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Predicting and quantifying alternative splice forms<p>SPACE is an algorithm developed to predict and quantify the pre-mRNA splicing structure of transcripts using exon and ‘exon plus junction’ microarray data.</p>

Abstract

Exon and exon+junction microarrays are promising tools for studying alternative splicing. Current
analytical tools applied to these arrays lack two relevant features: the ability to predict unknown
spliced forms and the ability to quantify the concentration of known and unknown isoforms. SPACE
is an algorithm that has been developed to (1) estimate the number of different transcripts
expressed under several conditions, (2) predict the precursor mRNA splicing structure and (3)
quantify the transcript concentrations including unknown forms. The results presented here show
its robustness and accuracy for real and simulated data.

Background
Alternative splicing (AS) is the process by which multiple
mature mRNA sequences can be generated from the same
precursor mRNA (pre-mRNA) upon the differential joining of
exonic sequences limited by 5' and 3' splice sites. Through
splicing mechanisms exons can be extended or shortened,
skipped or included, and intronic sequences may even be
retained in the mRNA sequences. AS is one of the most
important sources of protein diversity in vertebrates, and at
least half of human genes are alternatively spliced [1-3]. AS
has been shown to be very relevant in a variety of human dis-
eases, including cancer, and there is increasing interest in the
use of AS in developing diagnostic tools and identifying new
therapeutic targets [4-7].

Two main strategies are pursued to identify and characterize
AS events in expressed genes under both physiological and
pathological conditions. On the one hand, expressed
sequence tag (EST) alignment and mapping against known
proteins or the whole genome may be used to identify differ-
ent mRNA isoforms expressed in cell lines or tissues [8]. On
the other hand, by performing analyses of splicing microar-
rays, the detection of new isoforms of a gene [9] and quantifi-
cation of the relative concentrations for known isoforms may
be obtained [10].

The most important manufacturers of commercial array plat-
forms intended for the analysis of the expression of alterna-
tively spliced isoforms are Affymetrix, Jivan Biotechnology
(based on Agilent technology) and Exonhit (which can work
both with Affymetrix and Agilent technologies). The strategy
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for Jivan and Exonhit includes two types of probes: exon
probes or junction probes. Affymetrix uses only exon probes.
Exon probes are complementary sequences to each of the
known transcribed exons of a given gene, while junction
probes include a segment of complementary nucleotides for
each of the two sides of a known exon-exon junction in the
mature mRNA of the gene. When designing expression
arrays, exon probes are usually selected to meet a number of
quality criteria. Since these probes may be located anywhere
within the exon, probe specificity and affinity can usually be
optimized to maximize their performance in the array hybrid-
ization step. In contrast, the selection for junction probes has
very little room for optimization, as the nucleotide sequence
at both sides of the junction is fixed and needs to be included
in the junction probe. The only way to optimize junction
probe quality is by changing the number of nucleotides at
either side of the junction, and thus the total length of the
probe. The overall performance of junction probes in any
array is therefore remarkably lower than exon probes owing
to poorer signal, frequent cross-hybridization, etc. This sub-
optimal probe quality leads to large variations in the signal
levels for different probes of the same transcript, which may
differ by as much as several orders of magnitude. Further-
more, the obvious phenomenon of cross-hybridization of a
single probe with different transcripts that share half of the
probe contributes to make the interpretation of junction-
based arrays a real challenge [11]. A potential way to over-
come this hurdle is to examine the probes mapped to a gene
as a whole instead of analyzing individual probes one at a
time.

Several tools and strategies have been proposed to deal with
the complex bioinformatics analysis of splicing microarrays
[9-16]. Cuperlovic-Culf et al. [17] provide a good and up-to-
date comparative review of the traits and the performance of
each available tool. Three of these strategies [9,13,15] can pre-
dict the existence of novel isoforms, but none of them is able
to infer the intron/exon structure of the gene. In addition,
only three of the previous works [10,12,14] provide a method
to measure the relative concentrations of known transcripts.
The aim of the present study is to develop a tool to measure
the concentrations and structure of different transcripts from
the output data of splicing microarrays (containing exon
probes together with junction probes). The algorithm we pro-
pose here, which we have called SPACE (splicing prediction
and concentration estimation), can (1) predict the number of
different transcripts (some of them possibly unknown), (2)
predict the structure of these transcripts and (3) measure
their relative concentrations.

Our algorithm applies 'non-negative matrix factorization'
(NMF) to the matrix of data. NMF is a factorization for non-
negative multivariate data that allows us to find parts-based
linear representations [18]. The main characteristic of NMF is
its use of non-negative constraints. Given a matrix of non-
negative data V, NMF finds an approximate factorization V ≈

W·H into matrices with non-negative elements W and H [19].
In this work, we show that, when applied to splicing microar-
ray data, NMF separates the data matrix for each gene into
the product of two positive components corresponding to the
structure of the gene transcripts and their individual concen-
trations, respectively. We have also developed an algorithm to
determine the internal dimension of the factorization since
previous attempts by other groups did not perform well in
this particular application. We show that the internal dimen-
sion of the factorization is an estimate of the number of tran-
scripts of each gene.

In summary, SPACE allows for the discovery of the structure
of the expressed transcripts of a given gene, as well as for the
determination of the relative concentration of each spliced
isoform. It also makes the prediction/detection of new, previ-
ously unknown, alternatively spliced forms possible.

Results and discussion
We have applied the NMF algorithm described in the materi-
als and methods section to both synthetic and real microarray
datasets. For each gene, NMF of the expression matrix is per-
formed V ≈ W·H.

Here H gives the relative concentration of each transcript
while W gives the gene structure, that is, which probes
hybridize to each transcript. The mathematical model used
shows that the maximum value of each row of the W matrix is
the affinity of the corresponding probe. Using this informa-
tion it is possible to discern whether a probe hybridizes
against a transcript (the corresponding entry of the W matrix
is close to the row maximum) or not (the entry is close to
zero).

Synthetic dataset
We have prepared a synthetic dataset to test the NMF algo-
rithms. We generated this dataset as follows. Probe expres-
sion is proportional to the sum of concentrations of the
transcripts that share the probe. The proportional constant,
that is, the affinity, is a random number obtained from a dis-
tribution that mimics the distribution of real microarray data.
Transcript concentrations are also random numbers. For
junction probes, we simulated that these probes partially
hybridize (20%) with each transcript that shares one of the
sides of the junction. Hybridization is complete (100%) if the
(exon or junction) probe matches perfectly with the
transcript.

Among the possible parameters to consider while testing the
algorithm, we have selected three: (i) noise level (five levels of
additive noise and five levels of multiplicative noise); (ii)
number of microarrays (5, 10, 25, 50, 100 and 200 arrays);
(iii) position of the probes (only junctions J, only exons E,
both of them J_E, junctions plus several probes per exon
J_2E, J_3E). To make the simulation closer to a biological
Genome Biology 2008, 9:R46
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reality, we have borrowed the structure of eight different
genes (CASP2, HNRPA2B1, BCL2L1, BIRC5, TERT, VEGF,
BAX and WT1). These genes were selected just as examples
and only by structural criteria among a larger list of genes
whose AS is changed in cancer. Using the structure of these
genes, simulated affinities, simulated concentrations, ran-
dom noise and assuming a small amount of cross-hybridiza-
tion for junction probes we have built the simulated
expression data matrix. Table 1 shows the basic structural
characteristics of these genes. The specific splicing structure
is shown in Additional file 1 (Figures S1-S8).

Each simulation has been run 200 times (we tested 20 differ-
ent combinations of probe affinity and transcript concentra-
tions and each combination was run 10 times in the
background of different random noises). The NMF iteration
was run 3,000 times for each point to achieve convergence.

This study confronted us with a formidable problem: if each
individual combination of parameters was checked, the
number of conditions would be enormous (five additive noise
levels × five multiplicative noise levels × six different num-
bers of arrays × five probe selections × eight genes = 6,000).
These conditions should then each be simulated 200 times,
and for each one we would need 3,000 iterations. In order to
avoid this problem, we selected a 'central point' for each of the
parameters and only one parameter was changed for each
simulation experiment to analyze its effects. The 'central
point' was selected with the following conditions: standard
deviation of additive error was 5% of the median of the signal,
standard deviation of multiplicative error was 7% of the sig-
nal, number of arrays was 40 and probes were located at
exons and junctions (J_E). We performed these simulation
experiments on the gene BIRC5 (results for other genes are
similar, data not shown). We selected the mean absolute error
(MAE) to measure the quality of the concentration estimation
and the average Hamming distance to measure the quality of
the predicted structure. We defined the Hamming distance as

the proportion of probes in a gene that were mistakenly
assigned (or unassigned) to a transcript. In Figures 1 and 2 we
show an example of these simulations for gene BIRC5, a gene
with five exons and three alternative transcripts. We now dis-
cuss the results of this prediction. We show the results only
for the gene BIRC5, but the overall trend in the other genes is
similar.

Additive and multiplicative error are well rejected by the algo-
rithm (Figure 1). Only for very large variances does the quan-
tification have large errors (MAE of the expression matrix for
large variances is about 20%). The structure of the gene is cor-
rectly predicted in almost any case for low variances as shown
in Figure 2. This figure also shows that the median of the
Hamming distance is null for small variances, that is, each
probe is perfectly assigned to each transcript for most of the
simulations. The boxplots in panels B and C display the spe-
cificity and sensitivity of the SPACE algorithm for additive
error. Both specificity and sensitivity have been calculated
using a threshold of 0.5, that is, a probe is considered to
belong to a transcript if its entry in the G matrix is larger than
0.5 and is not considered to belong to the transcript if the
entry is smaller than 0.5. These figures show that both specif-
icity and sensitivity are very good for small errors, and their
performance worsens for larger errors. The same applies to
multiplicative error in panels E and F.

Figure 3 shows the different results (for gene BIRC5)
obtained when the number of arrays per experiment is
changed. As expected, the structure is better estimated as the
number of arrays per experiment increases. As a side effect,
concentration estimation is also improved (Figure 3a).

Figure 4 shows the results for experiments changing the
number and type of probes for BIRC5. Adding new exon
probes does not significantly improve the performance of the
concentration estimation but helps to estimate the structure
of the transcripts. Junctions probes seem to be more inform-
ative than exon probes in this simulation. Nevertheless, this
result should be taken cautiously since junction probes tend
to be of inferior quality. This probe quality factor has not been
taken into account in generating these synthetic data.

The simulation results when comparing different genes are
particularly interesting (Figure 5). These simulations have
been performed using the 'central point'. It can be seen that
the accuracy of structure prediction decreases with the
number of transcripts (see Table 1). For the same number of
transcripts, structure predictive accuracy increases by
increasing the number of probes with different hybridization
patterns. The hybridization pattern is defined as the binding
capability of a probe with each of the transcripts of a gene,
that is, a logical vector that shows whether the probe belongs
to each transcript or not.

Table 1

Description of the synthetic dataset genes used to test the 
SPACE algorithm 

Gene name Transcripts Exons

CASP2 2 12

HNRPA2B1 2 12

BCL2L1 2 3

BIRC5 3 4

TERT 4 16

VEGF 4 8

BAX 4 6

WT1 4 10

The basic structural characteristics (number of transcripts and number 
of different exons) of the genes used to generate the synthetic dataset 
are shown. The SPACE algorithm has been tested with these genes.
Genome Biology 2008, 9:R46
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The predicted and real structures and concentrations for
genes that have an error close to the median of the
simulations are shown in Figure 6. The comparison between
real and predicted structure of BIRC5 (Figure 6b) clearly
shows an almost perfect matching.

To further study the limits of the algorithm we provide a sim-
ple simulation: an experiment with gene CASP2 (that has two
transcripts Casp2L and Casp2S) in which three arrays have
been constructed under one condition and three arrays under
a second condition. The number of arrays is low and quantifi-
cation errors, as Figure 7d shows, are larger than in the cen-
tral point. Since this study is focused on AS, we considered
that the overall concentration of the gene is constant (that is,
the sum of the concentrations of the transcripts), and we have
changed the relative abundance of each isoform. This sort of
change cannot be detected by an expression array. We per-
formed three different experiments in which the concentra-
tion ratio between each condition was 5:1 (Figure 7), 2:1 and
1.5:1 (see Additional file 1, Figure S10). These experiments
show that splicing structure degrades as concentrations
become closer to 1:1.

To improve the robustness of the performance figures, we
have randomly selected 100 genes from the human genome
with transcripts that range from 2 to 5. The number of exons
of the selected genes ranges from 1 to 74.

We generated synthetic data for these genes assuming similar
conditions to those selected for the central point: (1) junction
probes and exon probes are included, (2) certain partial
hybridization occur with junction probes (20%) and (3) addi-
tive and multiplicative noise with the same variance of the
noise used in BIRC5 have been simulated.

A summary of the results obtained for these genes is shown in
Table 2. In this table, the median value of each error measure-
ment is shown in bold face between the lower and upper quar-
tiles for equal number of transcripts. It can be noticed that the
median values of MAE, Hamming distance, sensitivity and
specificity corroborate the general trend found in the selected
genes that performance decreases if the number of transcripts
per gene increases. A more detailed description of the simula-
tion results is available in Additional file 1 (Figures S11-S22).

Influence of noise on the estimation of relative transcript concentrations of BIRC5 gene (synthetic data)Figure 1
Influence of noise on the estimation of relative transcript concentrations of BIRC5 gene (synthetic data). BIRC5 gene structure is shown in Figure 6a and 
in Additional file 1 (Figure S4). (a) Additive noise effect on estimation of relative transcript concentrations. The y-axis shows the MAE between the relative 
concentration of transcripts without noise and that estimated by the algorithm under the effect of different degrees of additive noise (MAE %). Additive 
noise is in the form of y + ε with ε ~N (0, σε2). The units of the x-axis are the variances σε2 of the additive error added to the simulated concentrations (10, 
100, 1,000, 10,000, 100,000). These variances represent roughly 0.5%, 2%, 5%, 15% and 50% of the energy of the signal, respectively. (b) Multiplicative 
noise effect on estimation of relative transcript concentrations. The y-axis shows the MAE between simulated and estimated relative concentrations under 
the effect of different degrees of multiplicative noise (MAE %). Multiplicative noise is in the form of y·eη with η ~N (0, ση2). The units of the x-axis 
represent the variances ση2 of the multiplicative error (5 × 10-5, 0.0005, 0.005, 0.05, 0.5). These variances represent roughly 0.7%, 2%, 7%, 25% and 100% 
of the energy of the signal, respectively. The different degrees of additive and multiplicative noise are tested while the other parameters are in the 'central 
point' condition (40 arrays and probes at exons and junctions). This means that there is always a component of additive and multiplicative noise in the form 
of y·eη + ε. Errors are represented by boxplots. A boxplot is a graphical representation of the variability of a random signal. They are composed by a box 
and a whisker. The box extends from the lower quartile to the upper quartile values and there is an additional horizontal line that shows the median. The 
whiskers are vertical lines extending from each end of the boxes to show the extent of the rest of the data. Outliers are data with values beyond the ends 
of the whiskers and are represented by crosses.
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Real datasets
To analyze the performance of the algorithm against biologi-
cal data, we have tested SPACE on real datasets from large
series of microarray hybridization experiments. We used two
sets: one generated from an experiment using the Affymetrix
platform (Wang dataset) [10] and another generated from an
Agilent platform (Johnson dataset) [9].

The Wang dataset used Affymetrix technology to quantify the
relative concentration of two transcripts of the CD44 gene. A
large number of probes (184 perfect match (PM) and an equal
number of mismatch (MM) probes) were available for this
gene. On the other hand, in the Johnson dataset Agilent
technology was used to monitor the junctions of 10,000
multi-exon genes across 52 diverse samples. In this dataset,
we applied SPACE to the analysis of those genes whose splic-
ing prediction was validated by Johnson et al. using reverse
transcription polymerase chain reaction (RT-PCR).

Wang dataset
In this set, we used the 184 PM probes to measure two tran-
scripts of CD44 spiked by Wang et al. in their experiment
[10]. Even though we performed the simulations using two
transcripts, we noticed that results assuming three tran-
scripts were better. Results with three transcripts are shown
in Figure 8. After performing the factorization, we noticed
that the entries of the row of the W matrix corresponding to
the third transcript had almost the same constant value. We
concluded that our algorithm is mimicking the proposed
method in [10] to remove background noise. Concentrations
of the two spiked transcripts are well estimated (MAE =
4.47%). The structures of the transcripts are well predicted
except for junctions 7-10, 11-12 and 16-17 and for exon 10
(which is incorrectly included in the first transcript by the
algorithm).

We have tried the algorithm with other parameters (using two
transcripts and the difference between PM and MM

Influence of noise on splicing structure prediction for BIRC5 gene (synthetic data)Figure 2
Influence of noise on splicing structure prediction for BIRC5 gene (synthetic data). (a) The effect of additive noise on splicing structure prediction. The y-
axis shows the Hamming distance error rate between real and predicted pre-mRNA splicing structures. This measure represents the proportion of probes 
in a gene that were mistakenly assigned (or unassigned) to each transcript. The units of the x-axis are the variances σε2 of the additive error as explained in 
Figure 1a. (b) Sensitivity of the SPACE algorithm under additive noise. Sensitivity is defined as the proportion of probes that belong to each transcript that 
are correctly assigned in the predicted structure. (c) Specificity of the SPACE algorithm under additive noise. Specificity is defined as the proportion of 
probes that do not belong to a particular transcript that are correctly unassigned in the predicted structure. (d) Multiplicative noise effect on splicing 
structure prediction. The y-axis shows the Hamming distance error rate between real and predicted pre-mRNA splicing structures. The units of the x-axis 
are the variances ση2 of the multiplicative error as explained in Figure 1b. (e) Sensitivity of SPACE under multiplicative noise. (f) Specificity of SPACE 
under multiplicative noise. The Hamming distance error rate is calculated in the form of HD = (FP + FN)/N, the sensitivity is calculated as SN = TP/(TP + FN) 
and the specificity is calculated as SP = TN/(TN + FP).
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measurements, three transcripts using both PM and MM
probes) and results are similar.

Surprisingly, when we considered only MM probes for the
algorithm, it was also possible to predict the concentration of
the transcripts with worse yet still reasonable accuracy (MAE
= 14.06%). Even though our results are similar to Wang et
al.'s (in fact, their results are so good that there is little room
for improvement), we obtained them without any a priori
knowledge of gene structure. Therefore, the relevant and
major contribution of SPACE is that it can estimate concen-
tration without knowing the structure of the gene. In addi-

tion, if part of the structure is known it can be readily included
in our algorithm, as will be stated in the discussion. SPACE
can be considered as a generalization of Wang et al.'s algo-
rithm that is able to both predict structure and concentration
of transcripts and is also able to take advantage of partial
knowledge of the structure.

Johnson dataset
The analysis performed by Johnson et al. to interpret their
data can be considered as a variation of an analysis of vari-
ance (ANOVA) type II test using medians instead of means.
For each log transformed expression, the median of probe

Influence of the number of arrays for BIRC5 gene (synthetic data)Figure 3
Influence of the number of arrays for BIRC5 gene (synthetic data). (a) Effect of the number of arrays on estimation of relative transcript concentrations. 
The y-axis shows the MAE (%) between simulated and estimated relative concentration of transcripts. The x-axis shows the different number of arrays 
used in the simulations. (b) Effect of the number of arrays on splicing structure prediction. The y-axis shows the Hamming Distance Error Rate between 
real and predicted pre-mRNA splicing structures. (c) Sensitivity of SPACE under different numbers of arrays. (d) Specificity of SPACE under different 
number of arrays.

5 10 25 50 100 200

0

0.2

0.4

0.6

0.8

1

S
pe

ci
fic

ity
(%

)
Different number of experiments

Number of experiments
5 10 25 50 100 200

0

0.2

0.4

0.6

0.8

1

S
en

si
tiv

ity
(%

)

Different number of experiments

Number of experiments

5 10 25 50 100 200
0

5

10

15

20

25

30

35

40

H
am

m
in

g
D

is
ta

nc
e 

E
rr

or
R

at
e

(%
)

Different number of experiments

Number of experiments
5 10 25 50 100 200

0

5

10

15

20

25

30

35

40

M
ea

n 
A

bs
ol

ut
e

E
rr

or
(M

A
E

 %
)

Different number of experiments

Number of experiments

(a)

(d)(c)

(b)
Genome Biology 2008, 9:R46



http://genomebiology.com/2008/9/2/R46 Genome Biology 2008,     Volume 9, Issue 2, Article R46       Anton et al. R46.7
expressions in different tissues (to remove the affinity effect)
and the median of probe expression in each gene (to remove
the gene level effect) were subtracted to obtain a residual. In
a second step, they performed a discretization of the residues.
Genes with large residues for several tissues are further ana-
lyzed since these patterns are probably due to AS.

As explained in the introduction, junction probes cannot
meet quite so stringent quality criteria as exon probes. In
addition, the number of probes per gene is much smaller than
in the Wang dataset.

Furthermore, this dataset was obtained from real tissues
instead of spiked transcripts. Therefore the results are not
expected to be as accurate as in the previous dataset. The
relative concentrations of transcripts were predicted using
the SPACE algorithm. In the following we briefly describe the
results for each gene and discuss the performance of our algo-
rithm when compared with the RT-PCR analyses.

The first analyzed gene is OCRL (ENSG00000122126). Two
splice variants were detected using RT-PCR in Johnson et
al.'s paper. Therefore, we used an internal dimension of two
transcripts to apply the algorithm.

Effect of the location of probes for BIRC5 gene (synthetic data)Figure 4
Effect of the location of probes for BIRC5 gene (synthetic data). (a) Effect of the location of the probes on the estimation of relative transcript 
concentrations. The y-axis shows the MAE (%) between simulated and estimated relative concentration of transcripts. The x-axis shows the different 
location of probes along the transcripts of the gene. J: the gene is represented by all its junction probes; E: the gene is represented by exon probes located 
in all its exons; J_E: all junction and exon probes are present in the array; J_2E or J_3E: all junctions and two or three probes per exon, respectively, are 
present in the array. (b) Effect of the location of the probes on splicing structure prediction. The y-axis shows the Hamming distance error rate between 
real and predicted pre-mRNA splicing structures. (c) Sensitivity of SPACE with varying location of the probes. (d) Specificity of SPACE with varying 
location of the probes.
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Estimated relative concentrations (Figure 9c) match Johnson
et al.'s expression results obtained by RT-PCR. Comparing
the colormap shown in Figure 9b with the gene structure (for
Ensembl release 40) shown in Figure 9a, it is possible to infer
that the variant 1 predicted by the algorithm corresponds to
ENST00000371113 and variant 2 corresponds to a group of
three transcripts (the set of probes included in the array is not
able to distinguish among the three of them). In these cases,
the structure predicted by SPACE matched that of Ensembl
known transcripts. The colormap structure suggests the exist-

ence of a cassette splicing event for exon 25 in
ENST000037112.

Results for APP gene (ENSG00000142192) are shown in Fig-
ure 10. Estimated relative concentrations using three tran-
scripts match Johnson et al.'s PCR results. The structure
prediction is less accurate in this case. According to Johnson
et al., this gene has three transcripts: a long form, one with a
single exon cassette (exon 7) and one with a double exon
cassette (exons 7 and 8). The algorithm is able to predict the
structure of the long isoform and the double cassette isoform

Influence of the gene structure and number of expressed transcripts in a comparative splicing analysis between different genes (synthetic data)Figure 5
Influence of the gene structure and number of expressed transcripts in a comparative splicing analysis between different genes (synthetic data). (a) 
Estimation of the relative transcript concentrations for different genes. The y-axis shows the MAE (%) between simulated and estimated relative 
concentration of transcripts. The x-axis shows the different genes used in the simulation (CASP2, HNRPA2B1, BCL2L1, BIRC5, TERT, VEGF, BAX and 
WT1). The structure of the different transcripts of these genes and the location of probes is shown in Additional file 1 (Figures S1-S8). (b) Prediction of 
the splicing structure for different genes. The y-axis shows the Hamming distance error rate between real and predicted pre-mRNA splicing structures. (c) 
Sensitivity of SPACE for different genes. (d) Specificity of SPACE for different genes.
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correctly but not the single cassette isoform. The third form
shows what seems to be a splicing event related to probes 16
and 17, the 3' region of the gene. VEGA (a curated genome
database) shows that there is a short transcript (APP-012)
that has experimental evidence and involves precisely these
two probes. This result may be a coincidence but a careful
study of these probes shows that they do not correlate well
with the others, suggesting either a splicing event or an arti-
fact of the array. The estimated concentrations of the long and
double cassette isoforms match the results obtained by PCR
in the original article.

Results for HMGCR gene (ENSG00000113161) using two
transcripts are shown in Figure 11. In this case, the estimation
of the concentrations is not as clear as in the other genes.
Indeed, PCR concentrations in Johnson et al.'s paper show
only significant differences in the concentrations for a tissue
that was not hybridized in the set of arrays (peripheral leuko-

cytes). Structure prediction shows the expected results (exons
12 and 13, where there is a cassette, have the smallest affini-
ties along the probes for variant 2).

Prediction of number of transcripts
In the previous sections we have shown the potential of
SPACE in determining the concentration and splicing struc-
ture of the genes, assuming that the number of transcripts is
known. However, when the number of transcripts is
unknown, this method can also be used to make a accurate
prediction. In this section we describe this novel application
using the synthetic and real datasets.

We have estimated the number of transcripts using the algo-
rithm presented in the materials and methods section. In
brief, this algorithm searches for the dimension that opti-
mally splits the error figure for different numbers of tran-
scripts into two groups: signal and noise.

Predicted structure and estimated concentrations for the BIRC5 (apoptosis inhibitor survivin) gene in the 'central point' (synthetic data)Figure 6
Predicted structure and estimated concentrations for the BIRC5 (apoptosis inhibitor survivin) gene in the 'central point' (synthetic data). (a) Structure of 
the different transcripts of the BIRC5 gene and location of probes used in the simulation. (b) Representation of the real and predicted splicing structures 
for the BIRC5 gene given by the probes used. In the graphic representing the real splicing structure the probes that match perfectly with the transcripts 
are represented by a white box (100% matching) and no hybridization is shown by a black box (0% matching). Gray levels show intermediate matching 
values. We have assumed that junction probes which include one side of the junction hybridize partially (20%). (c) Estimated relative concentrations of the 
three isoforms of BIRC5 gene. In each of the three graphics simulated and estimated relative concentration of each isoform is represented.
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Experiment done with the CASP2 gene, transcripts Casp2L and Casp2S (synthetic data)Figure 7
Experiment done with the CASP2 gene, transcripts Casp2L and Casp2S (synthetic data). Three arrays were performed with a concentration ratio between 
the two isoforms of CASP2 gene equal to 5:1 and another three with the opposite ratio 1:5. (a) Structure of the two transcripts of CASP2 gene and 
location of probes in the microarray. (b) Real structure of CASP2 gene indicated by probes. Probes that match perfectly are represented in white (100%), 
no hybridization in black (0%) and partial hybridization by different shades of gray (20%). (c) Predicted splicing structure for CASP2 gene with the 
alternating concentration ratio 5:1. If compared with the real structure of CASP2 transcripts (b), a strong similarity is noticed. (d) Real and estimated 
relative concentrations of the two isoforms of CASP2 gene in the experiment.

Table 2

Summary of simulation results for 100 random genes (synthetic data)

Number of transcripts MAE Hamming distance Sensitivity Specificity

2 3.1%-4.6%-7.0% 0%-0%-0% 1 - 1 - 1 1 - 1 - 1

3 3.7%-5.1%-6.8% 0%-0%-0.85% 0.99 - 1 - 1 1 - 1 - 1

4 4.1%-5.2%-7.0% 0%-1.4%-2.9% 0.96 - 0.99 - 1 1 - 1 - 1

5 4.0%-5.4%-8.3% 1.5%-3.4%-9.6% 0.88 - 0.95 - 0.98 0.96 - 0.99 - 1

The median value of MAE, Hamming distance, sensitivity and specificity for the simulation performed with 100 random genes is shown in bold for an 
equal number of transcripts. The variability of median values of each error measurement are indicated by the lower and upper quartiles at both sides 
of the median. It should be noted that the error increases as more transcripts are added to the simulation.
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Predicted structure and eated spiked concentrations for the CD44 geneFigure 8
Predicted structure and estimated spiked concentrations for the CD44 gene. (a) Structure of the CD44 gene spiked transcripts and probe positions 
represented by features. A gene feature is either an exon or a junction. Exon features are represented by F followed by the number of the corresponding 
exon and junction features are represented by the two exon features to which they belong joined by @ symbol. Each feature is made up of eight probes 
following a tiling strategy. As 23 features have been measured this makes a total of 184 probes. Probes corresponding to exon features F4, F5 and junction 
features F4@F5, F7@F10 do not match any of the spiked transcripts and therefore are not shown in (a). (b) Expected hybridization pattern of all probes 
for each of the two variants of CD44 gene. (c) Splicing structure prediction for CD44 gene applying the SPACE algorithm. (d) Estimated concentrations 
of the two variants of CD44 gene compared to spiked concentrations. The y-axis shows the predicted and actual concentration of each variant. The x-axis 
indicates the experiments and actual concentrations of each variant pair.
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The estimated number of transcripts for the initial list of eight
genes used in the synthetic dataset is shown in Table 3. The
estimated number is correct for all of the genes except WT1.
In this case, the algorithm predicts three transcripts (instead
of four) in 100% of the simulations. If WT1 structure is ana-
lyzed, it can be seen that two of their transcripts share all but
one of the probes. At this level of noise, the algorithm finds it
more likely to have three transcripts than four. The estima-
tion of the number of transcripts improves dramatically for
the other genes since they have a larger number of probes
with different hybridization patterns.

In Figure 12, we further extend the analysis of predicting the
number of transcripts for the simulation performed with 100
random genes of the human genome (synthetic data). This
figure shows that the accuracy of the prediction decreases as
the number of transcripts increases. It can also be noticed
that the algorithm tends to underestimate the real number of
transcripts when it does not make a correct guess. We
describe two possible reasons that we have found for such a
behavior. In some cases, there are very similar transcripts
that can be discerned by only one probe (similar to the WT1
case). On the other hand, if some of the transcripts have very
low concentrations they are considered to be noise.

Predicted structure and estimated relative concentrations for the OCRL geneFigure 9
Predicted structure and estimated relative concentrations for the OCRL gene. (a) Structure of the different transcripts (known and novel) of OCRL gene 
according to Ensembl 40, as well as the real location of the probes in the microarray. As can be seen in the figure, given probes cannot distinguish between 
a group of three isoforms (one known and two novel). (b) Predicted splicing structure for OCRL gene given by probes. The SPACE algorithm only detect 
two isoforms that match with known transcripts of OCRL gene ENST00000371113 and ENST0000037112. (c) Estimated relative concentrations of the 
two isoforms detected of OCRL gene.

0

50

100
Adr

en
al

co
rte

x

Adr
ena

l m
edu

lla

Blad
de

r

Bon
e

m
ar

ro
w

Bra
in
Bra

in
(a

m
yg

da
la

)

Bra
in

(c
au

da
te

nuc
leu

s)

Bra
in

(c
er

eb
ell

um
)

Bra
in

(c
er

ebr
al

co
rte

x)

Bra
in

(fe
ta

l)

Bra
in

(h
ipp

oc
am

pu
s)

Bra
in

(p
os

tce
nt

ra
l g

yr
us

)

Bra
in

(th
ala

m
us

)

Colon
(d

es
ce

nd
ing

)

Col
on

(tr
an

sv
er

se
)

Color
ec

ta
l A

de
noc

ar
cin

om
a 

(S
W

48
0)

Duo
de

num

Epid
idy

m
is

Hea
rt

Ile
um

Je
jun

um

Je
jun

um
 2

Kidn
ey

(fe
ta

l)

Le
uk

em
ia

Chr
on

ic
M

ye
log

en
ou

s 
(K

56
2)

Le
uk

em
ia

Ly
m

ph
ob

las
tic

(M
OLT

-4
)

Le
uk

em
ia

Pro
m

ye
loc

yti
c (H

L-
60

)

Liv
er

Liv
er

(fe
ta

l)

Lu
ng

Lu
ng

(fe
tal

)

Ly
m

ph
 N

od
e

Ly
m

ph
om

a
(B

ur
kit

ts
Dau

di)

Plac
en

ta

Pro
sta

te

Retin
a

Sali
va

ry
 G

lan
d

Ske
let

al
M

us
cle

Spin
al

co
rd

Sple
en

Sto
mac

h

Tes
tis

Thy
m

us

Thy
ro

id

Ton
sil

Tra
ch

ea

Ute
ru

s

Ute
ru

s (co
rp

us
)

R
el

at
iv

e 
co

nc
en

t
ra

ti
on

(%
)

ENST00000371113

ENST00000371112

ENST00000287254
(novel transcript)

ENST00000371113
(known transcript) E27

E22

E25

18 nt

24 nt

9 nt

3 nt

ENST00000357121
(novel transcript)

ENST00000371114
(novel transcript)

ENST00000371112
(known transcript)

E26

E22

E22 E23

E29

E27 E29

E29

E23

E24 E28

13 16

14

17

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ENST00000371113 

ENST00000371112 

(a)

(c)

(b)
Genome Biology 2008, 9:R46



http://genomebiology.com/2008/9/2/R46 Genome Biology 2008,     Volume 9, Issue 2, Article R46       Anton et al. R46.13
The estimation performed in the Wang real dataset predicts
three transcripts. As already explained, the SPACE algorithm
behaves better using this result as the number of transcripts
when compared with using the real number is two (the third
transcript is measuring the background noise).

The results for the three genes in the Johnson dataset are as
follows. In the OCRL gene (ENSG00000122126), SPACE esti-
mated that two transcripts are present. In the case of the APP
gene (ENSG00000142192) two transcripts are predicted (but
the likelihood for three transcripts is similar).

Finally, SPACE predicted two transcripts for the HMGCR
gene (ENSG00000113161).

Discussion
We have described a method to predict the number, structure
and concentration of gene transcripts using splicing microar-
ray data.

Our simulations show that the SPACE algorithm method is
able to predict unknown structures and to measure the rela-
tive concentration of alternatively spliced isoforms from
synthetic data. The method is robust against multiplicative
and additive noise. Structure prediction performance of
SPACE increases with the number of arrays.

As expected, performance diminishes with an increasing
number of transcripts per gene. The accuracy of the
prediction is closely related to the number of probes that have
different hybridization patterns along the transcripts. This
fact is even more evident when analyzing the results of the
simulation: additional exon probes do not improve the

Predicted structure and estimated relative concentrations for the APP geneFigure 10
Predicted structure and estimated relative concentrations for the APP gene. (a) Structure of the three different transcripts of the APP gene proposed by 
Johnson et al. to be present in the samples as well as a short isoform APP-12 that match our results, the real locations of the probes in the microarray are 
also indicated. (b) Predicted splicing structure for the APP gene given by probes. SPACE detects three isoforms that match with transcripts NM_000484.1, 
Y00264 and APP-12 of the APP gene. (c) Estimated relative concentrations of the three isoforms detected for the APP gene.
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Predicted structure and estimated relative concentrations for the HMGCR geneFigure 11
Predicted structure and estimated relative concentrations for the HMGCR gene. (a) Structure of the two transcripts of the HMGCR gene, NM_000859.1 
and a variant with a cassette in exon 13, as well as the real locations of the probes in the microarray. (b) Predicted splicing structure for the HMGCR gene 
given by probes. If compared with the gene structure in (a), it can be seen that the cassette is detected but also more things that do not match with that 
model. (c) Real and estimated relative concentrations of the two isoforms of HMGCR gene.

Table 3

Prediction of number of transcripts per gene (synthetic data)

Number of transcripts

Gene name 1 2 3 4 5 6

CASP2 0% 100% 0% 0% 0% 0%

HNRPA2B1 0% 95% 5% 0% 0% 0%

BCL2L1 0% 90% 10% 0% 0% 0%

BIRC5 0% 0% 95% 5% 0% 0%

TERT 0% 0% 10% 85% 5% 0%

VEGF 0% 0% 0% 90% 10% 0%

BAX 0% 0% 20% 80% 0% 0%

WT1 0% 0% 100% 0% 0% 0%

To apply NMF factorization, it is necessary to know, or estimate, the number of transcripts of a particular gene present in the samples under study. 
The estimations of the number of transcripts using SPACE for the genes used in the synthetic dataset are shown. Each entry of the table shows the 
proportion of predicted number of transcripts for different simulated data. The column corresponding to the real number of transcripts is shown in 
bold.
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discriminative power of the array as much as including
probes that provide new hybridization patterns. A good
microarray design to detect splicing should have as many dis-
criminative probes per gene as possible. An algorithm was
previously proposed to select discriminative probes subject to
constraints based on the Hamming distance [20]. This algo-
rithm can be readily applied to splicing arrays.

Our simulation experiments also show that junction probes
tend to be better at distinguishing between transcripts than
exon probes. In contrast, partial hybridization with adjacent
exons does not seem to be a problem. A major drawback
associated with these types of splicing array is the poor
thermodynamic quality of many junction probes. SPACE is
useful in interpreting the output data from splicing arrays
containing the usual proportion of suboptimal junction
probes. In fact, we have also shown that the SPACE algorithm
performs successfully with real splicing microarray datasets.
Our analysis of the Wang dataset [10], based on an Affymetrix
platform, estimated very similar transcript relative concen-
trations to those obtained in Wang et al.'s paper. Our data

were also close to the real concentration of the spikes. More-
over, compared with previous studies, our algorithm provides
a method to predict the structure of unknown isoforms. This
feature is unique and novel since previous algorithms have
only dealt with the probes that may be related to splicing
events but do not predict any structure. In addition, our study
provides a method to estimate relative concentrations of
known and novel isoforms.

The SPACE algorithm deals with all of the probes as a whole
and, as shown by the simulations, it is able to reject additive
and multiplicative noise. The gene structure predicted by
SPACE when using the Johnson dataset [9], based on an
Agilent platform, performed better for the genes with two
transcripts than for the genes with three transcripts, in which
the structure of the third transcript was less accurately esti-
mated. Concentration estimations were similar to those
reported in Johnson et al.'s paper by means of RT-PCR.

The SPACE algorithm has certain limitations that must be
taken into account when applying it. First, it assumes that the
probe signal levels have been derived from a linear model. If
the probe signals are not proportional to the concentration of
the transcripts, both the structure and the concentrations can
be predicted incorrectly. Second, we have tested that the
factorization works better (that is, error diminishes) if there
is variability in W and H. For the W matrix this means that the
error figures improve if the array includes several probes that
are able to distinguish between different transcripts. For the
H matrix, the prediction power improves if we include several
different experimental conditions. If only one experimental
condition is performed (for example, in a design which
includes several replicas of a single sample), this algorithm is
not able to discover a mixture of transcripts.

The level of noise affects the ability of the algorithm to dis-
cover new transcripts. If the concentration of a particular
transcript is very low, it may be masked by the noise back-
ground, and SPACE, in this case, would not be able to discern
this transcript.

We have used the maximum value of a row in the W matrix to
estimate the affinity of the probe and convert the W matrix
into the product of matrices AG. The maximum value is a sta-
tistical operation that is strongly affected by outliers. How-
ever, NMF, using Kullback-Leibler (KL) distance, is robust
against outliers and it is not likely to have an outlier in the
final factor matrices. A side effect of this selection is that a
probe does not hybridize with any of the transcripts of the
gene, a row of zeroes in the G matrix, so this method will give
a one in some of them. A way to overcome this problem is to
identify whether any of the 'discovered' transcripts is, in fact,
background noise and reject the probes in which the
computed entries for G are closer to the value of the transcript
that models the noise. This is the approach the we used for the
Wang dataset.

Proportion of predicted number of transcripts for the simulation performed with 100 genes (synthetic data)Figure 12
Proportion of predicted number of transcripts for the simulation 
performed with 100 genes (synthetic data). The 100 genes used have been 
randomly selected from the human genome with two to five transcripts. 
Each of the genes have been simulated 200 times for different noise, 
concentrations and affinities. The area of each circle represents the 
proportion of times the corresponding predicted number is chosen by the 
algorithm for a given number of transcripts. The algorithm tends to 
underestimate the number of transcripts as the real number of transcripts 
increases.
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As described in the materials and methods section, since only
15% of the exons in genes with AS are specific for a unique
transcript, the algorithm fosters to fill the G matrix. Small
transcripts that only have a few probes that hybridize on them
tend to be predicted incorrectly. Many of the errors in the
simulation of 100 genes correspond to genes with small
transcripts.

This method can be further improved if some constraints are
imposed on the NMF model. For example, if the structure is
partially known, its corresponding W matrix can be used as
an initial value for the optimization. The structure of W is
maintained along the optimization by the algorithm since the
described multiplicative update rule retains the null entries of
both the W and H matrices.

On the other hand, the use of NMF multilayer [21] algorithms
is a novel optimization technique that uses several matrices,
instead of two, to perform the optimization. All of the matri-
ces in these algorithms have positive entries. The original
work of Wang et al. proposes the factorization affinities,
features, property matrix and concentrations, that is, Y =
AFGT + E. This factorization fits perfectly with a multilayer
algorithm. In addition, some of these matrices are sparse (the
affinity and the features matrix). Imposing sparsity con-
straints [22] and null entries may help the algorithm to
improve the results.

Conclusion
In this paper we have presented SPACE, an algorithm based
on NMF that is able to predict the number of transcripts, gene
structure and concentration of known and unknown versions
of splice forms. The validity of the results have been tested in
both synthetic and biological data, and SPACE has shown its
ability to reject additive and multiplicative noise.

It can be stressed that the algorithm not only predicts the con-
centration, but also the structure of the genes. This character-
istic makes it completely novel.

Materials and methods
Probe and gene structure model
In our algorithm, we assume that there is a linear relationship
between the intensity of a probe y (an exon probe or a junc-
tion probe) and the concentration of the targets x measured
by this probe (as proposed by Li and Wong [23]):

y = a·x + e (1)

where a is the affinity of the probe and e is an error term.

Let the matrix Yi × j be the set of measurements of all the
probes included in a gene. Its dimensions are i rows (probes
included in the gene) and j columns (different arrays).

Taking into account that each probe may belong to a particu-
lar transcript and not to others, we can extend this model by
using a 'property' matrix G. Combining the information for
different transcripts, we can derive the following:

Y = A·G·T + E (2)

where, A = (ai, i) is an i × i diagonal matrix of unknown affin-
ities. The matrix T = (tk, j) represents the concentration of
each k gene transcript (rows) in the j array (columns). The
property matrix G = (gi, k) relates the probes with the different
transcripts depending on whether the probe belongs to the
transcript or not. This model was proposed by Wang et al.
[10]. In their paper, an additional matrix of features F is
included, but it can be avoided without loss of generality. The
proposed value for each entry in this case is

In Wang et al.'s method, this matrix is binary (that is, if no
perfect sequence identity is obtained, it is considered that
there is no hybridization). We propose that, since partial
hybridization does occur in junction probes, a proper selec-
tion of parameter a can take this fact into account. The value
of a (partially hybridized probe) ranges from 0 to 0.6 depend-
ing on the length of the probes, their composition and manu-
facturing of the array [11]. Finally, E = (ei, j) matrix represents
the error term.

Model fitting and minimization
In expression (2), both A (the affinity matrix) and T (the con-
centration matrix) are unknown. A natural way to find these
unknowns is to minimize some function of the error term.
Wang et al. proposed to minimize the sum of the squared dif-
ferences between the measurements (Y matrix) and the esti-
mation (A·G·T matrix) subject to the condition that the
unknowns (affinities and concentrations) must be positive as
follows:

where || ||2 is the Fröbenius norm of the matrix (that is, the
sum of its entries squared).

This optimization function may be ineffective if it is applied to
splicing arrays. Since junction probes cannot be selected to
have similar affinities (the position of the probe cannot be
arbitrarily selected), their affinities vary by several orders of
magnitude. This minimization function is proportional to the
error squared and results are skewed to model probes with
large affinities. Instead of this error function, we propose to
use the Kompass family of divergence functions [24]:
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This family has an additional parameter β that must be set. It

can be easily shown that the dimension of the summation

term is . If β = 2, this function reverts into expression (2)

and it is the selection of choice for additive Gaussian noise. If

β tends to zero, it reverts into the Itakuro-Saito entropy (espe-

cially useful for multiplicative noise) and if β tends to one, it

reverts to the KL entropy that can be used for noise that

includes additive and multiplicative terms.

Blind gene structure prediction
The standard non-negative matrix factorization can be
directly applied to the matrix Y, yielding two matrices W and
H:

Yij ≈ Wik·Hkj ≈ (Aii·Gik)·Tkj (4)

It is straightforward to identify W with AG and H with T (the
relative concentrations of the k transcripts). This assignation
is done because of their respective dimensions. There is an
intuitive interpretation of NMF for the analysis of splicing:
the first matrix represents the predicted structure of the gene
(whether a particular probe belongs to a particular transcript
or not) and the second is the relative abundance of the
transcript.

Each of the matrices in the Wang et al. equation (2) has an
interesting property: all of the entries are non-negative. In
addition, most of the exons (in genes that are alternatively
transcribed) are shared by several transcripts, that is, the G
matrix usually has many ones and few zeros. If the NMF of the
Y matrix is performed (Y = WH), non-negativity is ensured
(first condition), and using certain algorithms, the W (the AG
factor) matrix has few zero entries (second condition). There-
fore, NMF provides a reasonable estimation of A, G and T
and, as shown in the simulation, they are indeed very close to
the real values of these matrices.

One simple way to obtain the A and G matrices from W is to
consider that the affinity of a probe is the maximum value for
the corresponding row in W. In this case, we obtain

Here G will be a matrix whose entries lie between zero and
one. The algorithm to perform the optimization (expressed in
Matlab compact form) for the Kompass generalized diver-
gence function [24] is

where .* represents element wise multiplication and αW is a
small constant (around 0.005) that modifies (increases for
positive values and decreases for negative values) the sparsity
of matrix W. We have used for β the value of one (that is, we
used KL divergence to perform the estimations).

Implementation issues
We used Matlab 7.1 with the statistics toolbox on a Pentium
IV 3.2 GHz PC. The Matlab code is available as Additional file
2, so that other researchers can validate our calculations. The
time required to compute each gene depends on the number
of probes, the number of transcripts and the number of
arrays. For BIRC5 (11 probes, 3 transcripts and 40 arrays), it
took 1.2 seconds to perform the factorization using 5,000 iter-
ations. During the last 4,000 iterations the error function did
not change, but we decided to use a large number of iterations
to ensure convergence. Proper termination conditions may
decrease the computing time by a factor of five (about 0.2 sec-
onds per gene). Using these improvements, the computing
time for 25,000 genes is less than 2 hours. The algorithm can
be easily computed in parallel in a cluster if a shorter comput-
ing time is desired. On the other hand, the estimation of the
number of transcripts is a computer-intensive task: the fac-
torization has to be performed twice, for original data and
randomized data, for up to 10 transcripts. On average, it takes
about 20 times more time to estimate the number of tran-
scripts than to perform a single factorization.

Dealing with non-uniqueness of the decomposition
Non-negative factorization is not unique: in some cases there
are several W-H pairs that reconstruct the same initial
matrix. Other factorizations such as singular value
decomposition (SVD) have additional orthogonality con-
straints that make them unique in most cases (if the singular
values are different). When applying NMF to splicing analy-
sis, there can be several structures and concentrations that
are compatible with probe measurements for a particular
gene. Let us illustrate this fact with an example. Let us assume
that (1) all of the probes have the same affinity, (2) the real
structure of the transcript is as shown in Figure 13a and (3)
two measurements are performed (in the first the concentra-
tion of the transcripts are t11 = 1, t12 = 0 and in the second t21 =
0, t22 = 1).

The matrix equation in this case is
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This gene structure and concentrations give the matrix of
measurements shown in the equation. Let us consider the
alternative structure shown in Figure 13b.

In this case, one possible matrix equation for the same meas-
urements could be

or, in a more general case,

It can be seen that the same probe expression matrix Y is com-
patible with two different combinations of properties and
concentrations (G1 and T1 versus G2 and T2). Probe expression
does not provide sufficient information to decide between the
two versions. However, although it is necessary to determine
which of the two versions is real, probe expressions do not
provide the necessary information for this.

However, if the data belong to the same gene, it is more likely
that an exon is shared by several transcripts. In Ensembl
release 40, only 15% of the exons of alternatively spliced
genes are specific for a unique transcript. We have computed
this number by performing a query against the Ensembl 40
MySQL database. Therefore, if two structures are valid, the
structure that shares more exons among transcripts is
preferable. From the point of view of G matrices, it is prefer-

able to have a full matrix (probes are shared by many tran-
scripts) rather than a sparse matrix (probes are specific to a
few transcripts).

NMF factors tend to be sparse (in this example, the NMF fac-
torization will probably give the structure shown in Figure
13b instead of the first). In terms of the factorization, it is nec-
essary to ease the filling of the matrix W. This can be done by
adding a penalty term related to the sparseness of matrix W
or, as proposed in [24], selecting the αW parameter in (6) to be
a small negative value. We have selected -0.005 as proposed
in [24].

Getting the number of transcripts
There is still a free parameter to be set in the algorithm: the
number of transcripts k for a particular gene. In this case, this
number is the internal dimension k of the factorization. This
problem is indeed a 'dimensionality reduction problem', that
is, how many dimensions explain the behavior of a set of data.
In this work we have tried previous algorithms to select this
number (cophenetic correlation coefficients [25,26] and
SVD-based selection [27]). Cophenetic coefficients, although
promising at first, did not work as expected and only gave
good results when k is very small (one or two transcripts).

We have used a variation of the method proposed by Zhu and
Ghodsi [28] (also used for NMF by Fogel et al. [29]).
Intuitively, the idea of the algorithm is to compare how the
error decreases compared with random data. If the improve-
ment is not larger than what is obtained with random data,
then there is no need to add a new transcript.

Zhu and Ghodsi [28] propose to select the dimension that
maximizes a likelihood function of the singular values. The
intuitive idea of their algorithm is to find the gap in the scree
plot of the singular values. In this algorithm, the singular val-
ues are assumed to belong to two groups with different means
and the same variance and a maximum likelihood criteria
(MLC) finds the most likely partition of these groups.

In NMF there are no singular values associated with the rows
and columns of matrices W and H, but the increment in the

Example of the non-uniqueness of the splicing structure predictionFigure 13
Example of the non-uniqueness of the splicing structure prediction. (a) Structure of a generic gene and proposed probe pattern. (b) Possible splicing 
structure prediction obtained by SPACE with the same probe pattern.
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error function can be interpreted as the variation explained
by the additional dimension. The input vector to the MLC is
calculated as follows.

Let Objl be the objective function of the factorization selecting
l transcripts

Objl = DKo(Y, Wil, Hlk) (10)

where DKo is the Kompass divergence among Y, W and H.

Let  be the objective function of the factorization select-

ing l transcripts

where  is a shuffled version of the Y data matrix (data for

each row is randomized) and  and  are the results of the

optimization.

Let FCl be the natural logarithm of the fold change between
the objective function for l transcripts and the objective func-
tion for l - 1 transcripts:

and, for convenience, it is assumed that

Obj∅ = DKo(Y, R) (13)

where R is a positive random matrix with unit variance. On
the other hand

We consider

that is, how much the error function diminishes compared
with random data. To improve the normality of the data
(needed for MLC), a Box-Cox [30] transformation is per-
formed on this vector to have standard kurtosis.

Intuitively Δl will be large if the dimension is smaller than the
real number of transcripts. In this case, adding a new tran-
script diminishes the error more than what would be expected
for random data.

Finally, the MLC algorithm will find the gap in the Δl that
splits the dimensions in two groups: true transcripts and
noise.
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