
Open Access2008Changet al.Volume 9, Issue 2, Article R38Research
Computational identification of the normal and perturbed genetic 
networks involved in myeloid differentiation and acute 
promyelocytic leukemia
Li Wei Chang*, Jacqueline E Payton†, Wenlin Yuan‡, Timothy J Ley‡§, 
Rakesh Nagarajan† and Gary D Stormo§

Addresses: *Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA. †Department of Pathology and 
Immunology, Division of Laboratory Medicine, Washington University School of Medicine, St Louis, MO 63110, USA. ‡Division of Oncology, 
Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA. §Department of Genetics, Washington 
University School of Medicine, St Louis, MO 63110, USA. 

Correspondence: Gary D Stormo. Email: stormo@genetics.wustl.edu

© 2008 Chang et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Genetic networks in leukaemia<p>A dissection of the genetic networks and circuitries is described for two form of leukaemia. Integrating transcription factor binding and gene expression profiling, networks are revealed that underly this important human disease.</p>

Abstract

Background: Acute myeloid leukemia (AML) comprises a group of diseases characterized by the
abnormal development of malignant myeloid cells. Recent studies have demonstrated an important
role for aberrant transcriptional regulation in AML pathophysiology. Although several transcription
factors (TFs) involved in myeloid development and leukemia have been studied extensively and
independently, how these TFs coordinate with others and how their dysregulation perturbs the
genetic circuitry underlying myeloid differentiation is not yet known. We propose an integrated
approach for mammalian genetic network construction by combining the analysis of gene
expression profiling data and the identification of TF binding sites.

Results: We utilized our approach to construct the genetic circuitries operating in normal myeloid
differentiation versus acute promyelocytic leukemia (APL), a subtype of AML. In the normal and
disease networks, we found that multiple transcriptional regulatory cascades converge on the TFs
Rora and Rxra, respectively. Furthermore, the TFs dysregulated in APL participate in a common
regulatory pathway and may perturb the normal network through Fos. Finally, a model of APL
pathogenesis is proposed in which the chimeric TF PML-RARα activates the dysregulation in APL
through six mediator TFs.

Conclusion: This report demonstrates the utility of our approach to construct mammalian genetic
networks, and to obtain new insights regarding regulatory circuitries operating in complex diseases
in humans.

Background
Acute myeloid leukemia (AML) comprises a group of diseases
characterized by abnormal myeloid differentiation and an

accumulation of abnormal myeloid cells in the bone marrow
and peripheral blood. Like other complex diseases in
humans, AML is likely to be caused by disruption or
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dysregulation of multiple regulatory pathways. Recent stud-
ies have demonstrated a key role for aberrant transcriptional
regulation in AML pathophysiology. Namely, many lineage-
specific transcription factors (TFs), which coordinate normal
myeloid development, are often mutated or altered in genetic
fusions produced by chromosomal translocations [1,2].
Moreover, participants of many of these chimeric proteins are
themselves TFs [3,4]. These TFs may in turn interact with the
normal genetic circuitry involved in myeloid differentiation
and induce downstream events in AML pathogenesis.
Although several chromosomal fusion proteins and myeloid
TFs involved in leukemia have been identified and studied
independently, how each individual TF interacts with others,
and how each regulatory pathway correlates with others,
remains unclear. Such comprehensive delineation of the
genetic networks underlying both normal myeloid differenti-
ation and leukemia is crucial to better understand AML
pathophysiology and to develop improved therapeutic
strategies.

Uncovering genetic networks has been a great challenge in
the post-genomic era. Breakthroughs in experimental meth-
ods such as chromatin immunoprecipitation followed by pro-
moter arrays [5] have vastly improved the efficiency of TF
target identification [6,7], but these methods may be applied
to only one TF under one condition in one experiment and,
therefore, are laborious and time consuming. Alternatively,
computational methods seek to solve this problem using a
systems biology approach. A majority of these methods have
utilized analysis of gene expression profiling experiment data
to construct a coexpression network. These approaches usu-
ally apply computational algorithms or machine learning
techniques such as analytical methods [8,9], statistical
regression [10], Bayesian networks [11-13], support vector
machine [14], data processing inequality [15] and minimum
description length principle [16]. However, due to the com-
plexity of expression data (that is, the expression of many
genes are measured only at a few data points), it is generally
difficult to identify the dependencies and interactions
between TFs and their target genes accurately. One common
challenge of expression profiling based methods is to distin-
guish coregulation from coexpression. Namely, genes that are
coherently expressed with a TF are not necessarily directly
regulated by that TF. Therefore, most of these methods have
focused on simpler organisms, such as bacteria or yeast, in
which the number of TF genes is small and the structure of the
regulatory network is simpler.

Another approach to constructing genetic networks is based
on identification of TF binding sites. This approach either
predicts the transcriptional regulators of a set of coexpressed
genes [17,18] or predicts the regulatory targets of TFs using
their binding sites [19,20]. In these methods, a model of TF
binding elements is first built by experimental or computa-
tional methods. This model is then used to search for genes
that have matching sites in their non-coding sequence. A net-

work of transcriptional regulation may be constructed by
identifying targets for each individual TF. The advantage of
this approach over expression based methods is that it identi-
fies direct regulatory targets of a TF. However, its perform-
ance is strongly based on the accuracy of the TF binding site
identification. Due to the high false discovery rate of TF bind-
ing sites, this approach has primarily been successful in sim-
pler organisms [17,21], and applying this approach to
mammals is still difficult and challenging.

Because each of these approaches has its own advantages and
limitations, recent studies have taken an integrated approach
to combine multiple types of information in order to make
better predictions on regulatory networks. These methods
include combining gene expression data with TF binding site
analysis [22-24], combining chromatin immunoprecipitation
with gene expression data [25-27], and combining chromatin
immunoprecipitation data with regulatory motif discovery
[28]. Although the performance of these integrated
approaches is superior compared to the individual methods,
most of them have been designed and tested only in lower
eukaryotes. Therefore, the accurate identification of genetic
networks in mammals remains a challenging problem.

In this report, we present a novel approach to inferring
genetic networks in mammals by combining gene expression
profiling data and TF binding site analysis. We utilize this
approach to study the genetic networks operating in myeloid
differentiation and to elucidate how this circuitry goes awry in
acute promyelocytic leukemia (APL), a subtype of AML. APL
was chosen because its pathogenesis is likely based on a com-
mon mechanism involving transcriptional dysregulation.
Namely, APL is characterized by the presence of a chromo-
somal fusion protein, PML-RARα [4]. One participant of this
chimeric protein, RARα, is a TF. Therefore, it is feasible that
disruption of RARα function initiates the dysregulatory
events in APL and is thus a good model for predicting the per-
turbation of genetic networks. Using our analytical
approaches, we first constructed the genetic network under-
lying normal myeloid differentiation. In this network, multi-
ple transcriptional regulatory cascades converge on Rora,
indicating a novel function in modulating myeloid develop-
ment. Next, using expression data in APL, we identified a set
of dysregulated TFs and predicted their aberrantly expressed
targets. These dysregulated TFs formed a genetic pathway
distinct from the normal network that converged on Rxra and
interacted with the normal network through Fos. Finally, we
identified a set of direct targets for PML-RARα and proposed
a role for this set in APL pathogenesis. Together, these results
provide novel insights regarding the genetic circuitry under-
lying myeloid differentiation and APL pathophysiology, and
our analytical approach demonstrates the utility of an inte-
grated strategy for genetic network construction that may be
applied to study other complex diseases in humans.
Genome Biology 2008, 9:R38
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Results
Construction of transcriptional regulatory networks
Our strategy to identify transcriptional regulatory networks
combines two independent, but complementary methods: TF
binding site identification and analysis of gene expression
profiling data (Figure 1). TF binding site analysis is used to
identify genes containing overrepresented binding sites of a
TF, whereas analysis of gene expression profiling data results
in one or more genes that are coherently expressed with a TF.
Our hypothesis is that genes identified using both methods
are more likely to be regulated by a TF than those genes iden-
tified by either of the methods alone. Thus, to predict regula-
tory targets of a TF by sequence analysis, all the TF binding
sites that are conserved in human and mouse were identified,
and binding probability scores of each TF binding each gene
were calculated using a regulatory sequence analysis pipeline
[29] (Figure 1a). To identify genes with a statistically signifi-
cant binding score, the P value for observing a binding score
by chance was calculated by randomizing all the identified TF
binding sites in the genome (Figure 1b). In parallel, gene
expression profiles were obtained from cultured bone mar-
row cells that are stimulated with the granulocyte colony-
stimulating factor (G-CSF) growth factor to simulate the in
vivo myeloid differentiation program [30]. This system
allowed us to identify important genes that are upregulated
during myeloid differentiation. Template matching was used
to identify genes whose expression is similar to a specific
expression pattern or 'template'. This step identified six coex-
pressed gene clusters (Figure 1c). The regulatory interactions
identified by sequence analysis were used to construct regula-
tory networks for each cluster, which were then consolidated
to establish the regulatory network underlying myeloid differ-
entiation (Figure 1d). Each of these steps is described in
greater detail in the following sections.

Transcription factor target identification by regulatory 
sequence analysis
To identify regulatory targets of TFs using genomic sequence
information, all of the evolutionarily conserved TF binding
sites in the human genome were identified using 596 known
TF binding profiles curated in the TRANSFAC [31] and JAS-
PAR [32] databases. Using TF binding sites found in the non-
coding sequence of a gene, binding probability scores [29],
which assess the likelihood of a TF regulating a gene, were
calculated for each TF-gene pair (Figure 1a). The P value for
observing a binding score for a TF-gene pair by chance was
then calculated by permutation of all the binding sites in the
genome (Figure 1b). By applying a P value cutoff, genes that
have statistically significant binding scores for a TF were
identified as putative targets of that TF. The appropriate P
value cutoff was determined empirically to be 0.005 by using
the total number of transcriptional regulatory interactions
estimated in a previous study [15]. As a result, 106,997 TF-
target gene pairs (that is, a TF regulating a target gene),
including 6,474 TF-target TF pairs (that is, a TF regulating
another TF gene) were identified. Using human-mouse

ortholog gene pairs calculated using the HomoloGene data-
base (see Materials and methods), these transcriptional regu-
latory interactions predicted in human were mapped to
orthologs in mouse and thus generated 102,346 TF-target
gene pairs. To determine if these regulatory relationships
were supported by other computational prediction methods,
these results were compared to the data curated in PReMod,
a database of genome-wide cis-regulatory module predictions
[33]. As a result, 40.3% of these TF-target pairs were also pre-
dicted in PReMod.

Identification of upregulated gene clusters during 
myeloid differentiation
To elucidate the transcriptional regulatory networks underly-
ing myeloid development, expression profiling data were uti-
lized from a previous study that employed a well
characterized model of in vitro myeloid differentiation [30].
In this model, G-CSF is used to stimulate the maturation of
enriched myeloid progenitors. During the seven-day time
course, the predominant cells in culture at days 2 and 3, at
days 4 and 5, and at days 6 and 7 are promyelocytes, mid-
myeloid cells, and terminally differentiated myeloid cells,
respectively (Figure 2a). Using these data, we identified
coherently expressed genes during myeloid differentiation.
Because myeloid development is a unidirectional, progressive
event, it was hypothesized that genes regulated during this
process have relatively simple expression patterns (that is,
up-regulated or down-regulated at one or more points during
myeloid development). In fact, comparing gene expression
profiles during the in vitro system to an exhaustive list of tem-
poral patterns revealed that the majority of genes that were
triggered at some point in the seven-day time course were up-
regulated either on just one day or over two consecutive days
(Additional data file 1). Therefore, we focused on these two
types of expression patterns. Expression patterns that were
upregulated on just one day (day 0 to day 7) or over two con-
secutive days (days 0 and 1 to days 6 and 7) during the mye-
loid development were defined as 'templates'. The Pearson's
correlation coefficient was calculated for each gene expres-
sion profile and template. To focus on the transcriptional reg-
ulation of the most coherently expressed genes, a correlation
coefficient cutoff of 0.9 was used to identify genes whose
expression profiles match each template. Using this method,
six coexpressed gene clusters were identified, including genes
upregulated on day 0, 1, 2, or 7, and genes upregulated on
days 0 and 1 or days 6 and 7 (Figure 2b; Additional data file
2). The clusters that were upregulated on day 0, on days 0 and
1, and on days 6 and 7 include the most genes (267, 138, and
118 genes, respectively). These clusters contain many well
known genes that are associated with myeloid differentiation,
including those encoding myeloid differentiation antigens
(for example, Cd2, Cd3d, Cd5), and terminal myeloid differ-
entiation genes (for example, Mmp9, Fpr1, and Itgam).
Genome Biology 2008, 9:R38
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Integration of sequence analysis and expression 
profiling to construct genetic networks
The results of genomic sequence analysis and expression pro-
filing analysis were integrated to construct the genetic net-
work associated with each coexpressed gene cluster. The
regulatory targets of myeloid TFs were identified by the inter-
section of genes found in the same cluster with a TF (that is,
those having a similar expression pattern to that of the TF)
and genes having statistically significant binding scores with
that TF. Using this approach, 96 and 25 TF-target gene pairs
were identified for the gene clusters upregulated on day 0 and
days 0 and 1, respectively (Additional data file 3). Note that
there were also genes that were down-regulated on days 0 and

1 and days 6 and 7 (Additional data file 4), but none of the TFs
that were up-regulated at those time points and that had a
known binding profile were predicted as a regulator of these
genes. Thus, these genes may be regulated by other myeloid
TFs whose binding profiles are not yet available. Using the
entire set of predicted TF-target gene pairs, a genetic network
was constructed for each gene cluster (Additional data file 5).
In these networks, TFs and their target genes are represented
by nodes, and a directed edge is drawn from a TF to a gene if
the TF regulates the gene. The identified genetic networks
allowed for the identification of previously unknown TFs that
regulate myeloid differentiation as well as regulatory target
genes of known myeloid regulators. For example, Egr1 was

Workflow of genetic networks constructionFigure 1
Workflow of genetic networks construction. This workflow contains four major stages. (a) TF binding site identification. Genomic sequences of annotated 
genes are retrieved and aligned, and conserved TF binding sites in genomic sequences are identified. Binding probability scores are calculated using the 
identified binding sites. (b) TF target identification. The P value for observing a given binding probability score or higher by chance is calculated using 
permutation of TF binding sites. Using a P value cutoff, regulatory targets of each TF are identified. (c) Coexpressed gene cluster identification. Gene 
expression profiles are collected from experiments. Coherently expressed genes are identified and clustered. (d) Network construction. Genetic 
networks are identified for each coexpressed gene cluster using the target genes predicted for each TF within each gene cluster. The complete regulatory 
network is then constructed by consolidating individual networks. Hs, Homo sapiens; Mm, Mus musculus.
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shown to be a candidate myeloid regulator by previous stud-
ies [34-36]. However, what myeloid genes are directly
regulated by Egr1 is unclear. Using our results, seven genes
were found to be potentially regulated by Egr1, including
three genes encoding TFs (Figure 3a). Among these genes,
Dusp5 and Egr1 are both strongly upregulated after inter-
leukin-5 treatment in eosinophils [37]. Lmna modulates cel-
lular responses to the transforming growth factor-beta 1
(Tgfb1) signaling pathway [38], and Tgfb1 is regulated by
Egr1 [39]. Further computational analysis showed that all of
these genes have evolutionarily conserved Egr1 binding sites
in their proximal promoter region (Figure 3b). These results
suggest that the regulatory networks constructed by our
method identified potential target genes of Egr1.

Expanding genetic networks by additional myeloid 
transcription factors
The previous analysis identified myeloid TFs that are coher-
ently expressed with their target genes during myeloid differ-
entiation. However, there may be additional myeloid TFs that
may not share a similar expression profile with their target
genes (for example, myeloid TFs that are constantly
expressed). The TF binding site analysis described above
identifies TFs that regulate individual genes in the coex-
pressed gene clusters. Thus, PAP [29] was utilized to identify
additional myeloid TFs that regulate a set of genes in myeloid
gene clusters. PAP scores each TF and predicts TFs that regu-
late a set of coexpressed genes using a statistical model that is
based on TF binding sites and that is used to calculate a P
value to assess the statistical significance of this binding (see
Materials and methods). Using a P value cutoff of 0.05, up to
five additional TFs were identified for each of the coherently

Coexpressed gene clusters identified during myeloid developmentFigure 2
Coexpressed gene clusters identified during myeloid development. (a) The predominant cells in culture during the seven-day myeloid differentiation time 
course are promyelocytes, mid-myeloid cells, and terminally differentiated myeloid cells cultured at days 2 and 3, days 4 and 5, and days 6 and 7, 
respectively. (b) Coherently expressed gene clusters were identified for genes upregulated on just one day (UP0, UP1, UP2 and UP7) or over two 
consecutive days (UP01 and UP67) during in vitro myeloid differentiation.
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expressed gene clusters (Table 1). A majority of these addi-
tional TFs are known myeloid regulators or are involved in
leukemia pathophysiology, including AML1, PU.1, and C/
EBPα. These TFs were added into the genetic network for
each gene cluster as new nodes (Additional data file 6), and
connections from these TFs to other genes in each individual
network were made based on the TF-target gene pairs pre-
dicted by genomic sequence analysis (Additional data file 7).

Myeloid genetic networks among transcription factor 
genes
To systematically study the transcriptional regulatory mecha-
nisms underlying myeloid differentiation, focus was given to
TF genes in each coexpressed gene cluster. These TFs pre-
sumably modulate myeloid development by regulating the
genes in the same gene cluster (that is, genes that were coex-
pressed with the TFs). Indeed, 12 of the 17 TFs found in these
gene clusters were previously associated with myeloid differ-
entiation or myeloid disorders (Table 2). Therefore, the regu-
latory networks of TFs were extracted from each genetic
network identified for each gene cluster (Additional data file
8). Because genes in each coexpressed cluster are upregulated
at different time points during myeloid development, each
individual network represents a 'sub-network' of the entire
transcriptional regulatory network for myeloid differentia-
tion. Therefore, a comprehensive transcriptional regulatory
network was constructed by combining each individual net-

work identified in each coexpressed gene cluster. Namely,
each individual network was joined by the common TFs to
build a combined network (Figure 4a).

The identified genetic network for myeloid differentiation has
several interesting features. First, the integration of individ-
ual networks into the complete myeloid development net-
work was consistent with the time at which each individual
gene cluster was upregulated (that is, genes upregulated ear-
lier occupied the upper part of the network and genes upreg-
ulated later occupied the lower part). Second, multiple
regulatory pathways converge on a single TF, Rora. These
characteristics highlight the genetic circuitry that may be
operating in the myeloid differentiation.

Genetic networks in acute promyelocytic leukemia
To identify transcriptional regulatory mechanisms that are
dysregulated in acute promyelocytic leukemia, TFs that are
differentially expressed in APL compared to normal cells
were identified as follows. Gene expression profiles in APL
were collected from a mCG-PML-RARα knock-in mouse
model [30]. PML-RARα is a fusion protein observed in most
APL patients, and the majority of PML-RARα knock-in mice
eventually develop APL [30]. Because APL is characterized by
an arrest of the normal myeloid differentiation program in
the promyelocytic stage, and promyelocytes are the predomi-
nant cells at day 2 and day 3 of the in vitro myeloid matura-

Predicted regulatory targets of Egr1 in myeloid differentiationFigure 3
Predicted regulatory targets of Egr1 in myeloid differentiation. (a) Seven genes were identified as direct regulatory targets of Egr1. Three of these genes 
encode TFs (circle nodes). (b) Evolutionarily conserved Egr1 binding sites (red bars) were identified in the ± 2 kb proximal promoter region of the 
predicted target genes. All the Egr1 binding sites were conserved in human, mouse and rat except for PRDM16, whose rat ortholog was not available. 
Gene annotation information is color coded: blue, repetitive elements; yellow, conserved sequence; dark green, coding region; light green, untranslated 
region.
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tion program, gene expression data measured at these two
days were compared to those measured in APL mice. The
software program SAM (Significance Analysis of Microar-
rays) [40] was used to identify 602 differentially expressed
genes in APL. Among these genes, 472 were overexpressed in
APL, and 130 were underexpressed. These differentially
expressed genes include seven encoding TFs (Stat5b, Fos,
Atf1, Arid5b, Rxra, Mybl2, Nfyc) that have characterized
binding profiles, termed the APL dysregulome (Table 3). Four
of the seven dysregulated TFs, Atf1, Fos, Rxra and Stat5b,
have been previously associated with acute myeloid leukemia
[41-44], and ninety-six genes that were differentially
expressed in APL were identified as targets of these TFs
(Additional data file 9).

To test if these seven TFs in the APL dysregulome participate
in a common regulatory pathway (that is, their abnormal
expression is the cause or result of a single regulatory
cascade), transcriptional regulatory interactions between
these TFs were identified using regulatory sequence analysis
(see above and Materials and methods). Namely, TF-A and
TF-B are connected to form a regulatory pathway if TF-B has
over-represented binding sites of TF-A. As a result, six of
these seven TFs were shown to form a common regulatory
pathway (Figure 4b). The last TF, Nfyc, neither regulates nor
is regulated by any of the other six TFs, but it regulates a gene

(Actl6a) in common with Atf1. Two of these seven TFs, Nfyc
and Mybl2, are expressed at lower levels in APL than in nor-
mal promyelocytes. It is interesting to note that while Atf1
regulates Fos and Actl6a, Fos is up-regulated and Actl6a is
down-regulated in APL. This suggests that Atf1 may act as
both a transcriptional activator and a repressor, possibly
depending on different cooperative factors. This hypothesis is
supported by a previous study of Atf1 [45]. Thus, to identify
cooperative TFs of Atf1, TFs that regulate Fos or Actl6a and
have similar expression profiles to Atf1 in APL were identi-
fied. This analysis identified Egr2 and Nfyb as cofactors of
Atf1 in the regulation of Fos and Actl6a, respectively.

To study how the APL dysregulome perturbs the genetic net-
work of normal myeloid differentiation, the regulatory cas-
cade of the seven dysregulated TFs were joined with the
normal myeloid genetic network (Figure 4c). All the predicted
regulatory interactions between any two TFs within the nor-
mal genetic network were maintained, and the TFs that were
predicted as targets of at least one dysregulated TF were iden-
tified (Table 4, Figure 4c). Interestingly, these two networks
could be simply combined through a common TF, Fos. This
result suggests that the genetic network of normal myeloid
differentiation is perturbed, and this dysregulation is medi-
ated through Fos. Furthermore, these results predict a change
in the genetic circuitry wherein the normal cascade is regu-

Table 1

Additional myeloid transcription factors identified by PAP

Cluster Accession TF Symbol Association with myeloid development Reference

UP0 MA0081 SPI-B Spib Can functionally replace PU.1 in myeloid development [85]

M00961 VDR Vdr Involved in monocytic differentiation in human leukemia cells [86]

M00777 STAT Stat4 Expressed in early myeloid development [79]

MA0103 deltaEF1 Zfhz1a

M00655 PEA3 Etv4

UP1 M00161 Oct-1 Pou2f1 Regulates PU.1 [87]

UP7 M00658 PU.1 Sfpi1 Known regulator of hematopoiesis [88]

M00329 Pax-9 Pax9

M00925 AP-1 Jun Known regulator of myeloid development [89]

M01031 HNF4 Hnf4a

MA0081 SPI-B Spib Can functionally replace PU.1 in myeloid development [85]

UP01 M00217 USF Usf1 Regulates HOXB4 in normal and leukemia stem cells [90]

M00792 SMAD Smad1

M00805 LEF1 Lef1 Expression altered in acute leukemia [77]

M00799 Myc Myc Upregulated in AML and induces AML [91]

MA0002 AML-1 Runx1 Known regulator of hematopoiesis [88]

UP67 M00133 Tst-1 Pou3f1

M00188 AP-1 Jun Known regulator of myeloid development [89]

M00729 Cdx-2 Cdx2 Involved in the ETV6-CDX2 fusion protein [92]

M00912 C/EBP Cebpa Known regulator of hematopoiesis [88]

M00162 Oct-1 Pou2f1 Regulates PU.1 [87]

PAP was used to identify overrepresented TF binding sites in each coexpressed gene clusrer. Almost all of these TFs are associated with myeloid 
development or myeloid leukemia.
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lated by Rora while the pathophysiology observed in APL is
mediated by Rxra. Bona fide downstream targets of Rora and
Rxra need to be identified, and their functions in normal mye-
loid development or APL need to be elucidated to further val-
idate the role of Rora and Rxra in normal or leukemic biology.

PML-RARα and APL pathogenesis
While the proposed genetic network predicted that the APL
pathway converged on Rxra, the relationship between PML-
RARα and the APL dysregulome was not uncovered. Thus, to
test whether the APL dysregulome (Figure 4b) is caused
either directly or indirectly by PML-RARα, PML-RARα TF
targets were identified using RARα binding profiles. Because
it has been shown that PML-RARα binds to a much broader
range of binding site architectures than the normal RARα,
eight binding profiles of PML-RARα with various orienta-
tions and spacings (DR2, DR3, DR4, DR5, DR6, DR12, IR0,
and ER8) were created based on a previous experimental
study [46] in addition to the RARα binding profiles in
TRANSFAC. Using the same binding site permutation
algorithm, none of the TFs in the APL dysregulome were pre-
dicted as direct targets of PML-RARα, suggesting that dysreg-
ulation of these TFs was mediated by other TFs.

Thus, to identify direct targets of PML-RARα, gene expres-
sion profiles collected from cultured bone marrow cells

derived from young mCG-PML-RARα knock-in mice were
used (see Materials and methods). First, to identify genes dys-
regulated in preleukemic promyelocytes, expression data
from days 0, 2, and 7 in normal and preleukemic
promyelocytes were analyzed using SAM. No genes were dif-
ferentially expressed at day 0, whereas 73 and 1,028 genes
were differentially expressed at day 2 and day 7, respectively.
Using the eight binding profiles of PML-RARα and the RARα
binding profiles in TRANSFAC, six TFs differentially
expressed at day 7 were predicted as direct PML-RARα tar-
gets (Table 5). Interestingly, one of the TFs in the normal net-
work, Egr1, is also predicted as a PML-RARα target; however,
Egr1 is expressed at a normal level in young, preleukemic
mice. Therefore, it is possible that Egr1 may not be a direct
mediator of PML-RARα in leukemogenesis. Collectively,
these results suggest a model of APL pathogenesis in which
PML-RARα regulates the APL dysregulome through six
mediator TFs. This circuitry ultimately converges to create
the APL dysregulome, hallmarked by activation of Rxra,
which then triggers downstream events (Figure 5).

Discussion
A novel approach to genetic network identification
In this report, we propose a novel approach to genetic net-
work identification that combines two independent types of

Genetic networks operating in myeloid development and APLFigure 4
Genetic networks operating in myeloid development and APL. In these networks, circle nodes represent TF genes. Genes that do not encode TFs are 
shown in rectangles. An arrow is drawn from TF-A to gene-B if TF-A regulates gene-B. (a) The predicted genetic network operating in myeloid 
differentiation. Multiple regulatory pathways in this network converge on one single TF, Rora. The expression profiles of the TF genes are color coded: 
blue, upregulated at day 0; yellow, upregulated at day 0 and day 1; purple, upregulated at day 7. (b) The seven TFs that are dysregulated in APL may be 
connected to form a common regulatory pathway. Aberrant expressions of these TFs are color coded: red, overexpression; green, underexpression. (c) 
The perturbation of the normal network by dysregulated TFs in APL. The normal and disease regulatory pathways converge on Rora and Rxra, 
respectively. The dysregulated pathway in APL may perturb the normal genetic network through Fos. Furthermore, many TFs in the normal network 
(shown in orange nodes) are predicted as direct targets of at least one TF dysregulated in APL (Table 4).
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information, gene expression profiling data and computa-
tional identification of TF binding sites. Using gene expres-
sion data, genes coherently expressed with TFs were first
identified. In parallel, direct regulatory targets of TFs were
predicted by a computational model that calculates binding
scores for each coexpressed gene and assesses statistical sig-
nificance using binding site permutation. These two types of
information were then integrated to construct the genetic net-
work for each coexpressed gene cluster, which were subse-
quently consolidated into a comprehensive network. We used
this approach to identify the genetic network in normal mye-
loid differentiation and to determine how this network is
perturbed in APL. This approach is general and may be
applied to delineate genetic networks operating in other com-
plex human diseases.

Prediction of direct regulatory targets using TF binding 
site identification
A major challenge in expression data-based genetic network
construction is the ability to distinguish direct regulatory tar-
gets of TFs from indirectly regulated downstream genes. To
predict direct targets accurately, coexpressed genes were
scored using the identified TF binding sites, and the statistical
significance of each score was determined. This method is dif-
ferent from other existing approaches in several ways. First, it
does not compare the frequency of TF binding sites to a spe-

cific set of reference sequences. Instead, the binding scores of
genes in the entire genome are calculated, and the P value for
observing a score is determined by permutation of all the
binding sites. Secondly, unlike most previous methods where
TF binding sites are only identified in the proximal promoter
region, our model considers binding sites located in evolu-
tionarily conserved sequences in the entire gene locus. This
includes a significant number of additional, highly conserved
sites found in introns and distant genomic regions. These
modifications and improvements make our predictions more
accurate due to a better scoring model and more
comprehensive due to a more complete set of evolutionarily
conserved TF binding sites [47].

Using the in vitro cell culture system to model human 
myeloid differentiation
In this study, we used an in vitro, G-SCF driven myeloid dif-
ferentiation system to model normal myeloid maturation and
compared its gene expression profile to that of an in vivo APL
mouse model. Although the in vitro GCS-F driven myeloid
differentiation is not equivalent to in vivo differentiation, it is
a validated surrogate that mimics human myeloid differenti-
ation [30]. Moreover, this system is currently the only practi-
cal and technically feasible platform for the study of normal
murine myeloid development. Therefore, we believe the data

Table 2

Transcription factor genes identified in coexpressed gene clusters

Cluster Gene ID Symbol Expression correlation coefficient Association with myeloid development Reference

UP0 13653 Egr1 0.9928 Stimulates development of hematopoietic progenitor cells [35]

13654 Egr2 0.9459

14013 Evi1 0.9373 Involved in many myeloid disorders [76]

14281 Fos 0.9488 Modulates myeloid cell survival and differentiation [42]

16842 Lef1 0.9325 Expression altered in acute leukemia [77]

17131 Smad7 0.9041 Alters cell fate decisions of human hematopoietic repopulating cells [78]

18109 Mycn 0.9094

19883 Rora 0.9335

20849 Stat4 0.9562 Expressed in early myeloid development [79]

21414 Tcf7 0.9614

56458 Foxo1 0.9575 Activates the mixed lineage leukemia gene [80]

UP01 14013 Evi1 0.9042 Involved in many myeloid disorders [76]

14391 Gabpb1 0.9377 Activates the neutrophil elastase promoter [81]

16842 Lef1 0.9593 Expression altered in acute leukemia [77]

18044 Nfya 0.9036

18109 Mycn 0.9509

19883 Rora 0.9525

217082 Hlf 0.9537 E2A-HLF fusion abrogates apoptosis in leukemia cells [82]

UP67 12013 Bach1 0.9274

17119 Mxd1 0.9168 Expression induced during myeloid development [83]

328572 Ep300 0.9097 Regulates Runx1 through acetylation of lysine residues [84]

These TFs were all upregulated on just one day or over two consecutive days during the seven-day in vitro myeloid differentiation. Twelve of these 
seventeen TF genes aare known to regulate myeloid differentiation or be involved in myeloid leukemia.
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provided by this system can be used to infer hematopoietic
gene regulation.

Comparing the identified genetic networks with 
previous experimental data
The genetic network of TFs identified by our computational
method provides several new insights into the normal and
aberrant regulatory pathways that may drive myeloid differ-
entiation and in acute promyelocytic leukemia, respectively.
These predictions are compared to several previous findings.

First, we observed that the normal and disease regulatory cas-
cades converge on Rora and Rxra, respectively. Rora and
Rxra belong to the same family of nuclear receptors and are
related to Rara, and Rxra forms a heterodimer with Rara.
Although the specific functions of Rora in myeloid differenti-
ation are still unknown, all three nuclear receptors bind to
very similar DNA sequences ((A/G)GGTCA) [46,48], imply-

ing that they may regulate the same genes. In addition, the
human RORA gene is located within a highly conserved
region on chromosome 15 near the human PML gene [49].
Therefore, our results suggest a novel role for Rora in myeloid
development. Furthermore, the dysregulated pathway in APL
leads to an overexpression of Rxra, and the absence of Rxra in
the normal network implies that Rxra is a potential effector
protein in APL but not in normal myeloid development. In
fact, recent studies have shown that although Rxra is not
required in normal myelopoiesis [50], it is an essential com-
ponent for the PML-RARα complex to initiate APL in mice
[51,52]. Therefore, the prediction of Rxra as a potential key
participant in APL pathogenesis is supported by in vivo stud-
ies.

Second, the normal and the disease pathways did not share
many common TFs. Instead, only one TF in the normal net-
work, Fos, which modulates myeloid cell survival and differ-

Table 3

Dysregulated transcription factors in APL

Gene ID Symbol Gene name APL expression SAM score

20851 Stat5b signal transducer and activator of transcription 5B Up 12.05

14281 Fos FBJ osteosarcoma oncogene Up 9.71

11908 Atf1 activating transcription factor 1 Up 9.68

71371 Arid5b AT rich interactive domain 5B (Mrf1 like) Up 9.63

20181 Rxra retinoid X receptor alpha Up 9.48

17865 Mybl2 myeloblastosis oncogene-like 2 Down -9.47

18046 Nfyc nuclear transcription factor-Y gamma Down -10.21

SAM was used to identify seven TFs that are differentially expressed in APL and in normal promyelocytes. Five of these TFs are upregulated in APL, 
while two of them are downregulated.

Table 4

Transcription factors in the normal myeloid genetic network regulated by dysregulated transcription factors in APL

Differentially expressed TFs in APL Regulated TFs in normal myeloid development P value

Arid5b Rora ~0

Arid5b Tcf7 0.0019

Atf1 Egr1 ~0

Atf1 Hlf 0.0041

Atf1 Rora 0.0015

Atf1 Smad7 0.0015

Fos Egr2 0.0005

Fos Rora ~0

Fos Tcf7 0.0036

Fos Zfhx1a 0.0005

Mybl2 Rora ~0

Rxra Egr1 0.0003

Rxra Etv4 0.0014

Stat5b Foxo1 0.0005

These regulatory targets were identified using permutation of TF binding sites.
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entiation [42], was dysregulated in APL. Our analysis
identified that the TFs dysregulated in APL may mediate the
perturbation of the normal myeloid genetic network through
Fos. Indeed, previous studies have demonstrated that PML-
RARα promotes cell growth by activating Fos [53], and that
PML-RARα directly functions as a co-repressor of Fos in the
absence of retinoic acid [54]. Our data suggest that over-

expression of Fos in APL may have an aberrant activation
function as well. This over-expression of Fos may be induced
by PML-RARα and may, in turn, cause the dysregulation of
other TFs involved in APL.

Third, we identified a set of six TFs as direct targets of PML-
RARα. Among these six TFs, five of them were overexpressed
in APL, and one TF was underexpressed, suggesting PML-
RARα may act as both a repressor and an activator. In agree-
ment with this observation, PML-RARα was first demon-
strated as an enhanced repressor of retinoic acid target genes
by its stronger binding to corepressors than wild-type RARα
[55,56], but it is becoming clear that PML-RARα may also
function as an activator [54,57]. While a version of PML-
RARα that can only repress gene expression is still
leukemogenic [58], whether PML-RARα can trigger APL
pathogenesis by gene activation is unknown. Our analysis
suggests that PML-RARα may indeed be an activator and pro-
vides a potential mechanism through which this may occur.

Finally, our data are consistent with a previous study that
showed that relative levels of Sfpi1 regulate macrophage ver-
sus neutrophil differentiation [59]. Importantly, at low Sfpi1
levels (neutrophil differentiation), we did not find that Egr1/
2 are targets of Sfpi1 whereas Laslo et al. [59] found that
Egr1/2 are targets of Sfpi1 during macrophage differentiation
where Sfpi1 is expressed at high levels. Therefore, there may
be weaker binding sites for Sfpi1 in Egr1 or Egr2 promoters,
and thus the activation of Egr1 and Egr2 may require a higher
expression level of Sfpi1.

Genetic networks may be expanded using additional 
information on binding profiles
The computational approach used in this study is based on
the binding profiles of TFs in TRANSFAC and JASPAR.
Therefore, the quality of our prediction and the accuracy of
our conclusions may be dependent upon the quality of the
binding models in these databases. Some TFs require other
co-factors to accomplish their regulatory functions, and so
their binding specificities or preferences may also be depend-

The proposed model of APL pathogenesis induced by PML-RARαFigure 5
The proposed model of APL pathogenesis induced by PML-RARα. PML-
RARα may activate the dysregulation of several TFs in the disease 
regulatory pathway in APL through six mediator TFs (dashed blue arrow). 
This regulatory circuitry ultimately converges on the overexpression of 
Rxra. Red circle, overexpressed TFs; green circle, underexpressed TFs; 
green box, underexpressed genes; orange circle, TFs in the normal 
network that are predicted as targets of dysregulated TFs in APL; gray 
circle, other TFs in the normal network; purple circle, PML-RARα.
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Table 5

Predicted mediator transcription factors of PML-RARα

Gene ID Symbol Gene name APL expression SAM score

12053 Bcl6 B-cell leukemia/lymphoma 6 Down -7.39

21429 Ubtf upstream binding transcription factor, RNA polymerase I Up 4.49

56070 Tcerg1 transcription elongation regulator 1 (CA150) Up 6.25

56463 Snd1 expressed sequence AL033314 Up 4.44

71458 Bcor Bcl6 interacting corepressor Up 4.90

109151 Chd9 chromodomain helicase DNA binding protein 9 Up 5.64

SAM and the binding profiles of Rara and PML-RARα were used to identify direct regulatory targets of PML-RARα. These six TFs may activate the 
dysregulation of other aberrantly expressed TFs in APL.
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ent on their binding partners. Such information may not have
been included in the TRANSFAC or JASPAR models. For
example, the TF RXRA studied in this work typically forms a
heterodimer with various co-factors, including RAR, VDR,
TR, or PPAR at various spacings. The four binding profiles we
used were created using different binding partners of RXRA,
including PPAR (M00518), RAR and TR (M00963), and VDR
(M00966). Thus, our prediction did consider the binding site
of RXRA with different binding partners. However, our pre-
diction may not include all the allowable spacings between
the two sites. Therefore, our results may be further improved
when more precise and complete binding profiles are
available.

While the direct targets of PML-RARα in APL were computa-
tionally identified, the direct targets of these mediator TFs
could not be determined. Therefore, the genetic network in
APL was not fully elucidated (Figure 5). In order to identify
targets of these mediator TFs, knowledge of their binding
profiles is required, information that is currently not
available. In fact, while there are more than 2,000 TFs pre-
dicted in the human genome [60], only a quarter of them have
known binding profiles. Thus, the predicted genetic network
may be further improved and expanded when more TF bind-
ing profiles become available. Additional TF binding profiles
may be generated by traditional protein-DNA binding assays
[61] or by computational approaches that utilize evolutionary
conservation of functional sequences. This latter approach is
used to predict DNA binding profiles on a genome-wide scale.
For example, DNA binding patterns may be identified by cal-
culating the conservation rate of a given oligonucleotide
across the genome [62], or by clustering genes that share
common conserved sequences [63]. Thus, the employment of
such methods is a rational next step toward the refinement of
genetic networks. Integration of this computational compo-
nent would not only increase our understanding of the molec-
ular mechanisms underlying APL but would also facilitate the
construction of more comprehensive regulatory networks
driving other complex diseases.

Conclusion
We have developed an integrated approach to mammalian
genetic network construction by combining gene expression
profiling data and TF binding site identification. Using this
technique, we have predicted Rxra as a key regulator in APL
and Fos as one of the key mediators of PML-RARα. These
results provide new insights about the pathophysiology of
APL. Our approach may be applied to study the genetic cir-
cuitry operating in other complex diseases in humans.

Materials and methods
Genomic sequence collection and ortholog 
identification
The genomic sequences of human, mouse, and rat were
acquired from the NCBI's Genome Assembly Project [64].
Genome build 35 was used for human, build 33 for mouse and
build 3 for rat. The genomic sequence of a gene locus was
defined as the sequence between the end of the upstream
gene and the end of the gene itself. Within this range, protein
coding sequences were masked and excluded from the search
of TF binding sites. Repetitive elements were also masked by
the program RepeatMasker [65] using slow and sensitive
mode (the -s flag). Human, mouse and rat ortholog gene
groups (13,194 in total) were identified using the annotation
of NCBI's HomoloGene database as previously described
[29]. Genomic sequences of the genes in the same ortholog
group were then aligned using the program TBA [66].

TF binding site identification and binding probability 
score calculation
To identify TF binding sites, 596 vertebrate TF binding pro-
files were collected from the TRANSFAC (version 9.1) and
JASPAR databases. The program PATSER [67] was used to
search for matches of these profiles in the genome using
default cutoff scores (the -li option). This cutoff score is
calculated as follows: for each position, PATSER scores the
subsequence and calculatesthe P value for observing the same
score or higher at thatposition [68]. A P value cutoff is calcu-
lated for each binding profile using its information content.
The score corresponding to that P value cutoff is then chosen
to be the cutoff score. After all the TF binding sites were iden-
tified, binding probability scores [29] for each TF-gene pair
were then calculated using evolutionarily conserved TF bind-
ing sites found in the non-coding sequence of a gene. For
mammals, functional regulatory elements have been found in
distant upstream regions [69,70] as well as intronic
sequences [71,72]. However, searching for TF binding sites in
the entire intergenic sequence and in the entire gene locus
frequently results in a high false discovery rate. Therefore, to
overcome this problem, we considered only evolutionarily
conserved TF binding sites in the 'proximal promoter region'
of a gene and in the most conserved sequence regions within
a gene locus defined by multi-species conserved sequences
(MCSs) [73].

The proximal promoter region of a gene was defined as the 10
kb upstream sequence and the 5 kb downstream sequence
from the transcription start site, regardless of the presence of
an upstream gene or a downstream gene. MCSs are defined as
the top 5% conserved sequences in the human genome when
compared to another 11 vertebrate genomes [73]. The human
MCSs were first downloaded, and the MCSs in mouse and rat
were defined by mapping the human MCSs to the mouse or
rat genomes using multiple sequence alignments generated
by TBA. These multiple sequence alignments were also used
to identify evolutionarily conserved TF binding sites, which
Genome Biology 2008, 9:R38
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were defined as sites located within conserved sequence
regions, present in all the species and aligned in the multiple
sequence alignment [74].

Calculating statistical significance for a binding 
probability score
To predict regulatory targets of TFs, genes that have statisti-
cally significant binding scores [29] for a TF were identified.
The statistical significance of a given binding score was eval-
uated by the P value for observing an equal or higher score by
chance. This P value was calculated by permutation of all the
TF binding sites in the genome. In this algorithm, each indi-
vidual binding site of a TF was randomly assigned to genes in
the genome based on a precalculated probability distribution
calculated as follows: the probability for a gene to acquire a
given TF site is the length of the TF binding site search range
of that gene (that is, the proximal promoter region and the
MCSs; see above) divided by the sum of the TF binding site
search ranges of all the genes in the genome. This permuta-
tion of TF binding sites was performed for 10,000 iterations.
After each iteration, a new binding probability score was cal-
culated for each gene using the TF sites randomly assigned to
that gene. The P value for observing a score for a gene was
then calculated by the number of iterations where a binding
score equal to or higher than the true score was obtained for
that gene, divided by the total number of iterations.

Gene expression profiling data
Gene expression profiles in normal myeloid differentiation
were obtained from a G-CSF stimulated in vitro myeloid dif-
ferentiation model [30]. Expression data were collected from
cultured bone marrow cells in two independent experiments
during a seven-day time course. Gene expression data in APL
were collected from bone marrow cells of six adult PML-
RARα knock-in mice based on a previously developed murine
APL model [30]. Expression profiles of the cultured bone
marrow cells were also collected from two sets of young PML-
RARα knock-in mice. For the expression data collected from
cultured cells, only probesets that were present on at least one
day in at least one experiment were considered.

Coexpressed gene cluster identification
The coexpressed gene clusters during myeloid differentiation
were identified using the template matching clustering tool in
the software suite FunctionExpress [75]. The templates for
each upregulated expression pattern were created manually,
including genes that were upregulated on just one day or over
two consecutive days during the seven day time course. The
Pearson's correlation coefficient was used to quantify the sim-
ilarity between the template and the expression profile of
each probeset. A cutoff of 0.9 was applied to the correlation
coefficient to identify the coexpressed gene clusters.

Additional myeloid TF identification
PAP [29] was used to identify additional TFs that may regu-
late genes in each coexpressed gene cluster. For each gene

cluster, PAP ranked all the TFs by their R-scores, which were
calculated based on overrepresentation of their binding sites
in the coexpressed genes. To find TFs that have a statistically
significant R-score, a P value for each R-score was calculated
using 10,000 randomly selected gene clusters of the same
size. For each random set, the R-scores for each TF were cal-
culated, and the P value for a TF was calculated as the number
of gene clusters that had an equal or higher score than that of
the original gene cluster, divided by 10,000, the total number
of random sets.
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