReDs,
which range in size from an arbitrary lower limit of 15.8 kb up
to 176 kb and encode a total of 2,475 CDSs (40% of the coding
capacity), of which 93.7% are unique to SBW25 compared to
Pf0-1 and Pf-5 (Supplementary Table 2 in Additional data file
3). Because of the density of repeats in SBW25, the identifica-
tion of ReDs was straightforward. In contrast, the lower
number of repeats in Pf0-1 and Pf-5 makes definition of sim-
ilar regions more difficult.
Genome Biology 2009, 10:R51
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Two, not mutually exclusive, explanations for the lack of
repeats in these regions exist: first, the ReDs comprise mostly
essential genes that normally experience high purifying selec-
tion [47,48]; and second, the ReDs might have been recently
acquired from a donor lacking repeat sequences. Indeed,
examples of the former include the rRNA clusters, the ribos-
omal proteins cluster, the wss cluster (PFLU0300 to
PFLU0309), which directs production of an acetylated cellu-
lose-like polymer involved in formation of a microbial mat
[49,50], and cell division proteins (PFLU0940 to PFLU0953,
amongst others).

Recently acquired ReDs that have different dinucleotide fre-
quencies to the above group contain CDS clusters that might
confer niche specificity. One such example is the anthranilate
synthase cluster (PFLU1381 to PFLU1386), which is unique
to SBW25. Other examples found within ReDs include 'atypi-
cal' regions of the SBW25 genome, which show limited phyl-
ogenetic distribution, aberrant G+C% content or dinucleotide
frequency compared with the genome average for Pseu-
domonas species (Supplementary Table 3 in Additional data
file 3). These may reflect sequences acquired through recent
gene transfer events [51]. While ReDs are not evident in Pf0-
1, several such atypical regions have been identified (Supple-
mentary Table 4 in Additional data file 3), and these are also
free of repeats, as are all but one of the mobile genetic ele-
ments recently described in Pf-5 [52]. For example, SBW25
and Pf0-1 each carry multiple prophage-like elements, and
both genomes have one probable integrative conjugative ele-
ment (ICE)-like genomic island, SBW_GI-1 and the related
island Pf0-1_GI-1, which have similarity to the genomic
island PFGI-2 in Pf-5 [52]. SBW_GI-1 is located between par-
tially duplicated tRNAval and is over 101 kb in length.
Strengthening the possibility that this region is a hotspot for
insertions, comparison of approximately 5 kb of unpublished
sequences flanking the mupirocin biosynthetic cluster of P.
fluorescens NCIMB10586 [53], which based on DNA
sequence identity (generally 93% to 96%) and synteny is more
closely related to SBW25 than Pf0-1 or Pf-5, indicates that the
mup cluster is inserted adjacent to the same tRNAval tRNAasp

tandem cluster as SBW_GI-1. Pf0-1_GI-1 defines a slightly
smaller locus than SBW_GI-1 and lacks flanking insertion
site duplications. These islands are related in structure to a
family of ICEs, which include those found in other pseu-
domonads [54,55] as well as wider members of the gamma-
proteobacteria such as Yersinia (YAPI [56,57]) and Salmo-
nella (SPI-7 [58]). These elements are defined as having a
conserved core carrying a type IV pilus operon and plasmid-
related functions as well as a highly variable region, which
carries genes involved in resistance and host adaptation. The
reduction of the type IV pilus genes, and breakdown of the
flanking regions in Pf0-1_GI-1, suggest these ICEs may be
undergoing fixation in the genome, perhaps attributable to an
important function of the cargo genes. The variable cargo
regions of SBW_GI-1 and Pf0-1_GI-1 are summarized in Sup-
plementary Tables 3 and 4 in Additional data file 3.

Conclusions
P. fluorescens is an opportunistic species long recognized for
its genetic, physiological and functional diversity [59]. The
previously sequenced genome of isolate Pf-5 offered a
glimpse of genome content and organization, but in the
absence of comparative data sheds little insight into the
extent of genomic diversity. The genome sequences of the two
additional strains (SBW25 and Pf0-1) have provided the
opportunity for comparative studies and show an unexpect-
edly high degree of among-genotype diversity. Typically, dif-
ferent isolates of the same species would be expected to show
substantial overlap among core genes of the genome. For
example, five sequenced genomes of P. aeruginosa share
80% to 90% of their gene content [23], whereas the three P.
fluorescens genomes share just 61% of their genes, and have
low average nucleotide identity [33] and AAI (this study),
leading Goris et al. to suggest that these three isolates cannot
be members of the same species. With further genome
sequences, it will become possible to strengthen the species
criteria using whole genome characteristics. The fact that
these three strains group more closely to each other than to
other members of the genus makes it tempting to describe P.
fluorescens strains as members of a complex until more DNA
sequence analyses provide a deeper understanding of the
genetic structure of these populations.

The ecological significance of the genes specific to each strain
also awaits further study, but the IVET-based analysis shows
that at least some of the SBW25 genes are likely to be impor-
tant in the plant environment. The fact that EIL fusions iden-
tify both core and accessory genes as ecologically relevant
comes as little surprise given both the diverse range of core
metabolic functions and the diversity of niches within which
P. fluorescens exists. That a subset of the IVET-identified
genes corresponds to orthologues in Pf0-1 and Pf-5 indicates
conserved strategies for ecological success, and also the diver-
sity of mechanisms employed.

The lack of synteny among the three strains marks a further
defining feature of the species P. fluorescens. Previous stud-
ies of this species using restriction fragment length polymor-
phism showed a bewildering range of patterns - even amongst
strains that were phenotypically indistinguishable [60]. The
presence of numerous repeat sequences, particularly the
intergenic MITE-like elements, provides a probable explana-
tion. While the evolutionary origin of these elements is
unclear, one likely consequence of the presence of numerous
repeated sequences (between genes) is elevated levels of
intragenic recombination. Although recombination between
repeat sequences is to be expected, it seems that P. fluores-
cens can tolerate significant rearrangements without sacrific-
ing performance. One striking example in SBW25 comes from
the arrangement of genes involved in pyoverdine biosynthe-
sis. In SBW25 these genes are distributed across seven differ-
ent regions of the genome [17]; in Pf-5 and Pf0-1 (with fewer
MITE-like elements) these genes are distributed across three
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[17] and five regions, respectively; in P. aeruginosa PAO1
(and other sequenced isolates) these are in two clusters sepa-
rated by 11.5 kb; in P. syringae they reside within a single
cluster [61].

Whole genome sequencing - particularly when combined
with functional studies such as IVET - provides unprece-
dented insight into the functional activity of microbes.
Despite their environmental significance, common sapro-
phytic bacteria, such as P. fluorescens, have been the subject
of relatively few genome-based projects. The addition of
SBW25 and Pf0-1 to the list of genome-sequenced sapro-
phytes is an important advance. It reveals the gene content of
soil/plant saprophytes and shows that our prior appreciation
of the diversity of the Pseudomonas pan genome was
restricted. Since many isolates pathogenic to humans, ani-
mals, and plants are thought to have their origins in non-
pathogenic environmental isolates, understanding the
genomes of these saprophytes has implications for our ability
to predict, monitor and understand the evolution of these
pathogenic strains.

Materials and methods
Bacterial strains and sequencing
P. fluorescens strain SBW25 is an environmental isolate
taken from the leaf surfaces of a sugar beet plant. A single col-
ony of SBW25 was grown on LB agar and then grown over-
night in LB broth with shaking at 28°C. Cells were collected
and total DNA was extracted with a Gentra Puregene extrac-
tion kit (Qiagen, West Sussex, UK) according to the manufac-
turer's instructions. The DNA was fragmented by sonication,
and several libraries were generated in plasmid vectors using
size fractions ranging from 2 to 9 kb. The whole genome was
sequenced to a depth of 9× coverage from 2 to 3 kb, 3 to 4 kb
and 6 to 9 kb in pOTW12 and pMAQ1Sac_BstXI libraries
using dye terminator chemistry on ABI3730 automated
sequencers. End sequences from larger insert bacterial artifi-
cial chromosome (pBACehr 5 to 15 kb insert size) libraries
were used as a scaffold. The sequence was assembled, fin-
ished and annotated as described previously [62], using the
program Artemis [63] to collate data and facilitate annota-
tion.

P. fluorescens strain Pf0-1 was isolated from bulk loam soil. It
was grown overnight in LB broth with shaking at 30°C. Total
DNA was extracted using a Wizard Genomic DNA Purifica-
tion Kit (Promega, Madison, WI, USA). The genome of Pf0-1
was sequenced at the Joint Genome Institute using a combi-
nation of 3.7, 9.4, and 37 kb DNA libraries. Draft assemblies
were based on 114,960 total sequence reads. All three librar-
ies provided 5× coverage of the genome. A total of 470 addi-
tional reactions, 3 shatter libraries from PCR products, and
20 transposon bombs (in vitro transposon mutagenesis
(EZ::TN<kan2>Insertion Kit; Epicentre, Madison, WI, USA)
of plasmids to generate new primer sites for DNA sequencing)

were necessary to close gaps and to raise the quality of the fin-
ished sequence. All general aspects of library construction,
sequencing and gene prediction performed at the Joint
Genome Institute were as previously described [64].

The sequences of SBW25 and Pf0-1 can be accessed using the
accession numbers [EMBL:AM181176] and [Gen-
Bank:CP000094], respectively.

Bioinformatic analyses
The genome sequences of P. fluorescens strains SBW25, Pf0-
1 and Pf-5 were compared pairwise using TBLASTX analyses
loaded on the Artemis Comparison Tool [65].

Orthologous CDSs in the three genomes were defined after
comparing all-against-all running a reciprocal FASTA search
of translated DNA with a 30% identity over 80% of the length
of the CDSs as minimum similarity score. The results were
used to calculate the average amino acid identities.

Pseudogenes were defined as CDSs that had one or more
mutations that would ablate expression and/or lack start
and/or stop codon; each of these possible inactivating muta-
tions was subsequently checked against the original sequenc-
ing data.

Circular diagrams were plotted using DNAplotter [66].

Identification and analysis of orthologues in Pseudomonas genomes
Fourteen Pseudomonas species (P. fluorescens SBW25, Pf0-
1, and Pf-5;P. aeruginosa PAO1, PA14 and PA7; P. syringae
pv. syringae B728a, pv. phaseolicola 1448A and pv. tomato
DC3000; P. putida strains KT2440, W619, F1, and GB1; and
P. stutzeri A1501) were compared all-against-all using a
reciprocal FASTA approach (30% identity over 80% of the
length as minimum similarity), yielding a set of 1,705 core
genes shared between all these genomes. In a second step, the
amino acid sequences of these core gene products were
aligned (gene-wise) using MUSCLE version 3.52 [67] and
poorly aligned regions were removed with Gblocks [68]. Max-
imum likelihood analysis of each alignment was carried out in
RAxML version 7.0.0 [69] using the JTT+gamma model. A
majority rule consensus of the 1,705 individual trees was built
using the consense module of Phylip to assess the agreement
between the individual trees.

Identification and analysis of repetitive sequences in P. 
fluorescens
In order to analyze the repeat elements and their distribution
in the genome of SBW25, we firstly concatenated three P. flu-
orescens genomic sequences (SBW25, Pf0-1 and Pf-5). Run-
ning the Repeatscout [70] algorithm on the concatenated
sequence yielded 122 repeat families, of which 103 include
intragenic repeats, mostly Pfam domains, and 19 intergenic
repeat families. For each of the 122 families we built a multi-
ple sequence alignment using CLUSTAL [71] and manually
Genome Biology 2009, 10:R51
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curated the alignments using JalView [72]. Using each of the
multiple alignments obtained, we built a profile hidden
Markov model (HMM) using the HMMER package version
1.8.4. The 122 HMMs were searched against the concatenated
sequence (leading and lagging strand). HMMs can be trained
on a dataset of sequences and can predict, in a probabilistic
framework, more distant members of this sequence family.
The results obtained were manually curated to infer the
number of distinct repeat families. The consensus of the
intergenic repeat families and their HMM logos are provided
in Supplementary Figure 1 in Additional data file 2. The HMM
logos where produced using the LogoMat-M application [73].

Intergenic repeat families were initially predicted using the
default parameters of RepeatScout: minimum number of
copies per repeat family, 20; minimum repeat length, 50 bp;
low complexity repeats were filtered out prior to the repeat
prediction. In a second step, the predicted repeats were man-
ually curated and very similar repeat families were merged
under the same family, where possible. A multiple sequence
alignment for each repeat family was used to train HMMs
specific for each family. Each query genome was searched
against those HMMs, using the HMMER package. Once the
repeat families were built, using the HMM-based approach,
the structure of each family was determined with visual
inspection of the multiple sequence alignment; in case of
complex repeat structure, with IRs being part of a repeat fam-
ily, new HMMs were built to model the IRs of each family (if
applicable) and used to search the three query genomes.

Atypical regions
A computer-based search through the SBW25 and Pf0-1
genomes using the Alien Hunter program [74] resulted in
identification of several regions within these genomes that
were termed 'atypical' due to differences in nucleotide fea-
tures such as G+C% and dinucleotide frequency. A manual
curation of the results is shown in Figure 5, and Supplemen-
tary Tables 3 and 4 in Additional data file 3.

In vivo expression technology
Identification of EIL from SBW25 was based on the IVET
strategy as described previously [5,6]. Libraries were con-
structed in pIVETD by cloning partial Sau3AI digested
genomic DNA. Libraries were maintained in Escherichia coli
and moved into P. fluorescens SBW25ΔdapB by conjugation.
Library screening took place on non-sterile sugar beet seed-
lings maintained in non-sterile vermiculite pots [5]. Fusions
were recovered after 3 weeks of selection (rather than the 2
weeks used previously [6]) by plating homogenized plant
material on selective plates. Integrated genomic fusions from
strains recovered from the plant environment were mobilized
into E. coli by conjugative cloning [75]. The identity of recov-
ered fusions was determined by sequencing inserts from
recovered plasmids (see [5,6] for details).

Abbreviations
AAI: amino acid identity; CDS: coding sequence; DAP: diami-
nopimelate; EIL: environmentally induced loci; HMM: hid-
den Markov model; ICE: integrative conjugative element; IR:
inverted repeat; IVET: in vivo expression technology; MITE:
miniature inverted repeat transposable element; NRPS: non-
ribosomal peptide synthetase; ReD: repeat desert.

Authors' contributions
MWS, AMCT, RWJ, SBL, PBR, and NRT analyzed data and
wrote the paper. AMCT and MWS manually annotated and
curated SBW25 and Pf0-1 genomes. SRG, SDB, JP, GSV and
SH analyzed data. ES and TSB were involved in sequencing,
finishing, and quality control of the Pf0-1 genome sequence.
KM participated in gene model annotation and curation. GLC
and AMY analyzed the novel NRPS system. SRG, RWJ, GMP,
XXZ, CDM, SMG, SACG, CGK, JGM, ZR, AJS, PBR, JH, ES,
and CMT contributed to construction and screening of IVET
libraries. DH, KS, LM, SR, RS, and MAQ were involved in
sequencing, finishing, and quality control of the SBW25
genome sequence.

Additional data files
The following additional data are available with the online
version of this paper: Supplementary Table 1, listing environ-
mentally induced loci in SBW25, and orthologues in Pf0-1
and Pf-5 (Additional data file 1); Supplementary Figures 1-3
(Additional data file 2); Supplementary Tables 2-4 (Addi-
tional data file 3).
Additional data file 1Supplementary Table 1: Environmentally induced loci in SBW25, and orthologues in Pf0-1 and Pf-5Supplementary Table 1: Environmentally induced loci in SBW25, and orthologues in Pf0-1 and Pf-5.Click here for fileAdditional data file 2Supplementary Figures 1-3Supplementary Figure 1 shows consensus sequences and HMM logos of P. fluorescens intergenic repeat families. Supplementary Figure 2 shows pie chart analyses of the CDS orientations in the three P. fluorescens strains. Left side, CDSs not flanking intergenic repeats; right side, CDS pairs flanking intergenic repeats. The ori-entation of the CDSs flanking intergenic repeats has a clear bias to the Tail-repeat-Tail (-> <-) orientation when compared to those CDSs that do not flank intergenic repeats. Supplementary Figure 3 shows the distribution of possible orientations of CDS pairs flank-ing each repeat sequence family, in (a) SBW25 and (b) Pf0-1.Click here for fileAdditional data file 3Supplementary Tables 2-4Supplementary Table 2 lists P. fluorescens SBW25 ReD coordi-nates and contents. Supplementary Table 3 lists atypical regions in P. fluorescens SBW25. Supplementary Table 4 lists atypical regions in P. fluorescens Pf0-1.Click here for file
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