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Normalization of two-color arrays<p>A normalization method based on probe GC content for two-color tiling arrays and an algorithm for detecting peak regions are pre-sented. They are available in a stand-alone Java program.</p>

Abstract

A novel normalization method based on the GC content of probes is developed for two-color tiling
arrays. The proposed method, together with robust estimates of the model parameters, is shown
to perform superbly on published data sets. A robust algorithm for detecting peak regions is also
formulated and shown to perform well compared to other approaches. The tools have been
implemented as a stand-alone Java program called MA2C, which can display various plots of
statistical analysis for quality control.

Background
High-density oligonucleotide tiling-microarrays currently
provide the most powerful method of investigating genome-
wide protein-DNA interactions and chromatin structure in
vivo. As illustrated in Figure 1, the technology allows tiling
regions of interest on DNA with probes separated by short
chromosome distances. A typical NimbleGen array has about
400,000 probes that are 40-60 nucleotides long and sepa-
rated by 10-100 base-pairs (bp) in the genome. Both Nimble-
Gen and Agilent provide two-color microarrays with flexible
designs where one can choose probes that are partially over-
lapping for high resolution studies of chromatin structure.
The experimental protocol requires labeling the treatment
and control samples with fluorescent dyes, usually green and
red, and then hybridizing them on a microarray. Each probe's
intensity of fluorescence upon scanning the microarray will
give an approximate measure of the abundance of DNA that

hybridized to the probe. Because each probe has an associated
genomic coordinate, one can plot the intensities as a function
of chromosome locations and then reconstruct the enrich-
ment of particular DNA or RNA fragments compared to the
genomic background. As in Figure 1, the enriched regions
appear as peaks, which can represent protein-bound DNA
fragments.

The technology is continuing to develop rapidly, but certainly
not without difficulties that are imposed by the inherent com-
plexity of biological systems and, as such, must be addressed
by computational means for the foreseeable future. The main
computational challenge lies in properly normalizing the data
and distinguishing true peaks from the noisy background.
Many problems that confound this type of microarray data
actually arise from probe-specific biases, such as differential
sequence copy numbers in the genome or variable melting
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temperature dependent upon the GC content. For Affymetrix
tiling arrays, several good model-based methods already exist
to account for probe biases and, thus, to adjust for probe-spe-
cific baseline signals. The recently introduced MAT [1], for
instance, estimates probe affinity from probe sequence and
copy number and provides a powerful tool for finding
enriched regions in chromatin immunoprecipitation (ChIP)
and other applications on Affymetrix tiling-array experi-
ments. Incidentally, similar problems are also found in
Affymetrix expression arrays, for which extensive effort has
been previously exerted by various groups to develop robust
methods for background correction and probe-level normali-
zation (for example, [2-5]). It is relatively hard and expensive
for Affymetrix to provide custom designed microarrays.

Commercial custom tiling arrays are relatively new in the
field of microarray biotechnology and, just as expression

arrays allow global assays of gene expression, provide an
invaluable tool for investigating the locations and roles of
DNA-binding proteins in the whole genome at high resolu-
tion. All currently available custom tiling arrays use the two-
color technology. Considering the utility and power of high-
resolution tiling arrays, it is thus imperative that reliable
computational methods be developed now to facilitate the
extraction of precise and accurate conclusions from such
experiments.

It turns out that two-color arrays also exhibit a sequence bias,
particularly dependent upon the GC content of probes. More
precisely, probes with high GC counts tend to have high inten-
sity; furthermore, as Figure 2 indicates, the two channels
show a higher correlation in the high-GC probes than in the
low-GC probes. However, no satisfactory normalization and
peak-detection methods are yet available for two-color tiling

ChIP-chipFigure 1
ChIP-chip. Regions of interest on DNA are densely tiled, with probes separated by short distances. In this figure, each bar corresponds to the log-ratio 
hybridization signals of two channels measured by a probe. Small sub-regions that are over-represented compared to the genomic background will appear 
as pronounced peaks (in this example, the middle peak represents the DNA fragments containing a protein-binding site). The computational challenge is to 
normalize the data properly and to detect confident enriched regions by filtering out false peaks (left and right peaks in this example).
Genome Biology 2007, 8:R178
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arrays. For example, even though NimbleGen provides flexi-
ble custom designs, with long probes to minimize cross-
hybridization and variable probe spacing to allow dense til-
ing, a robust method of analysis has not been hitherto devel-
oped for the platform. Indeed, NimbleGen currently uses a
simple method of globally scaling all probe ratios by the
median, attempting to remove any dye-bias across arrays but
neglecting other probe-specific biases. As illustrated in Figure
3, the median scaled ratios retain the bimodal distribution
attributable to GC probe effects and, thus, this approach is
inadequate in removing all dye and sample biases from the
data.

For dual-channel cDNA arrays, several normalization meth-
ods have been proposed (for example, [2,6]), but these proce-
dures typically utilize methods that neglect probe sequence
information and are also computationally expensive and,
thus, unsuitable for currently available high-density tiling
arrays. One common way of locally normalizing two-color
arrays is the so-called M-A loess normalization. The funda-
mental assumption behind this procedure is that most probes
should have similar values between the two-channels, an
assumption violated in studies of chromatin structure such as
nucleosome mapping described in [7,8]. This method also
does not account for sequence-specific effects, which may be
significant in high-density tiling arrays, and also does not
normalize the variance of M.

Single-channel normalization methods can be also applied to
two-color arrays, such as those proposed by [3,9], but they
ignore the fact that the two channels are paired, and such
approaches are thus likely to retain residual effects or corre-
lation. Recently, Dabney and Storey [10] have introduced a
normalization method that adjusts for intensity-dependent
dye bias and array-to-array variations. However, their
method, which was developed for expression arrays, does not
model sequence-specific probe effects and is based on
smoothing procedures that can be computationally demand-
ing for tiling arrays; the approach also requires a dye swap
and, thus, cannot be applied to single array experiments,
which are often performed as test runs. In fact, as far as we are

Figure 2
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(c)     Correlation by GC count

Scatter plots of the Cy5 versus Cy3 channels for 50-mer probes from [12] with (a) 28256_Input versus 28256_ChIP for G+C = 11 bases and (b) 28256_Input versus 28256_ChIP for G+C = 39 basesFigure 2
Scatter plots of the Cy5 versus Cy3 channels for 50-mer probes from [12] 
with (a) 28256_Input versus 28256_ChIP for G+C = 11 bases and (b) 
28256_Input versus 28256_ChIP for G+C = 39 bases. The correlation is 
0.364 in (a) and 0.860 in (b). (c) Plot of the inter-channel correlation 
(28256_Input, 28256_ChIP) across GC bins within the same array. The 
higher GC-count probes are more correlated and, therefore, should be 
more reliable in detecting differentially expressed or enriched probes. 
That is, in ChIP-chip, more than 99% of probes just measure the 
background and, thus, should ideally give similar results for the two 
channels. The correlation between the two channels, however, depends 
on the GC content of the probes. Since the two-channel correlation for 
high-GC probes is much higher than that for low-GC probes, significant 
two-channel fold-changes in the former category are much more reliable 
than those in the latter category, where large fold-changes may readily 
occur by chance.
Genome Biology 2007, 8:R178
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aware, there are, to date, only two published tools, MPeak
[11,12] and ChIPOTle [13,14] for analyzing two-color high-
density tiling arrays, but neither considers probe-specific
normalization or is able to combine replicate experiments
directly. This problem is rather serious since biological repli-
cate experiments are perceived to be indispensable in any
sound research utilizing microarrays.

In this paper, we address many of the issues discussed above
and present robust algorithms for normalizing the raw data at
probe-level and detecting peaks, implemented as a Java pro-
gram called MA2C (model-based analysis of two-color
arrays). Because our normalization method standardizes the
probe intensities, our peak-detection algorithm naturally
generalizes to combine replicate arrays.

Results and discussion
Comparison of normalization methods
To test the effectiveness of the MA2C normalization proce-
dure, we compared the MA2C normalized data using the non-
robust and robust C = 2 methods with the raw and median
scaled log-ratio data; Figure 4 shows the corresponding den-
sity plots of log ratios for eight samples published in [12]. Fig-
ure 4 illustrates that our method standardizes the data much
more effectively than median scaling and removes much of
the GC-effect discussed in Figure 3. In particular, Figure 4d
shows that the log-ratios normalized with MA2C's robust
option follow a normal distribution.

Spike-in experiment
We used the data (GEO GSE7523) from a recent spike-in
experiment to test MA2C. The spike-in samples contained 96
clones in the ENCODE region of approximately 500 bp, at 8
different concentrations corresponding to (2n + 1)-fold
enrichment compared to the human genomic DNA, for n =
1,...,8, and 12 different clones per concentration. The control
sample contained sonicated genomic DNA without spike-ins.
The spike-in and control samples were differentially labeled
and hybridized to a NimbleGen ENCODE tiling array in trip-
licates, and the resulting data were used to assess the per-
formance of MA2C against other currently available
algorithms.

Figure 3
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Log−intensity

D
en

si
ty

IP/Cy3
Input/Cy5

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

(c)     Raw data log−fold change

Log−fold change

D
en

si
ty

Histograms of intensitiesFigure 3
Histograms of intensities. (a) Histogram of single-channel log-intensity 
values for a single array from 28256_Input [12]. The red bars represent 
the log-intensities for the probes with G+C less than 20, indicating that the 
bimodal behavior is caused by the GC content of probes. (b) Density plot 
of single channel log-intensities for two channels on the same array 
(28256_ChIP, black; 28256_Input, red). Notice that both the scale and the 
mean of the individual channels must be adjusted to properly normalize 
the arrays. (c) The raw data log-ratio values (28256_ChIP/28256_Input) 
for the same array in (b). Note that the 'bump' at 0 is not caused by 
enrichment but by lack of channel specific normalization of the data.
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Log-ratio density plotsFigure 4
Log-ratio density plots. All samples are from [12]: (a) raw data; (b) median adjusted data; (c) QQ normalized data; (d) Lowess normalized data; (e) 
MA2C (Simple) normalized data; (f) MA2C (Robust C = 2) normalized data. Different colors correspond to different samples.
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(c) QQ normalized data
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(d) Lowess normalized data
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(e) MA2C (simple) normalized data
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(f) MA2C (C = 2) normalized data
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MA2C and MPeak Version 2.0 [11,12] were run using default
parameters, and ChIPOTle v1.0 [13,14] using window size
500, step length 100, p value cutoff 10-4 and Gaussian back-
ground distribution. As seen in Table 1, while having a com-
parable sensitivity, MA2C has a higher positive predictive
value and, thus, fewer false negative peaks than ChIPOTle.
After removing ambiguous overlapping regions from the 96
spike-in regions, we used the remaining 47 unique regions to
measure the correlation between spike-in fold-changes and
the corresponding algorithm-assigned scores for detected
peaks. MA2C not only found all the unique sites but also
showed a better correlation than ChIPOTle, which missed
some of the sites in the first sample.

The positive predictive value of MPeak was comparable to
MA2C, but MA2C was more sensitive and also found more
unique sites. MA2C again showed a better correlation with
spike-in fold-changes than MPeak and, thus, provided better
quantitative information about the enriched regions than
both ChIPOTle and MPeak. We also tested the MA2C peak
detection algorithm on the global median-scaled data without
any GC-correction (the same data analyzed with MPeak and
ChIPOTle) and still found MA2C to be more sensitive and to
have a higher positive predictive value, indicating that MA2C
can outperform other available algorithms even without its
GC-specific normalization step (Table 1).

Furthermore, neither MPeak nor ChIPOTle can combine rep-
licate data in a single test. As seen in Table 1, pooling data
from replicate experiments can often increase the sensitivity
and quantitativeness of analysis, and this option imple-
mented in MA2C will prove to be useful. Since ChIP-chip

experiments require biological replicates, which are much
noisier than the technical triplicate spike-ins presented here,
the ability to combine replicates at the probe-level will pro-
vide more sensitive and robust peak predictions than other
methods of combining peaks. In addition, ChIP-chip experi-
ments contain a PCR amplification step that often increases
the GC bias of probes; in this regard, MA2C's GC-based probe
normalization shows distinct advantages over ChIPOTle and
MPeak on PCR amplified samples, as observed in a separate
PCR amplified spike-in experiment (unpublished data).

ChIP-chip data in Caenorhabditis elegans
The protein DPY-27 functions as an essential dosage-com-
pensator that suppresses the expression of genes on each X
chromosome in hermaphrodite XX embryos of Caenorhabdi-
tis elegans, thereby reducing the expression level of the X-
linked genes by half to the level in XO (male) counterparts.
Chuang et al. [15] have shown that the basic suppression
mechanism involves localization of DPY-27 to X chromo-
somes, likely leading to a subsequent modification of the
chromatin structure of X chromosomes mediated by DPY-27.
Davis and Meyer [16] later showed that SDC-3 also localizes
to X chromosomes in XX hermaphrodites and associates with
a dosage compensating complex involving DPY-27.

A recent study [17] suggests that SDC-3 in fact preferentially
binds in the promoter regions of active genes. This
observation has the important biological implication that
SDC-3 and DPY-27 may modulate transcriptional activities
and that the mechanism by which the dosage compensating
complex spreads along the X chromosome may involve initial
localization to promoters followed by RNA polymerase-cou-

Table 1

Comparison of MA2C with other algorithms using a spike-in experiment with a total of 96 regions and 47 unique non-overlapping 
regions

Algorithm CHIP_ID PPV Sensitivity Unique Correlation

ChIPOTle 49875 71% 85% 40 0.72

49880 69% 98% 47 0.76

49883 73% 98% 47 0.79

MPeak 49875 100% 91% 46 0.74

49880 96% 89% 46 0.71

49883 98% 89% 46 0.79

MA2C 49875 99% 91% 47 0.78

(C = 2 normalized) 49880 96% 94% 47 0.79

49883 99% 95% 47 0.81

All 3 96% 96% 47 0.81

MA2C 49875 99% 92% 46 0.77

(Global median-scaled) 49880 100% 93% 46 0.79

49883 99% 92% 46 0.81

All 3 100% 95% 47 0.80

PPV (positive predictive value) = no. of true positive peaks/no. of total peaks. Sensitivity = no. of detected true positive regions/96. Unique = number 
of unique regions found. Correlation = correlation coefficient of the spike-in log fold-changes and algorithm-assigned scores for the 47 unique 
regions.
Genome Biology 2007, 8:R178
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pled dispersion. Their conclusion thus relies on the fact that a
significant fraction of the total SDC-3 binding sites resides in
proximal promoter regions. We tested MA2C and MPeak on
their triplicate data to see whether we can improve the frac-
tion and number of SDC-3 binding sites in promoters - a find-
ing that could strengthen the claim made in [17]. We
compared the results with the ChIPOTle analysis provided to
us by Ercan et al. [17]; as previously mentioned, ChIPOTle
cannot directly combine replicate experiments, so the authors
first found peaks from median z-scores and selected the peaks
that occur in two of the three replicates. It should be noted
that the number of SDC-3 binding sites quoted here is differ-
ent from that reported in [17] because, in that paper, the
peaks that appeared in negative control experiments without
antibody were removed from the list. We ran MA2C using a
window-size of 600 bp at p value cutoffs of 10-5 and 10-4; all
other parameters were set to default settings. MPeak was run
using default parameters. As seen in Table 2, compared to
both programs, MA2C could find not only a greater number
but a higher fraction of SDC-3 binding sites in promoter
regions, further strengthening the conclusion propounded in
[17]. In addition, Table 3 shows that MA2C can also detect
almost all the regions found by ChIPOTLe and MPeak.
MA2C's high sensitivity and power can thus provide a valua-
ble tool for discovering novel biological phenomena.

Conclusion
Novel applications
ChIP-chip technology has quickly become popular among
biologists, and high-density tiling microarrays are increas-
ingly being used in novel genomic research. Some of the inter-
esting applications involve finding novel transcripts in the
genome, DNA methylation sites, nucleosome positions, DNA
hypersensitivity regions, and alternative splicing events
[7,8,18-21].

In all of these studies, which tend to combine experiments
performed at various time points and under different condi-
tions, the variability of array performance and sequence-spe-
cific effects must be addressed properly in order to remove
any technical artifacts and to be able to formulate biologically
sound conclusions. The problem of probe effects becomes
more pronounced as the density of tiling increases, as one
does not have the option of selecting probe sequences for sim-
ilar melting temperature, or when the tiled regions predomi-
nantly cover promoter regions, which are known to be GC-
rich. Our method of standardization explicitly accounts for
such sequence-specific biases and inter-array variability.
Together with the accompanying robust peak-detection algo-
rithm, MA2C's standardization procedure is especially
important for data sets with a significant noise level - for

Table 2

Numbers and annotation of SDC-3 binding sites detected by different methods

Algorithm Sample No. of peaks In promoter

ChIPOTle Combined triplicate 1,219 33.63%

MPeak Replicate 1 1,819 30.35%

Replicate 2 921 29.32%

Replicate 3 557 34.11%

MA2C Combined triplicate (p = 10-5) 1,181 38.5%

MA2C Combined triplicate (p = 10-4) 1,588 35.1%

For annotation, promoter regions 1 kb upstream from translation start sites of genes were used, because the annotation of transcription start sites 
in C. elegans has not yet been well established.

Table 3

Overlap of binding sites of SDC-3

ChIPOTle MPeak 1 MPeak 2 MPeak 3 MA2C (p = 10-5)

ChIPOTle 100% 65.97% 87.08% 92.28% 67.06%

MPeak 1 56.69% 100% 17.26% 26.57% 68.25%

MPeak 2 37.16% 8.74% 100% 21.01% 36.07%

MPeak 3 25.84% 8.14% 12.70% 100% 24.72%

MA2C (p = 10-5) 97.54% 97.91% 98.05% 99.64% 100%

Percentages of SDC-3 binding sites from a method in columns overlapping with those from a method in rows (MPeak 1 denotes MPeak results from 
replicate 1, and so forth; two regions were considered to be overlapping if they shared at least 1 bp).
Genome Biology 2007, 8:R178
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instance, stemming from PCR amplification, which tends to
increase probe effects.

Normalization revisited
One issue we have not discussed so far is adjusting for the
copy-number of probes or cross-hybridization of DNA with
similar sequences. We chose not to model the sequence copy-
number because both NimbleGen and Agilent use sufficiently
long probes and also usually exclude repeat regions from their
array design.

It is also instructive to note why our normalization method in
equation 1 or equation 3 (See Materials and methods) gives a
higher weight to the probes that are highly correlated
between the two channels. Relying on the fact that the probes
are long, NimbleGen tends to wash their arrays rather harshly
after hybridization, minimizing cross-hybridization but also
possibly leaving behind only random noise and causing a low
correlation in low-GC probes between the two channels.
Thus, as illustrated in Figures 2 and 3a, the low-GC probes are
mostly measuring the background noise and also show a low
inter-channel correlation; this relation between low intensity
distribution and low inter-channel correlation in low-GC bins
is the motivation behind MA2C's normalization method.

Epilogue
MA2C is a novel model-based approach to analyzing two-
color tiling microarray data, incorporating sequence-specific
probe effects and powerful peak detection algorithms. The
organization of MA2C's core functions is summarized in Fig-
ure 5. The GC-based normalization method can also be gener-
alized to other long-oligonucleotide microarray applications,
such as array-CGH and expression profiling. MA2C is also
compatible with isothermal designs, where probe bias may be
reduced but nevertheless still present. We have shown that
the overall performance of MA2C is better than other cur-
rently available software. In addition to an easy, user-friendly
interface, MA2C also provides informative graphical
summaries of statistical analyses for array quality control. As
ChIP-chip and other ways of studying chromatin structure
become widespread common tools in biology, a program that
can reliably analyze single or replicate experiment data from
two-color microarrays will be a welcome contribution to the
growing field.

Materials and methods
Normalization
We propose a normalization procedure that standardizes the
data by modeling the GC-specific background hybridization
intensities. Given an array, let pi denote its ith-probe and

define GCi to be the total number of G and C nucleotides in pi.

Denote the paired single channel log-intensities of pi as (xi1,

xi2), where xi1 corresponds to the control and xi2 the treat-

ment. Henceforth, let i index the probes, j the channels, and k
the GC content bins. Then, our model assumes that the log-
intensities (xi1, xi2), i ∈ {i|GCi = k}, follow a bivariate distribu-

tion with GC-specific means (μ1k, μ2k), variances ( , ),

and covariance ξk between the two channels. Also implicit in

the model is that although different GC bins are allowed to
have different proportions of non-background probes, the
signals of non-background probes are shifted across GC bins
by the same mean, variance, and covariance as the back-
ground. Based on these assumptions, our model combines
the single channel log-intensities to form a normalized, corre-
lation weighted log-ratio ti as follows:

where the parameters can be simply estimated as:

Workflow chart of MA2CFigure 5
Workflow chart of MA2C. MA2C is fully automated and performs the 
tasks as shown.
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and

where nk is the number of probes with GC = k. We further
scale the t-values globally so that the rescaled t-values have
variance 1.

This method has the following geometrical interpretation as
seen in Figure 6: assuming that Cy3 is the control and Cy5 the
treatment channel, let {e1, e2} define an orthonormal basis of

R2, where each probe pi, with log intensities xi1 = log (Cy3i)

and xi2 = log (Cy5i), corresponds to a point Xi = xx1 e1 + xi2 e2

∈ R2. Define a new orthonormal basis {u, v}, where u = (e1 +

e2)/  and v = (e2 - e1)/  are obtained by rotating the

original coordinate system by 45 degrees; and, define a pro-
jection operator Pv: R2 → R onto v-axis as Pv (Xi) = (xi2 - ix1)v/

. The projected vector thus measures the difference

between log control and treatment signals. Let  be the
average of all vectors in the GC bin to which pi belongs. We

now consider Zi : = Pv (Xi - ), which is just a dye-bias

adjusted log-ratio, and finally define our normalized score as:
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Geometrical interpretation of the normalization methodFigure 6
Geometrical interpretation of the normalization method. Our method first subtracts the baseline from log intensity vectors within each GC bin and then 
projects the adjusted vectors onto v-axis, yielding log mean-scaled ratios of the Cy5 and Cy3 signals within each GC bin. Finally, the projected values are 
adjusted for variance.
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The t-values thus yield log-ratios adjusted by the mean and
normalized by the standard deviation within each GC bin.

Note that in equation 1, the covariance term ξk has the effect
of amplifying the difference between experiment and control
probe intensities in GC bins that have a high baseline
correlation between the two channels, while suppressing the
difference in GC bins with low correlation. Therefore, the log-
fold changes xi2 - xi1 are given more weight in GC bins with
high correlation ξk between the two channels than in low-cor-
relation GC bins.

We have checked that more complicated normalization meth-
ods based on position-specific ACGT effects, as in [1], dinu-
cleotides or individual G and C counts yield results that are
quite similar to the above simple and effective method (Fig-
ure 7).

Robust estimation of parameters
With data symmetric in the two channels, the estimators

given in equation 2 for μjk, , and ξk should work very well.

However, microarray data often tend to be skewed in one
channel, even on the log scale, and the simple estimators can
be sensitive to outliers. For this reason, we have developed a
robust method for estimating these parameters. Our method
generalizes Tukey's theory of bi-weight estimation, which is
very robust for skewed data and has been successfully applied
to microarray data previously [22]. In one dimension, Tukey's
bi-weight estimation proceeds as follows: define a scaled
distance di between each data point xi and the current mean

estimate μ* as:

where C is a fixed constant and M = mediani |xi - μ*|, the

median absolute distance. We then calculate the bi-weight for

each data point as wi = (1 - )2 for -1 ≤ di ≤ 1 and wi = 0

otherwise. Then, the mean is re-estimated as

, and the process is repeated until a cer-

tain convergence criterion is satisfied.
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Average intensities of the control channel data from [12] as a function of position-specific GC countsFigure 7
Average intensities of the control channel data from [12] as a function of position-specific GC counts. Each 50-mer probe is partitioned into 5 equal parts 
of 10 nucleotides, and average intensities are computed as a function of GC counts in each part. Different colors represent different samples. The GC-
related variations of intensities behave similarly across the five locations on probes, and we thus see that the GC effect is not position specific.
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We generalize the above approach to two dimensions and
develop a similar procedure for estimating the parameters in
equation 1 within each GC bin by using the elliptical or Maha-
lanobis distance given by:

where:

and . Here, Zi is the projected vector

previously described and Σ its variance matrix. In each itera-
tion step, the mean is estimated as before, the variance as

, and likewise for the covariance.

Strictly speaking, the variance and covariance computed in
this way are not consistent estimators, but as shown in the
Results section, they do provide reasonable estimates of the
parameters requisite for standardizing the data within and
across arrays.

Detection of peak regions
To detect peak regions, we have implemented several adapta-
tions of the powerful window-based approach proposed by
Johnson et al. [1] for Affymetrix tiling arrays. More precisely,
we consider a sliding window of some user-defined length
(400 bp to 1,000 bp) centered at each probe. A MA2Cscore is
assigned using a user-selected scoring function based on
median, pseudo-median, median polish, or trimmed mean of
the probes in the window. The median and trimmed mean
options are implemented by calculating the median or
trimmed mean of all the probes in the window; when repli-
cates are available, the median t-value or trimmed mean of all
pooled probes in identical windows across replicates is used.
The pseudo-median of a distribution is the median of all
pairwise arithmetic means, as discussed in [23]. Median
polish has been successfully applied in robust multi-chip
analysis for Affymetrix gene expression arrays [24]. We rec-
ommend using median polish for experiments with a large
number of replicate samples, while trimmed mean is recom-
mended for arrays with densely tiled probes. The pseudo-
median and median provide robust alternatives that can be
applied in experiments that are not densely tiled and have few
available replicates.

To compare the performance of different scoring functions,
the triplicate H3 acetylation data at 38 bp spacing from [25]
were analyzed using a window size of 1,000 bp and a p value
cutoff of 10-3. Median polish gave the most number of peaks
while trimmed mean gave the least, the difference in number
being around 3%. The agreement among median, pseudo-

median and trimmed mean was around 97-99%, while
median polish agreed with other methods by 93-97%. Compa-
rable results were obtained, with 1-2% less agreement, when
the data were re-analyzed at 76 bp spacing by skipping
probes. The best agreement was found between trimmed
mean and pseudo-median at 99-100% while the worst agree-
ment was between median and median polish at 90-93%.

To increase reliability, windows containing less than k probes
are discarded, where k is again defined by the user. Just like
MATscores, MA2Cscores approximately follow a normal dis-
tribution, with the representative scores of peak regions cor-
responding to the right tail. This fact easily allows us to assign
a p value to each MA2Cscore using the normal probability dis-
tribution. The lower-bound of MA2Cscores for determining
peaks may be based on either false discovery rate (FDR) or p
value computations. As in [1], we empirically estimate FDR as
follows: for a given cutoff value M > 0 of MA2Cscore, we find
all peaks with MA2Cscore greater than M and all peaks with
MA2Cscore less than -M. Then, FDR is estimated as #(nega-
tive MA2Cscore peaks)/#(positive MA2Cscore peaks), and
the number of true positive peaks as #(positive MA2Cscore
peaks) - #(negative MA2Cscore peaks). The FDR table, along
with other informative histograms, is generated by MA2C.

Implementation
We have implemented our method as a user-friendly, stand-
alone Java package called MA2C, which is fully automated
and only requires the user to select the directory path and
treatment channels.

The file structure of NimbleGen data consists of three main
components, DesignFiles/, PairData/, and SampleKey.txt,
which should all reside in the same parent directory. The text
file SampleKey.txt contains the relevant design information
about individual arrays; in particular, the file must contain
DESIGN_ID, CHIP_ID and DYE for each array. The direc-
tory DesignFiles/contains the sequence and position files cor-
responding to each DESIGN_ID, while PairData/contains
the single channel data for each CHIP_ID. Even though
MA2C is primarily designed for NimbleGen arrays, we have
also successfully tested the program on Agilent data by refor-
matting the necessary files and obtained excellent results.

When the user begins by selecting SampleKey.txt, MA2C
reads the file and displays the content in a table. If Design-
Files/and PairData/are present in the parent path, MA2C
also automatically lists the directory contents in two separate
tables; otherwise, the user has to choose the corresponding
folder locations. The user then selects the treatment channel
for each experiment to be analyzed and clicks the Run button,
which prompts MA2C to perform the normalization and peak
detection steps as follows.
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Step 1: DesignFiles/
For each DESIGN_ID, MA2C automatically reads the corre-
sponding .ndf and .pos files and generates a .tpmap file con-
taining the sequence, chromosome, position, and array
coordinate information of probes.

Step 2: PairData/
For each chosen treatment channel with given CHIP_ID and
DYE, MA2C searches for the correct two-channel data files. It
is thus important that the pair data files contain a column cor-
responding to IMAGE_ID. For fast future access and also for
compressed storage, the program combines each two-chan-
nel data into a single file named MA2C_CHIP_ID_raw.txt.
Normalized data are similarly stored in files with the exten-
sion _normalized.txt.

Step 3: MA2C_output/
MA2C automatically creates this directory for writing files
used in quality control of normalization and peak detection
steps. The enriched regions are output in both .xls and .bed
files that contain the chromosome, start, end, p value,
MA2Cscore and peak-center information for each detected
peak. MA2Cscore.bar and ratio.bar files are created for visu-
alization using Affymetrix's Integrated Genome Browser [26].

MA2C is an open source Java package that can be down-
loaded from [27]. MA2C runs on all platforms that support
Java Runtime Environment 5.0 or higher and has been suc-
cessfully tested on OS X, Linux and Windows operating sys-
tems. The program is written so as to economize the size of
required files; once the .tpmap and _raw.txt files have been
created, the subsequent runs of MA2C will use only those files
and the user may remove the .ndf, .pos, and other pair data
files. This approach can save hundreds of megabytes of disk
space. In addition, our program is fast, the total execution
time being usually less than a couple of minutes for multiple
arrays. For example, on a laptop with a 2.13 GHz Intel M proc-
essor and 2 GB RAM, it takes 18 seconds to build a sequence
file for 370,000 probes, 16 seconds to normalize the raw data,
and 14 seconds to find peaks.

Abbreviations
bp, base-pairs; ChIP, chromatin immunoprecipitation; FDR,
false discovery rate.
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