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Abstract

Background: Genome sciences have experienced an increasing demand for efficient text-processing tools that
can extract biologically relevant information from the growing amount of published literature. In response, a range
of text-mining and information-extraction tools have recently been developed specifically for the biological
domain. Such tools are only useful if they are designed to meet real-life tasks and if their performance can be
estimated and compared. The BioCreative challenge (Critical Assessment of Information Extraction in Biology)
consists of a collaborative initiative to provide a common evaluation framework for monitoring and assessing the
state-of-the-art of text-mining systems applied to biologically relevant problems.

Results: The Second BioCreative assessment (2006 to 2007) attracted 44 teams from 13 countries worldwide,
with the aim of evaluating current information-extraction/text-mining technologies developed for one or more
of the three tasks defined for this challenge evaluation. These tasks included the recognition of gene mentions in
abstracts (gene mention task); the extraction of a list of unique identifiers for human genes mentioned in abstracts
(gene normalization task); and finally the extraction of physical protein-protein interaction annotation-relevant
information (protein-protein interaction task). The 'gold standard' data used for evaluating submissions for the
third task was provided by the interaction databases MINT (Molecular Interaction Database) and IntAct.

Conclusion: The Second BioCreative assessment almost doubled the number of participants for each individual
task when compared with the first BioCreative assessment. An overall improvement in terms of balanced
precision and recall was observed for the best submissions for the gene mention (F score 0.87); for the gene
normalization task, the best results were comparable (F score 0.81) compared with results obtained for similar
tasks posed at the first BioCreative challenge. In case of the protein-protein interaction task, the importance and
difficulties of experimentally confirmed annotation extraction from full-text articles were explored, yielding
different results depending on the step of the annotation extraction workflow. A common characteristic
observed in all three tasks was that the combination of system outputs could yield better results than any single
system. Finally, the development of the first text-mining meta-server was promoted within the context of this
community challenge.
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Background
Modern biology increasingly depends on the availability of
computational tools to process, analyze, interpret, and inte-
grate large collections of heterogeneous data. Bioinformatics
systems are now routinely used for tasks such as analysis of
genome sequences, protein structures, or interactions
derived from publicly accessible databases. A considerable
fraction of the existing data in biology consists of natural lan-
guage texts used to describe and communicate new discover-
ies. Scientific papers constitute a resource with crucial
importance for life sciences and the literature database
PubMed stores around 16 million citations and receives over
70 million queries every month.

It is not just the general biology user who needs more efficient
access to specific information contained in article collections;
the literature also constitutes the primary knowledge
resource that database curators use to derive manual annota-
tions. This implies that most of the current functional infor-
mation contained in biological databases has been extracted
directly or indirectly from articles.

A range of recently implemented text mining strategies is cur-
rently available to facilitate more sophisticated biomedical
literature processing. A survey of some of the most relevant
applications can be found in this supplement to Genome Biol-
ogy [1].

From the user perspective, it is often cumbersome to decide
which application is the most suitable for a given problem
without a proper benchmark study comparing their perform-
ance on a common data collection. An analogous scenario is
encountered for experimental characterizations, in which
alternative technologies can yield comparable results. A
range of independent benchmark studies have been pub-
lished comparing different bioinformatics systems, for
instance for the prediction of signal peptides [2] or subcellu-
lar localization prediction methods [3]. Although these stud-
ies are practically useful for certain scenarios, they are often
only suitable for very specific applications with no directly
comparable results. Community challenges constitute an
alternative strategy, which promote the development of tools
assessed and compared on the basis of an impartial evalua-
tion based on a common dataset. These are not only useful to
determine the state-of-the-art in a certain field, based on
specified tasks, but they also serve as a way to monitor
improvements over time. In general, community assessments
address the following issues:

1. Comparison of different methods and strategies on a com-
mon task.

2. Determination of the state of the art of a field.

3. Monitoring of improvements in the field.

4. Ability of the technology to meet real world needs.

5. Development of useful 'gold standard' data collections.

6. Exploration of meaningful evaluation strategies.

7. Promotion of community-based collaborative effort.

Figure 1 provides an overview of some of the most relevant
assessments that have been carried out in the bioinformatics
and text-mining domains. Not all of the community chal-
lenges focus on determining the state-of-the-art of existing
technologies. For instance, in the field of protein engineering,
the aim of the Paracelsus challenge was to determine whether
it was possible to transform the conformation of a globular
protein into another by altering no more than half of the
sequence [4].

Bioinformatics assessments are generally more concerned
with comparing results from different computational strate-
gies against experimentally generated data collections, such
as protein structures resolved using x-ray crystallography or
biochemically determined functional sites. For example, in
the Critical Assessment of Techniques for Protein Structure
Prediction (CASP) competition, the overall aim is to evaluate
structural bioinformatics tools by comparing automatically
predicted protein models based on sequence with the experi-
mentally solved protein structures [5]. In case of the Genome
Annotation Assessment Project (GASP) the goal was to score
the performance of tools for finding protein coding genes and
to determine the accuracy of automatic genome annotation
systems [6].

A very active area of research has been the evaluation of strat-
egies for automatically processing natural language by means
of computational tools. The Message Understanding Confer-
ences (MUCs) served as a framework to promote research in
the information extraction domain, posing tasks such as the
recognition of entity names or temporal expressions in text
[7]. The Recognising Textual Entailment Challenge (RTE) [8]
focused on inference, and whether one text was 'entailed' by
(could be inferred from) another.

Reflecting the importance of literature data for biology, there
have been several evaluations for text-mining and informa-
tion retrieval strategies specifically for this domain. A Knowl-
edge Discovery and Data Mining (KDD) Challenge Cup task in
2002 [9] focused on prioritizing articles for curation in Fly-
Base, based on presence of experimental evidence for gene
expression in the articles. One of the main goals of the Text
Retrieval Conference (TREC) Genomics track was to evaluate
information retrieval and question answering systems for
biomedical topics [10]. Other assessments have included the
Genic Interaction Extraction Challenge (LLL05) for extract-
ing genetic interactions from PubMed abstracts [11] and the
Bio-Entity Recognition task of the BioNLP/NLPBA work-
Genome Biology 2008, 9(Suppl 2):S1
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shop, which is concerned with the detection of concepts of
biological interest, such as genes and proteins [12].

BioCreative
The BioCreative (Critical Assessment of Information Extrac-
tion systems in Biology) challenge evaluation is a community-
wide effort for the evaluation of text-mining and information
extraction systems applied to the biological domain. The goal
of BioCreative has been to pose tasks that will result in sys-
tems that can scale for use by general biology researchers or
more specialized end users such as annotation database cura-
tors. An important contribution of BioCreative has been the
creation of shared gold standard datasets, prepared by
domain experts, for the training and testing of text mining
applications. These collections (and the associated evaluation
methods) represent an important resource for continued
development and improvement of text-mining applications.

BioCreative I
The first BioCreative challenge evaluation, carried out during
2003 to 2004, was organized through collaborations between
different groups from the text-mining, biological database,
and bioinformatics domains [13]. Participants had to provide
submissions for two tasks; the first one related to the identifi-
cation of gene mentions in text (task 1A) [14] and linking  gene
database entries to PubMed abstracts (task 1B) [15]. The sec-
ond assignment was related to the extraction of human gene
products with annotations of Gene Ontology terms supported
by textual evidence passages [16].

BioCreative II
Because of strong interest in the results of first BioCreative, a
second BioCreative challenge was organized during the
period from 2006 to 2007 with three tasks. The gene mention
(GM) task (similar to the first BioCreative task 1A) focused on
the identification of gene and protein names in PubMed
abstracts. The gene normalization (GN) task (similar to task

Community evaluations: from bioinformatics to NLPFigure 1
Community evaluations: from bioinformatics to NLP. CAMDA, Critical Assessment of Microarray Data Analysis; CAPRI, Critical Assessment of 
PRediction of Interactions; CASP, Critical Assessment of Techniques for Protein Structure Prediction; GASP, Genome Annotation Assessment Project; IE, 
information extraction; IR, information retrieval; JNLPBA, Joint Workshop on Natural Language Processing in Biomedicine and its Applications; KDD, 
Knowledge Discovery and Data Mining; LLL, Learning Language in Logic; MUC, Message Understanding Conference; NLP, natural language processing; 
DREAM, Dialogue on Reverse Engineering Assessment and Methods; RTE, Recognising Textual Entailment Challenge; SEMEVAL, Semantic Evaluations; 
SENSEVAL, Evaluating Word Sense Disambiguation Systems; TREC, Text Retrieval Conference.
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1B in the first BioCreative) evaluated linkage of abstracts to
biological database records, focused on listing EntrezGene
identifiers for human genes and proteins mentioned in
abstracts. Finally, the protein-protein interaction (PPI) task
assessed the performance of text-mining systems for extract-
ing from the literature evidence of protein-protein interac-

tions suitable for database curation (figure 2 shows a general
overview of the posed tasks).

For each task, a training data collection was made available to
allow system development by the participating groups. After
a training period, registered participants obtained a test data-
set, for which they had to submit results within a relatively

BioCreative II tasksFigure 2
BioCreative II tasks. This figure illustrates the basic processing steps covered by the tasks and subtasks posed in BioCreative II. Note that not all of the 
data collections were aligned (the gene mention [GM], gene normalization [GN], and protein-protein interaction [PPI] tasks used different document 
collections). (A) Preprocessing of full-text articles was provided in different commonly available formats including HTML, PDF, and automatic plain text 
conversions from these formats was covered by the interaction pair subtask (IPS), interaction method subtask (IMS), and interaction sentences subtask 
(ISS). The detection and ranking of abstracts relevant for a given biological topic (in this case protein-protein interactions) was part of the interaction 
article subtask (IAS). (B) Labeling text with bio-entities of interest was part of the GM task, in which participants had to find gene and protein mentions 
automatically. (C) To provide direct links of abstracts and full-text articles to database entries, a process often called protein or gene normalization was 
part of the GN and IPS tasks, respectively. (D) Extraction of specific biological relation types (physical protein-protein interactions) was addressed in the 
IPS, together with the detection of experimental interaction detection methods used for characterizing these interactions. For human interpretation, 
retrieval of evidence passages summarizing a particular biological association is crucial. This aspect was addressed in the ISS. Different participating systems 
were evaluated and compared based on test data collections released by the BioCreative II organizers. To allow integration of different strategies, the 
BioCreative MetaServer (BCMS) was developed.
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short period of time (to avoid any manual result generation).
The participating teams provided their automatically gener-
ated test set submissions for evaluation. These submissions
were then scored against the gold standard data produced by
human annotators; these manual annotations were kept blind
(were not available) to the participating teams before the sub-
mission deadline, to guarantee fair assessment. The agree-
ment between human experts (inter-annotator agreement)
was assessed [17] to estimate the difficulty of the GN task.
Each participating team could submit up to three runs for any
of the subtasks. For the GM and GN tasks, we examined rela-
tive improvement with respect to the previous BioCreative.
For these tasks, we also estimated that combining multiple
participant submissions into a single consensus prediction
could improve the overall performance. A question of practi-
cal importance is the availability of online text-mining meta-
server resources, especially ones that can integrate the con-
sensus output from several online systems. A major outcome
of the BioCreative II challenge is that the Spanish National
Cancer Centre (CNIO) has hosted the first text-mining meta-
server for biology, integrating systems and/or services made
available by BioCreative participants. The BioCreative
Metaserver can be accessed at: http://bcms.bioinfo.cnio.es.

Results
Gene mention task
A total of 21 teams participated in the GM task of BioCreative
II. This task was coordinated by John Wilbur, Larry Smith,
and Lorrie Tanabe from the National Center for Biotechnol-
ogy Information (NCBI). Its goal was to evaluate systems that
find mentions of genes and proteins in sentences from
PubMed abstracts. The training corpus was based on sen-
tences manually labeled with gene and protein mentions from
the training and test data collections of task 1A (BioCreative
I). The test data for BioCreative II consisted of a total of 5,000
new blind sentences, for which the participating teams had to
provide the substrings corresponding to gene or protein
names. The submissions were evaluated against the manually
labeled mentions, and scored on the basis of precision, recall,
and F score (balanced precision and recall). Overall, the
results improved with respect to comparable results from
BioCreative task 1A; the highest F measure went from 0.822
in task 1A of BioCreative I to 0.872 in BioCreative II. This dif-
ference is significant, provided that one assumes that the
changes to the annotations of the corpus made between Bio-
Creative I and II have had no effect on performance. In a
series of experiments, the organizers also estimated system
performance of various weighted combinations of the partic-
ipating systems. The best composite system achieved an F
measure of 0.905; this system included the results from all 21
systems and demonstrated that even submissions from low-
performing systems contributed to increased performance of
the composite system [18].

Gene normalization task
The GN task was organized by Alex Morgan (MITRE/Stan-
ford University) and Lynette Hirschman (MITRE), with 20
teams participating. The task focused on providing direct
links between text (PubMed abstracts) and actual gene and
protein records in existing biological databases, which is a
crucial step in annotation extraction. This task was similar in
design to task 1B in the first BioCreative, with the difference
that in BioCreative II the focus was on human genes/proteins,
whereas for the first BioCreative the linking was done for
three model organisms (yeast, mouse, and fly). The task
required that, for each PubMed abstract, a participating sys-
tem return the list of unique EntrezGene identifiers of human
genes or proteins mentioned in the abstract. The organizers
provided, as training data, a collection of 281 PubMed
abstracts manually mapped to human EntrezGene identifiers.
The blind test corpus consisted of 261 abstracts manually
annotated and then carefully reviewed. The best result
obtained for the human gene normalization task was an F
score of 0.81, which was comparable to the scores for mouse
(0.82) and fly (0.79) from BioCreative I task 1B. In line with
the GM task, a composite system created by weighting contri-
butions of all participating systems performed higher than
any single system, yielding an F score of 0.92 [17].

Protein-protein interaction task
The aim of the PPI task was to evaluate the performance of
text-mining tools on the automatic extraction of physical pro-
tein-protein interaction annotations from the literature, as
compared with manual annotations generated by interaction
database curators that were used as a gold standard. Martin
Krallinger and Alfonso Valencia from CNIO co-ordinated this
task, whereas the expert curated training and test data were
provided by two extensively used protein-protein interaction
databases: the Molecular Interaction Database (MINT) and
the IntAct database [19]. In general, annotations entered into
these databases require the presence in a publication of
explicit experimental evidence supporting a given biological
association. Both interaction databases used a common
annotation standard, namely the Proteomics Standards Initi-
ative Molecular Interaction (PSI-MI) data exchange format.
Both databases also rely on experienced domain experts for
extracting manual curations from the literature and conduct
exhaustive curation of a collection of journals. Inspired by the
manual curation workflow, the PPI task was structured into
four subtasks, each focusing on a particular aspect of the
underlying curation pipeline. A total of 26 different teams
participated in one or more of the PPI subtasks.

Interaction article subtask
The interaction article subtask (IAS) addressed the first step
in many biology literature review tasks, namely the retrieval/
classification and ranking of relevant articles according to a
given topic of interest. The aim here was to classify a collec-
tion of PubMed titles and abstracts based on their relevance
for the derivation of protein-protein interaction annotations.
Genome Biology 2008, 9(Suppl 2):S1
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A total of 19 distinct teams participated in this task. The train-
ing data consisted of a set of labeled PubMed records; 3,536
were labeled as relevant for protein interaction annotation
based on the fact that their corresponding full-text articles
had been used to derive annotations by MINT and IntAct; for
negative examples, a set of 1,959 abstracts was used that had
been judged as not containing relevant information by the
IntAct or MINT teams. The test set consisted of 338 relevant
abstracts and 339 nonrelevant abstracts from the recent cura-
tion activities of the IntAct and MINT groups. The highest
scoring systems achieved an F score of 0.78. This is compara-
ble to results from an earlier KDD Challenge Cup task for
ranking articles for Flybase curation, which also reported an
F measure of 0.78 [9].

Interaction pair subtask
The interaction pair subtask (IPS) required the extraction of
a nonredundant list of binary protein-protein interaction
pairs for each given full-text article. Each interactor protein
had to be identified in terms of its corresponding SwissProt
database identifier. Only those interaction pairs for which an
experimental characterization was described in the article
were considered correct (annotation relevant). The training
data consisted of the annotations from a set of 740 documents
previously curated by either MINT or IntAct. The blind test
set comprised a total of 358 full-text documents curated by
MINT or IntAct and withheld from release until after the Bio-
Creative evaluation.

Of the 16 teams providing submissions for the IPS, the high-
est scoring system achieved a precision of 0.39, recall of 0.31,
and a balanced F score (macro-averaged) of 0.29. A test sub-
set using only articles containing exclusively SwissProt iden-
tifiers (eliminating articles containing interactor proteins
with provisional identifiers found only in Translated EMBL
[TrEMBL]) made recall somewhat easier, marginally improv-
ing the F score; the best performance using only SwissProt
was precision of 0.37, recall of 0.33, and a macro-averaged
balanced F-score of 0.30.

The interactor protein normalization task turned out to be
much more difficult than the GN task; the best scoring team
obtained an F measure of 0.52, as compared with around 0.8
for human gene normalization. It is clear that performance on
multispecies protein normalization was a major technical
obstacle for the IPS. Interestingly, because each interaction
required the association of a pair of interacting proteins, the
F measure of 0.3 was perhaps slightly higher than would have
been expected.

Interaction sentences subtask
The interaction sentences subtask (ISS) required the identifi-
cation of the best evidence passage (up to three sentences)
describing each experimentally characterized interaction
mentioned in a full-text paper. To create the gold standard,
the curators from MINT and IntAct identified the most

informative passage for each interaction from the full-text
article, as part of their curation of the final test set. Partici-
pants could nominate up to five (ranked) passages for each
extracted interaction. Results were scored by string compari-
son (using a sliding window) between the passages selected
by the curator against those nominated by each system. Of the
11 participants, the most accurate strategy nominated 361
passages, of which 70 (19%) corresponded to curated ones.
The highest recall system nominated 7,526 (ranked) passages
of which 343 were correct. However, these scores are artifi-
cially low since some of the system nominated passages con-
tained useful information even when they were not judged to
be the most informative passage.

Interaction method subtask
Knowledge of the experimental methodology supporting a
given biological interaction is of particular practical relevance
because it provides a qualifier for the associated evidence.
The two teams submitting results for the interaction method
subtask (IMS) had to identify the experimental method(s)
used to determine the protein-protein interactions described
in the test set articles. An interaction detection method had to
be mapped to its corresponding Molecular Interaction ontol-
ogy code. Two scores were computed to evaluate the perform-
ance of the interaction method association extraction: exact
matching to the ontology code and 'parent matching', which
scored a match as correct if the submitted code was an exact
match to the gold standard term or to its parent term in the
Molecular Interaction ontology. The high F score for parent
matching was an encouraging 65%; for exact match, the high
score was 48%.

Discussion and conclusion
The Second BioCreative community challenge evaluation suc-
cessfully promoted the development, evaluation, and moni-
toring of text-mining strategies applied to biologically
relevant tasks. This is reflected in the significant increase in
number of participating teams with respect to BioCreative I,
as well as in the collaboration with biological databases for
providing useful data collections.

The BioCreative initiative is built upon a collaborative effort
among researchers from heterogeneous domains, including
biology, bioinformatics, and natural language processing. As
a result, it has served as a common ground to exchange
different views across these domains, making it possible to
explore alternative approaches to biologically important tasks
which can be approached by text-mining tools. Each of the
tasks or subtasks was motivated by a series of practical appli-
cations; the analysis of the systems and their performance on
these tasks has provided insights into the difficulty of the
tasks as well as useful strategies to handle the tasks.

The GM task is important as a component for literature
retrieval systems, as well as a component of gene normaliza-
Genome Biology 2008, 9(Suppl 2):S1
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tion tools (for example, in the GN task). Moreover, collection
of new gene names can help to complete and extend gene and
protein name collections in existing manually curated data-
bases, especially for organisms whose genomes lack extensive
manual support. One of the new features introduced for the
BioCreative II GM task was recognition of gene mentions at
the character level instead of the word token level, which
facilitated the use of alternative word tokenization
approaches or even recognition at the substring level instead
of tokens. This is especially important when taking into
account the inconsistent use of hyphens or other special char-
acters in biomedical texts, which makes robust text tokeniza-
tion difficult for this domain. Successful approaches to the
gene mention task were based on machine learning tech-
niques, particularly conditional random fields (CRFs). There
was an overall improvement with respect to the results of Bio-
Creative I, with the performance of the composite system
approaching that of equivalent tasks in other domains, such
as newswire texts. One issue that still remains unclear is
whether a similar performance could be expected for full-text
articles.

The importance of the GN task can be conceived from differ-
ent viewpoints. The task supports a direct connection
between mentions of genes and proteins within their textual
context in the literature, through a unique database identifier,
to sequence information in those databases. Therefore gene
normalization tools are essential to link existing online litera-
ture repositories to biological databases, one of the main con-
cerns of Semantic Web and data integration technologies for
the biological domain. Gene and protein normalization is also
a crucial first step toward the extraction of text-based annota-
tions for these entities, such as their associations to controlled
vocabulary concepts in ontologies such as Gene Ontology, as
well as identification of protein interactions. The results of
this task are encouraging, and by combining the various sub-
missions using majority voting, an even better performance
can be achieved. The results indicate that human genes are
not particularly more difficult to normalize than mouse or fly
genes, and that EntrezGene can be used effectively as a refer-
ence database. One of the limitations of the GN task design
was that normalization was performed on abstracts restricted
to human genes. This restriction resulted in an artificial sce-
nario, because in practice the disambiguation and linkage of
genes from different species, especially mouse and human
genes, is required for real applications, such as seen in the
interactor protein normalization task. Nevertheless, by using
this controlled set-up, it has been possible to tease apart
important aspects of gene normalization performance. This
will inform our design of new tasks for subsequent
evaluations.

The PPI task demonstrated the usefulness of abstracts for the
initial selection of annotation relevant articles, but also that -
for the extraction of actual annotation associations - full-text
articles are essential. Both the ranking of relevant articles as

well as the agreement between different systems may result in
article prioritization systems that support more robust cura-
tion pipelines. For the development of such document catego-
rization tools serving as annotation support, several aspects
can affect performance: the curation strategy underlying the
training and test article selection, the journal composition,
language change over time (publication dates), and even
abstract length. It also remains unclear how the implementa-
tions used for BioCreative II would scale up when applied to
the whole PubMed database, which also hosts articles from
other scientific disciplines.

To support the development of text-mining systems, it would
be beneficial to the research community for database main-
tainers to record and make public additional information
arising from the curation process, for example the set of arti-
cles reviewed and judged not relevant for curation, and the
specific passages within a publication used by a curator to
support an annotation.

There also remain important hurdles to the development and
use of full-text processing tools, starting with issues related to
article availability, copyright and data distribution, and
extending to article format and encoding, which can influence
whether efficient text processing is feasible. For the extrac-
tion of biological annotations such as protein interaction,
gene and protein normalization is a crucial initial step. Sev-
eral aspects will need to be explored in more detail in the
future to improve gene normalization tools applied to full-
text articles, starting with the actual choice of the databases
that should be used as a reference. Here, both SwissProt as
well as EntrezGene are certainly valuable resources, espe-
cially for well studied genomes, but neither covers all the pro-
teins (and their names or symbols) described in the literature.
To overcome database incompleteness, human database
curators often use bioinformatics sequence similarity based
intermediate steps for the manual normalization to other
resources such as TrEMBL, an aspect that is often neglected
when comparing information extraction results to biological
annotation databases.

The results of BioCreative II showed that combining multiple
systems can improve performance. As a result, BioCreative
has spurred the development of the first text-mining meta-
server, which will serve as a framework and platform to
improve the accessibility and use of automatically extracted
text-derived information by the user community. The server
delivers to the user consensus annotations for PubMed
abstracts from systems that participated in the BioCreative II
challenge. It also allows side-by-side comparison of different
participant systems. It will be interesting to use these consen-
sus annotations as a baseline for future BioCreative chal-
lenges. Furthermore, other research groups can add to the
platform, providing their own annotations - including new
annotation types - or can use its output for their own pur-
poses. One of the limitations in the set of BioCreative tasks
Genome Biology 2008, 9(Suppl 2):S1



http://genomebiology.com/2008/9/S2/S1 Genome Biology 2008,     Volume 9, Suppl 2, Article S1       Krallinger et al. S1.8
was that different tasks were not aligned in terms of the data
collections used. Future improvements would include the use
of a common dataset for all three tasks, evaluating the gene
mention, gene normalization, and biological annotation
extraction on the same set of articles.

This BioCreative II supplement to Genome Biology includes
the following: articles devoted to overviews of each of the
three tasks; papers from a select set of participating teams
who achieved good performance on multiple tasks or sub-
tasks of BioCreative II; a review article providing an overview
and introduction to existing text-mining systems for the bio-
logical domain; an article describing the BioCreative II meta-
server; and an opinion paper consisting of multiple views on
the current state-of-the-art and future prospects for text min-
ing in biology.

Materials and methods
Data and corpus collections
A detailed description of the data preparation for each task
can be found in the corresponding task overview articles
within this supplement to Genome Biology. For the GM task,
the training data consisted of the 15,000 sentences used in
the first BioCreative (task 1A), with some additional revisions
to improve the annotation consistency and to allow gene
mention finding on the character level rather than on the
word token level. The GM test data consisted of 5,000 addi-
tional PubMed sentences.

The GN task used similar procedures to those used in the first
BioCreative 1B task. Citations derived from Gene Ontology
Annotation records were used to select the documents.
Domain experts extracted links of the human genes men-
tioned in these abstracts to their corresponding EntrezGene
identifiers. To check annotation consistency, a human inter-
annotator agreement experiment was performed, with results
of around 90% pair-wise agreement. The final data collection
provided for this task consisted of 281 abstracts for training
and 262 for testing.

For the PPI task, the MINT and IntAct interaction database
provided the data collections. For both databases, trained
domain experts manually extract relevant interaction infor-
mation from the literature to fill in structured database
records, after detailed reading of full text articles. In general,
there are three basic strategies for selection of articles for
annotation: recommendation-based curation, where anno-
tated article citations are mainly derived from other resources
or databases; exhaustive curation of a specific set of journals
of interest, where each article is examined in detail to derive
potential annotations; and thematic curation, where articles
are selected primarily based on a keyword search (for exam-
ple, for cancer or cell cycle related papers). The IAS training
data consisted of 3,536 protein abstracts that had been judged
to be relevant for interaction annotation (according to any of

the selection strategies), based on the actual content of both
databases. Additionally, a set of 1,959 negative examples was
distributed, corresponding to abstracts that were found not to
be relevant to protein interaction annotation on the basis of
exhaustive curation. The IAS test set had a total of 338 inter-
action relevant and 339 nonrelevant, recently published
abstracts, generated by exhaustive curation. For the remain-
ing PPI subtasks, the training data consisted of a set of 740
full-text documents previously curated by either MINT or
IntAct, together with the corresponding annotation record.
Each article was distributed in various formats, including
PDF and HTML, as well as automatically generated plain text
conversions. The blind test set consisted of 358 full-text doc-
uments curated by MINT or IntAct; these were withheld from
release until after the BioCreative evaluation.

Overview of methods of participating systems
The participating teams employed a variety of methods to
produce submissions for BioCreative II tasks, ranging from
machine learning techniques such as support vector
machines [20] or CRFs [21], to approximate string matching
and manually generated rules and patterns.

For detecting gene mentions, many teams used CRFs, part-
of-speech tagging, and stemming. Some participants also
exploited domain-specific systems such as the GENIA tagger
[22] or adapted general natural language processing (NLP)
tools such as Mallet [23].

In case of the GN task, many groups used dictionary look-up
methods, often coupled with sophisticated dictionary expan-
sion and/or editing methods on existing databases such as
EntrezGene. Other techniques included generation of lexical
variants for gene and protein names and the filtering of highly
ambiguous symbols. A number of systems applied sophisti-
cated approximate string matching strategies and several
used context-based disambiguation of gene names. Several
teams combined one or more gene mention systems, similar
to those used for the GM task, with a dictionary look-up
approach to produce the ranked list of EntrezGene identifiers.

For the classification of interaction-relevant articles, the vast
majority of systems used machine learning techniques, with
support vector machines being the most successful approach.
For the detection of the interaction pairs, most of the systems
assumed co-occurrence of the interactor proteins within a
predefined unit of text, often within a sentence. Nevertheless,
some participants also took into account additional aspects,
such as the average distance between the protein mentions
derived from the whole paper. Overall, the strategies included
the use of supervised learning-based sentence classifiers;
detection of interaction-relevant verbs, keywords or word
patterns; rule-based systems; use of information on the rela-
tive position of the sentences within the full-text article (for
example, text from figure legends); integration of NLP-
related modules such as syntactic parsing; and the handling
Genome Biology 2008, 9(Suppl 2):S1
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of coordinated expressions in cases in which more than a sin-
gle protein pair was mentioned in a given sentence. Given the
prevalence of inter-organism protein name ambiguity, a cru-
cial step for the correct normalization of the interactor pro-
teins was the association of proteins with their corresponding
organism source, for instance whether they corresponded to
mouse or human.
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