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Abstract

Background: MicroRNAs (miRNAs) are small noncoding RNAs that bind mRNA target
transcripts and repress gene expression. They have been implicated in multiple diseases, such as
cancer, but the mechanisms of this involvement are not well understood. Given the complexity and
degree of interactions between miRNAs and target genes, understanding how miRNAs achieve
their specificity is important to understanding miRNA function and identifying their role in disease.

Results: Here we report factors that influence miRNA regulation by considering the effects of
both single and multiple miRNAs targeting human genes. In the case of single miRNA targeting, we
developed a metric that integrates miRNA and mRNA expression data to calculate how changes in
miRNA expression affect target mMRNA expression. Using the metric, our global analysis shows that
the repression of a given miRNA on a target mRNA is modulated by 3' untranslated region length,
the number of target sites, and the distance between a pair of binding sites. Additionally, we show
that some miRNAs preferentially repress transcripts with longer CTG repeats, suggesting a
possible role for miRNAs in repeat expansion disorders such as myotonic dystrophy. We also
examine the large class of genes targeted by multiple miRNAs and show that specific types of genes
are progressively more enriched as the number of targeting miRNAs increases. Expression
microarray data further show that these highly targeted genes are downregulated relative to genes
targeted by few miRNAs, which suggests that highly targeted genes are tightly regulated and that
their dysregulation may lead to disease. In support of this idea, cancer genes are strongly enriched
among highly targeted genes.
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Conclusion: Our data show that the rules governing miRNA targeting are complex, but that
understanding the mechanisms that drive such control can uncover miRNAs' role in disease. Our
study suggests that the number and arrangement of miRNA recognition sites can influence the
degree and specificity of miRNA-mediated gene repression.

Background causing translational repression or mRNA degradation. Cur-
MicroRNAs (miRNAs) are small noncoding RNAs that rently, 475 human miRNAs have been annotated in the
repress gene expression by binding mRNA target transcripts, =~ miRNA registry [1], with over 1,000 miRNAs predicted to
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exist in human [2]. They are predicted to target one-third of
all genes in the genome, where each miRNA is expected to tar-
get around 200 transcripts. Given the large number of miR-
NAs and potential targets, miRNAs may play a key regulatory
role in many biological processes.

The biogenesis of miRNAs involves a core set of proteins to
convert the longer primary transcript into the mature,
approximately 22 bp miRNA [3,4]. At the DNA level, miRNAs
are commonly found within introns of other genes, but others
exist independently, transcribed as miRNA genes. In a few
cases they are clustered together in a polycistron, as in the
case of mir-17-92 [5]. Upon transcription, the primary
miRNA is processed by Drosha, an RNA III endonuclease, to
yield an approximately 70 bp precursor miRNA [6]. The pre-
cursor miRNA is, in turn, exported from the nucleus to the
cytoplasm by exportin 5 [7,8]. The enzyme Dicer then cleaves
the precursor miRNA to yield a double-stranded mature
product, from which one strand, the mature miRNA, is incor-
porated into the RNA-induced silencing complex (RISC)
[9,10].

Although miRNAs are believed to regulate their targets pri-
marily through translational inhibition, there is increasing
evidence that miRNAs can also influence the abundance of
target mRNAs [11]. In both mammalian and Drosophila sys-
tems, miRNAs have been shown to accelerate target mRNA
degradation through the normal pathway of deadenylation
[12-14], consequently decreasing target mRNA abundance. In
fact, Lim et al. [15] showed that transfection of mir-1 and mir-
124 into HeLa cells caused the downregulation of a significant
number of genes at the transcriptional level. In another study,
Krutzfeldt et al. [16] reported that knockdown of mir-122
using their 'antagomir' approach resulted in changes in
mRNA expression for a large number of genes. The effects of
miRNA-mediated mRNA degradation are moderate [12] but,
nonetheless, these reports show that expression microarrays
can capture the effects of miRNA repression on target genes.

Misexpression of miRNAs or improper repression of their tar-
gets can have diverse and unexpected effects. For example, a
mutation in the myostatin gene (GDF8) in Texel sheep cre-
ates a miRNA binding site responsive to mir-1 and mir-206
that gives the sheep their meatiness [17]. In human cancer,
various miRNAs are amplified or deleted [18], or otherwise
have aberrant expression, suggesting that they may behave as
oncogenes or tumor suppressor genes (for reviews, see
[19,20]). Lastly, miRNA expression patterns for a large set of
miRNAs can classify human cancers, suggesting a possible
underlying connection between miRNA expression and onco-
genesis [21]. Given the complexity and degree of interactions
between miRNAs and target genes, understanding how miR-
NAs achieve their specificity is important to understanding
miRNA function and identifying their role in disease.
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The rules that govern miRNA target specificity are not clear,
but can, in principle, be divided into several levels. At the
most basic level, the specific sequence that makes up a
miRNA target site determines how well the miRNA binds to
the site. One often proposed rule is that a conserved 'seed’
match, consisting of bases 2-9 of the miRNA, is a reliable pre-
dictor of a miRNA-target interaction, which has been sup-
ported by mutation studies that showed that those base pairs
are often sufficient for binding [22]. Many miRNA target pre-
diction algorithms have, therefore, incorporated aspects of
this rule in their predictions [22-25]. However, others ques-
tion whether a seed match is either necessary or sufficient for
miRNA repression: a recent paper showed that perfect base
pair matching does not guarantee interaction between
miRNA and target gene [26], and wobble G:U base pairs are
often tolerated in target sites [27,28], highlighting the com-
plexity of miRNA-target interactions. At the intermediate
level, the configuration of miRNA target sites can affect the
strength of a miRNA-target interaction. For example, Doench
and Sharp [29] considered the effects of altering the spacing
between two CXCR4 binding sites. In addition, Seetrom et al.
[30] recently found a range of 13-35 bp between let-7 binding
sites optimizes let-7 repression. Furthermore, target predic-
tion algorithms in general give higher scores to interactions
where the target gene contains multiple binding sites [22-25].
Despite the complexity of the rules that govern miRNA target
specificity, experimental validation of these algorithms show
that these methods are quite accurate and sensitive (approxi-
mately 80% in one study in Drosophila melanogaster [31]),
supporting their use in large scale analyses.

In contrast to considering miRNA target specificity at the sin-
gle miRNA-target interaction or binding site levels, another
level of miRNA control may involve understanding how com-
binations of different miRNAs may work in concert to repress
a target gene. This concept was borrowed from the study of
transcription regulation, where it is well known that multiple
transcription factors can regulate a target gene. One clue that
multiple targeting is present in miRNA regulation as well was
the observation that some genes are targeted by many differ-
ent miRNAs [23,25,32]. Transfection experiments [23,29]
have further shown that coexpressed miRNAs can repress a
gene in a concentration-dependent manner. Finally, a study
in fly and worm showed that target sites for different miRNAs
are often simultaneously conserved, supporting the idea of
combinatorial action by miRNAs [33]. However, the extent of
this phenomenon and whether miRNAs can work in concert
to repress a gene need further investigation.

In this paper, we investigate the factors that affect the degree
and specificity of miRNA targeting by examining the effects of
both single and multiple miRNAs targeting a gene. In the case
of single miRNA targeting, we explore the relationship
between features of miRNA target sites and level of repres-
sion of an mRNA using a large dataset with both miRNA and
mRNA expression. To do this, we developed a relative
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expression (RE) metric that calculates the degree of repres-
sion of a target gene as a function of changes in the expression
of a miRNA. While prior systematic genome-wide efforts used
expression microarrays and in situ hybridization to study
mRNA target expression profiles [31,34-36], we incorporate
both miRNA and mRNA expression data in our method,
which allows us to interrogate the effects of changes in
miRNA expression on target gene expression across many
samples. We focus on the trends that emerge when looking at
large groups of interactions, since the relationship between
miRNA and mRNA in an individual interaction can be
obscured by factors that regulate that mRNA's expression,
such as transcriptional and splicing regulation. The metric is
used to measure the effects of various binding site character-
istics on miRNA repression, including 3' untranslated region
(UTR) length, number of binding sites, and the distance
between binding sites.

We also describe an interesting relationship between the
length of CTG repeats and miRNA repression, opening the
possibility that miRNAs that bind CTG repeats may be
involved in CTG repeat expansion disorders such as myotonic
dystrophy type 1 (DM1). CTG repeat expansion mutations in
the 3' UTR are known to play an important role in several dis-
eases, including DM1, spinocerebellar ataxia type 8, and
Huntington's disease-like 2, which are all members of a class
of diseases described as dominant noncoding microsatellite
expansion disorders [37]. Among CTG repeat expansion dis-
orders, DM1 is the most prevalent, affecting 1/8,000 adults,
and its symptoms are multisystemic and variable, including
myotonia (delayed relaxation of muscle), muscle loss, cardiac
conduction defects, cataracts, insulin resistance, and mental
retardation (for reviews, see [37-39]). DM1is caused by a CTG
repeat expansion mutation in the 3' UTR of the DMPK gene,
with the most severe forms of the disease reaching thousands
of repeats. Given that there are many unknowns in DM1
pathogenesis, a possible role of miRNAs in DM1 could
enhance the overall understanding of the disease mechanism
and thus provide new angles for therapeutic intervention.

Besides analyzing determinants of single miRNA targeting,
we also examine genes that are targeted by multiple miRNAs
and find that they are an unexpectedly large class of genes
with strong enrichment for transcriptional regulators and
nuclear factors. Expression microarray data show that these
highly targeted genes are downregulated relative to genes tar-
geted by few miRNAs, which suggests that highly targeted
genes are tightly regulated and their dysregulation may lead
to disease. In support of this idea, cancer genes are strongly
enriched among highly targeted genes. Together, these
genome-wide analyses show that the rules influencing
miRNA targeting are complex, but that understanding the
mechanisms that drive such control can uncover miRNAs'
role in disease.
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Results

Single miRNA targeting

We first investigated the effects of a single miRNA targeting a
gene. Since we were interested in how highly expressed miR-
NAs could potentially repress a target gene more strongly, we
exploited data from Lu et al. [21] and Ramaswamy et al. [40],
containing 89 human tumor and normal samples (across 11
tissue types) for which both miRNA and mRNA expression
data are available. To estimate the degree of repression (at the
transcriptional level) resulting from a miRNA binding to a
target transcript, we developed a RE metric, which relates
changes in miRNA expression to changes in target mRNA
expression (see Materials and methods for details). In sum-
mary, for a given miRNA-mRNA interaction, the RE of the
interaction pair is the ratio of average mRNA expression for
the one-half of samples with "high' miRNA expression (group
A), divided by the average mRNA expression for the one-half
of samples with low' miRNA expression (group B). In inter-
action pairs with significant repression, the group A samples
with high miRNA expression will have lower average gene
expression than the group B samples with low miRNA expres-
sion, resulting in a lower RE. It is important to note that we
focus on trends of RE values rather than a single absolute RE
value, since the absolute RE value may be hard to interpret; a
RE value of 1.0 may mean that the miRNA is not repressing
the target gene, or it could also mean that the miRNA repres-
sion of the gene is counterbalanced by factors that promote
activation of the gene. We used miRNA target predictions
from the PicTar algorithm [23] to define miRNA-mRNA
interactions. Unless otherwise specified, the following analy-
ses use the Lu and PicTar data. Data composing the experi-
ments can be found in the Additional data files.

We first asked if the 3' UTR length of a gene affects miRNA
repression. To counteract the effects of differing numbers of
binding sites, we considered only miRNA-mRNA interactions
for which the mRNA was predicted to have only one target
recognition site for that miRNA (but could contain binding
sites predicted to be responsive to other miRNAs; Additional
data file 1 illustrates the different analyses). The relationship
between 3' UTR length and degree of repression by cognate
miRNAs, as measured by the RE metric, is shown in Figure 1a.
MiRNA-mRNA interactions containing genes with shorter 3'
UTRs tend to have lower RE values (approximately 5-10%),
indicating stronger repression (P = 4.9 x 10+ for lengths
<400 versus lengths >800).

To assess whether the repression observed was reasonable,
we performed two analyses. In the first analysis, we calcu-
lated the expected repression for the various 3' UTR lengths if
the relationship between miRNA expression and target
mRNA expression were removed. By randomizing samples
considered to have high or low miRNA expression, we deter-
mined the expected RE value and error at each 3' UTR length
and found expected RE values of approximately 1.0 (Figure
1b), representing no repression. This showed that the changes
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Analysis of the relationship between shorter 3' UTRs and increased repression. The error bars for observed and expected data are based on the
distribution of RE values and the distribution of the permutated data, respectively. (a) Shorter 3' UTRs in target genes are more strongly repressed by
their predicted cognate miRNAs. (b) The expected RE values (computed using permutation testing) show minimal deviation from 1.0, representing a lack
of repression. (c) This trend is increasingly exaggerated when subsets of miRNAs containing larger expression ratios between groups A and B are used,
especially in 3' UTRs shorter than 200 bp. (d) The same trend of increased repression in shorter 3' UTRs is observed using a different target prediction

algorithm, rna22.

in RE values we observed were specifically due to miRNA
repression. Repeating this permutation analysis on later
experiments gave similar results (Figure 2). In the second
analysis, we estimated the expected magnitude of transcrip-
tional repression for a set of predicted target genes by analyz-
ing an independent expression data set from Lim et al. [15],
where they transfected miRNA into HeLa cells and measured
the resulting changes in expression from a panel of genes (see
Materials and methods). Using PicTar predicted targets or 3'
UTRs containing 7-mer seeds, the largest average downregu-
lation for a group of predicted targets within a given transfec-
tion experiment was only 2%. If we ranked the targets by the
degree of downregulation and took the subset of genes that
were among the top 10% most downregulated, the maximum
average downregulation for a subset for any experiment was

15%. This suggests that not many target genes are downregu-
lated by more than 15%. Since the experiment artificially
introduces a large amount of miRNA to cells, and our
approach reports average changes in expression across a set
of samples, a 5-10% change in expression for a group of pre-
dicted target genes represents a reasonable level of repression
we might expect to see using our approach. These two analy-
ses served to validate the use of relative expression on miRNA
and mRNA expression data.

Next, we verified that the increased repression observed in
shorter 3' UTRs was biologically significant and not due to
artifacts in the data. First, to see if miRNAs with a larger
range of expression might exhibit a larger range of target
mRNA repression, we considered subsets of miRNAs that had

Genome Biology 2007, 8:R166
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Figure 2

Analysis of site and gene features that affect miRNA repression. The
observed values are shown in black; the expected values (computed using
permutation testing) are shown in gray. The error bars for observed and
expected data are based on the distribution of RE values and the
distribution of the permutated data, respectively. (a) Target genes with
more binding sites are more strongly repressed. (b) Pairs of binding sites
targeted by the same miRNA that are between 16 and 30 bp apart (by
start positions) have significantly increased repression (asterisks shown for
emphasis). (c) Genes that have multiple pairs of extensively overlapping
sites, defined to be two binding sites responsive to the same miRNA
whose start positions are within 10 bp of each other, have increased
repression.

differing ratios of expression between samples in group A ver-
sus samples in group B. As the minimum threshold of miRNA
expression ratio was increased, the relative expression of
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genes with 3' UTRs shorter than 200 bp decreased (Figure
1c), suggesting that the RE metric benefits from greater vari-
ation in miRNA expression. Second, we considered if the
result was an artifact of the miRNA target prediction algo-
rithm used, for example, a subtle bias that would somehow
preferentially identify interactions containing short 3' UTRs
with low RE values. Since PicTar and other commonly used
methods employ sequence conservation at the seed region as
a major component of their prediction strategy, we therefore
repeated the analysis using predictions from rna22 [27], a dif-
ferent approach that does not depend on conserved seed
matches. Despite replacing the target predictions used, the
same trend of greater repression found in shorter 3' UTRs was
observed (P = 7.4 x 107 for lengths <400 versus lengths
>800; Figure 1d). Last, we tested if the result could be reca-
pitulated using an independent data set. We obtained match-
ing miRNA and mRNA expression data for the NCI-60 set of
cell lines (see Materials and methods) and repeated the
experiment using these data. Again, shorter 3' UTRs tended
to be more repressed (P = 0.0002 for lengths <400 versus
lengths >800). Thus, these results indicate that the increased
repression of shorter 3' UTRs is not an artifact.

Given the confidence that we were observing a real increase in
repression for shorter 3' UTRs, several explanations could
account for this: first, a long 3' UTR might simply encode a
complex environment in which other binding sites reside, so
that the repression of the transcript by the original miRNA
may be mediated by other factors; second, the probability of
finding a conserved binding site increases with 3' UTR length,
such that longer sequences are more likely to contain spuri-
ous sites that do not confer repression; or third, the repres-
sion could be a consequence of the physical layout of the
transcript where it might be more difficult for a miRNA to
find its target site within a longer 3' UTR. To further explore
the final explanation, we asked if binding sites near the end of
the 3' UTR might be more easily recognized by the miRNA
machinery and, therefore, more likely to be repressed. We
found that genes with binding sites near the end of the 3' UTR
were more repressed (P = 0.0002 for <200 bp from the end
versus >600 bp from the end, and P = 0.001 for <400 bp from
the end versus >800 bp from the end), even when shorter 3'
UTRs (<400 bp) were removed (data not shown). Since the
results might be based on a combination of all three explana-
tions, these results are consistent with the notion that 3' UTR
lengths vary for functional reasons, in this case because of
miRNA binding relationships.

Next we examined the effect of multiple binding sites for a
given miRNA on a transcript, since for a given miRNA some
genes have many more target sites than others. To reduce
effects of variation in mRNA expression between tissue types
due to tissue-specific effectors such as transcription and
splicing factors [41], which would obfuscate the effects of
miRNA repression on mRNAs, we focused only on house-
keeping genes defined by Eisenberg and Levanon [42]. This
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resulted in a list of 155 housekeeping genes for which mRNA
expression data were available, with which we plotted the
number of binding sites on a target gene for a given miRNA
versus RE. Figure 2a shows that genes are more repressed as
the number of binding sites increases (P = 4.2 x 109, n < 5
versus n > 5). The trend remained if we used instead either
NCI-60 expression data (P = 2.6 x 107; Additional data file
2b) or Rna22 target predictions (P = 0.02 for n < 2 versus n >
2; Additional data file 2a). This result supports previous work
describing a relationship between the number of binding sites
and the degree of repression [43,44]. Together, the observa-
tions that both 3' UTR length and number of binding sites
affect repression show that the strength of repression is
dependent on the density of binding sites within a 3' UTR.

If the number of binding sites on a target gene affects the
degree of repression, the physical distance between binding
sites might also affect repression efficacy. We focused on
genes with 3' UTRs shorter than 800 bp since we had
observed greater repression among shorter 3' UTRs, using the
idea that the interactions involving shorter 3' UTRs might be
more reliable. Using the remaining genes, we examined all
predicted interactions for which the target gene has two or
more binding sites. For each pair of binding sites on a target
gene responsive to a miRNA, we computed the distance
between the 5' ends of the sites, where distances less than the
length of the miRNA (approximately 22 bp) represent sites
that overlap. Multiple pairs of nearby binding sites responsive
to the same miRNA on a given target gene were treated inde-
pendently and each assigned the RE value for the interaction.
We found that binding site pairs with distances between 16-
30 bp were repressed by 5-10% (Figure 2b). Compared to
binding site pairs with either shorter or longer distances, RE
values for pairs of binding sites between 16-30 bp were signif-
icantly different (P = 2.2 x 105 for x < 15 versus 16 < x < 30,
and P = 4.9 x 10-5for x > 30 versus 16 <x < 30). It appears that
binding sites with distances of 16-30 bp are in a 'sweet spot’
that maximizes repression. Two sites with significant overlap
might result in steric hindrance, where only one miRNA could
access the two sites at a time, resulting in increased RE val-
ues. On the other hand, two sites that are farther apart might
experience lower site availability due to the lower concentra-
tion of binding sites.

Additional data and recently published literature support this
observation. First, similar results were observed when con-
sidering the subset of predicted interactions containing
exactly two binding sites (data not shown). Second, we per-
formed the analysis on the NCI-60 data using all genes and
found increased repression for pairs of binding sites between
16 and 21 bp apart (P = 9 x 104 for x < 15 versus 16 < x < 21
and P = 2.3 x 10-8for x > 21 versus 16 < x < 21; Additional data
file 2¢); though we are not certain why a smaller range of dis-
tances shows increased repression, the overlap between the
results from the NCI-60 and Lu data emphasizes the repeata-
bility of the result. Third, we verified that the result was not
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an artifact of binning by using a 10 bp sliding window of dis-
tances to identify regions that maximized repression. In both
data sets, the most significant distances between binding sites
occur between 16 and 30 bp apart (data not shown). Fourth,
these results are consistent with transfection experiments in
HeLa cells measuring translational repression, where it was
shown that binding sites between 4 bp apart and 4 bp of over-
lap were more repressed than bindings sites with greater
overlap, though the effect of larger distances between binding
sites was not examined [29]. Additionally, Seetrom et al. [30]
recently found maximal let-7 repression of reporter gene con-
structs where pairs of let-7 target sites are at distances
between 13 and 35 bp, a range similar to our results. Together,
these various data support the importance of the distance
between sites for repression.

While pairs of extensively overlapping binding sites were
shown to have decreased repression, we also saw a dispropor-
tionate number of highly overlapping binding sites genome-
wide (Figure 3). To investigate this further, we analyzed
miRNA-mRNA interactions with multiple pairs of extensively
overlapping sites, where a pair of extensively overlapping
sites is defined to be a pair of binding sites with start positions
less than 10 bp apart. Within this dataset, interactions had up
to seven pairs of extensively overlapping sites. When we cal-
culated RE as a function of number of pairs of extensively
overlapping sites, we saw greater repression among genes
with more pairs of extensively overlapping sites (Figure 2c; P
= 3.8 x 10-8for n < 3 versus n > 3). Using NCI-60 data, inter-
actions containing pairs of extensively overlapping sites also
tended to have lower RE values compared to those that had
none (P = 2 x 10%5). Therefore, although a single pair of
strongly overlapping binding sites had reduced repression,
this reduction can be counteracted by the presence of many
binding sites.

To understand how multiple pairs of extensively overlapping
sites could induce greater repression, we examined individual
miRNA-mRNA interactions. We found that, in many cases, a
gene could embed multiple pairs of extensively overlapping
sites within a small region of its 3' UTR via repetitive
sequence. For example, SNF1LK (NM_173354) is predicted to
contain six mir-15b target seed sites within a 21 bp window.
Figure 4a shows how this is possible: mir-15b's seed region
contains multiple CTG repeats, which would be potentially
responsive to the seven CTG repeats on the 3' UTR in six dif-
ferent locations, creating five out of the seven total pairs of
extensively overlapping sites. Given the large number of
potential binding sites in a localized region of 3' UTR, the
increased repression of multiple pairs of binding sites can be
explained by having more binding sites available to bind to,
which in turn means a greater probability of binding and thus
repression. In contrast, the reduced repression of a single pair
of overlapping binding sites seen in Figure 2b potentially
reflects the penalty of two miRNA molecules physically
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Frequency of pairs of binding sites targeted by the same miRNAs
separated by a given distance. The distance between a pair of binding sites
is calculated from the 5' ends of the target sites relative to the mRNA. A
disproportionate number of binding site pairs are within 10 bp of each
other.

blocked from binding both sites, which can be overcome by
having more pairs of extensively overlapping sites.

Given that CTG repeat-containing 3' UTRs might be strongly
repressed by miRNAs, we examined if CTG repeat-binding
miRNAs also exhibited a correlation between number of pairs
of extensively overlapping sites and repression. First we iden-
tified miRNAs with CAG repeats in their seed region besides
mir-15b; these included mirs-15a, -16, -103, -107, -195, and -
214 (Figure 4b). Then, for each CTG repeat-binding miRNA,
RE values were calculated for target genes containing exten-
sively overlapping pairs of sites responsive to that miRNA.
Figure 4c shows that repression generally increases as the
number of pairs of extensively overlapping sites increases,
with the exception of mir-214, whose seed region does not
contain a full complement of CAG repeats, and mir-15b,
which has few targets (<3) predicted to have six or more pairs
of extensively overlapping sites. In particular, mirs-107, -103,
and -15a show a strong relationship between the degree of
repression and pairs of extensively overlapping sites.

Finally, we asked if CTG repeat-binding miRNAs repress
wild-type DMPK, as a precondition to the possibility that
miRNAs might be involved in the repression of mutant DMPK
in DM1. All seven miRNAs were associated with DMPK
repression using the RE metric (P = 0.02 by binomial test),
with mir-107 and mir-103 repressing DMPK among the most
at about 15% (Figure 4d). By contrast, predicted targets of the
CTG repeat-binding miRNAs that contain no overlapping
pairs of sites show no overall repression (Figure 4d). These
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data provide a preliminary validation to our postulation that
miRNA repression may be involved in DM1 pathogenesis
(discussed later).

Multiple miRNA targeting

The analyses above considered the effects of single miRNAs
on their target genes; we next explored the effects of multiple
miRNAs targeting the same gene. Using the target predictions
from PicTar [23], we identified 6,123 human genes that are
predicted to be targets of one or more miRNAs. On average,
these genes are targeted by 7.3 miRNAs, with some genes pre-
dicted to have as many as 65 different miRNAs targeting
them. It was unlikely to observe such a large number of differ-
ent miRNAs targeting a single gene by chance, since the
expected number of miRNAs predicted to target a gene is
approximately 2 (44,853 miRNA-mRNA interactions spread
over 18,567 genes). In fact, 755 genes were targeted by more
than 15 distinct miRNAs (top 50 shown in Table 1, consisting
of genes targeted by >39 miRNAs). The enrichment for genes
targeted by multiple miRNAs has been discussed elsewhere
[25,32], but multiply-targeted genes as a gene class have not
been fully explored.

To test whether the existence of so many highly targeted
genes could occur by chance, we computed the expected
number of genes targeted by more than 15 miRNAs using per-
muted data, where we scrambled the miRNA-gene relation-
ships while keeping the number of targets per miRNA and
miRNA family characteristics intact (see Materials and meth-
ods for details). On average, only 255 genes were expected to
be targeted by more than 15 miRNAs (Figure 5a; P < 0.001).
Repeating the analysis using target predictions from TargetS-
canS [24] and miRanda [25], similarly large differences
between observed and expected number of highly targeted
genes were found (Figure 5a), controlling for the possibility
that the existence of highly targeted genes is due to algorithm-
based biases.

The enrichment of highly targeted genes suggested that this
could be a unique set of genes having common function. To
test this, we performed a Gene Ontology (GO) analysis of
genes targeted by more than 30 miRNAs. Table 2 shows GO
categories that are the most significant in overrepresentation
of these highly targeted genes. About one-third of these genes
are involved in transcriptional regulation (P = 4 x 1012), and
nearly half encode nuclear proteins (P = 2 x 10°15), shown in
Figure 5b. The fact that many miRNAs target the same tran-
scriptional regulators and other nuclear genes suggests that
an important means of gene regulation by miRNAs involves
the direct repression of these target genes in order to trigger
downstream effects. Additionally, 25% of genes are involved
in developmental processes, consistent with the important
role that miRNAs play in development [34,45]. While it has
been previously shown that transcription regulators and
development genes are commonly targeted by miRNAs
[25,32], these results show that some are targeted by a
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Figure 4

CTG repeat-binding miRNAs and their repression of pairs of extensively overlapping sites. (a) A diagram showing how a region of NM_173354 containing
seven CTG repeats can result in six binding site seeds (CTGCTG) and five pairs of extensively overlapping sites (pairs of binding sites 3 bp apart). (b)
Seven miRNAs containing CAG-rich seed regions that are predicted to bind to CTG repeats. Only hsa-miR-214 has mismatches in the seed region. (c)
Number of overlapping binding sites versus relative expression for seven CTG repeat-binding miRNAs. In general, as the number of pairs of extensively
overlapping sites increases, the degree of repression increases. In particular, mirs-107, -103, and -15a show a strong correlation. (d) Decreased relative
expression of wild-type DMPK with respect to seven CTG repeat-binding miRNAs suggests repression of mutated DMPK by miRNAs could play a role in
DMI. Targets with no overlapping pairs of sites served as control and showed no overall repression.

disproportionate number of miRNAs, suggesting they are
under particularly strong miRNA regulation. Interestingly,
the enrichment for these GO categories is dependent on the
number of distinct miRNAs; no such selection was observed
when considering genes targeted by fewer than five miRNAs
(Figure 5b,c). The strong enrichment for various gene catego-
ries and the correlation of number of miRNAs targeting a
gene and category enrichment supports the notion that highly
targeted genes represent a real functional class of genes.

Next, we explored the impact of 3' UTR length on the number
of miRNAs predicted to target a gene. Since genes targeted by
multiple miRNAs necessarily have more miRNA binding
sites, it was possible that highly targeted genes result solely
from having longer 3' UTRs. Therefore, the enrichment for
transcriptional regulators among highly targeted genes, for
instance, might result from transcriptional regulators in gen-
eral having longer 3' UTRs. To control for this possibility, we
performed a permutation-based experiment to see if random

genes having the same average 3' UTR length and gene set
size as the test category would be equally enriched for genes
targeted by multiple miRNAs (see Materials and methods for
details). We found that for both transcriptional regulators
and nuclear factors, the enrichment of genes targeted by 10 or
more miRNAs is still statistically significant after controlling
for 3' UTR length (Figure 5d). Thus, highly targeted genes are
enriched for transcriptional regulators and nuclear factors
independent of 3' UTR length.

We next examined if highly targeted genes might be more
tightly regulated, since more miRNAs could potentially
repress them at any given time. Given this hypothesis, highly
targeted genes might be expected to have, on average, lower
expression than less targeted genes. When analyzing expres-
sion microarray data from a panel of normal tissues [46], we
found that, in a majority of samples, highly targeted genes (n
> 20) in fact exhibited a lower median absolute expression
than less targeted genes (1 < n < 5; P =1 x 10°%%; Figure 6a).

Genome Biology 2007, 8:R166
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Table |

The 50 genes targeted by the most miRNAs using PicTar target predictions

Gene symbol No. of miRNAs targeting gene Refseq ID Entrez gene description

ATXNI 65 NM_000332 Ataxin |

CPEB4 63 NM_030627 Cytoplasmic polyadenylation
element binding protein 4

MECP2 62 NM_004992 Methyl cpg binding protein 2 (Rett
syndrome)

OTUD4 6l NM_ 199324 OTU domain containing 4

OGT 60 NM_003605 O-linked N-acetylglucosamine

(glcnac) transferase (UDP-N-
acetylglucosamine:polypeptide-N-
acetylglucosaminyl transferase)

PURB 60 NM_033224 Purine-rich element binding
protein B

EIF2CI 58 NM_012199 Eukaryotic translation initiation
factor 2C, |

CPEB2 54 NM_182485 Cytoplasmic polyadenylation
element binding protein 2

PLAGI 53 NM_002655 Pleiomorphic adenoma gene |

NOVAI 53 NM_006489 Neuro-oncological ventral antigen
|

DYRKIA 52 NM_101395 Dual-specificity tyrosine-(Y)-

phosphorylation regulated kinase

HIC2 49 NM_015094 Hypermethylated in cancer 2
RAP2C 49 NM_021183 RAP2C, member of RAS oncogene
family
TRPSI 48 NM_014112 Trichorhinophalangeal syndrome |
NARGI 48 NM_057175 NMDA receptor regulated |
NLK 47 NM_016231 Nemo like kinase
BACH2 47 NM_021813 BTB and CNC homology I, basic
leucine zipper transcription factor
~
o
KLF12 47 NM_007249 Kruppel-like factor 12 _-ﬂ;"
QKI 46 NM_206853 Quaking homolog, KH domain §
RNA binding (mouse) 3
CPEB3 46 NM_014912 Cytoplasmic polyadenylation é
element binding protein 3 A
USPé6 46 NM_004505 Ubiquitin specific peptidase 6 (Tre- ol
2 oncogene)
YTHDF3 45 NM_ 152758 YTH domain family, member 3
ESRRG 45 NM_2065%4 Estrogen-related receptor gamma
CCND2 44 NM_001759 Cyclin D2
CCN]J 44 NM_019084 Cyclin )
RSBNI 44 NM_018364 Round spermatid basic protein |
NFAT5 44 NM_173214 Nuclear factor of activated T-cells
5, tonicity-responsive
CAMTAI 44 NM_015215 Calmodulin binding transcription
activator |
CNOTé 43 NM_015455 CCR4-NOT transcription
complex, subunit 6
E2F3 43 NM_001949 E2F transcription factor 3
CHESI 43 NM_005197 Checkpoint suppressor |
ANK?2 43 NM_001 148 Ankyrin 2, neuronal
MAP3K3 43 NM_002401 Mitogen-activated protein kinase

kinase kinase 3

Genome Biology 2007, 8:R166
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The 50 genes targeted by the most miRNAs using PicTar target predictions

DNAJCI3 42
MNT 42
PPARGCIA 41
TRIM2 41
ZNF238 41
PAFAHIBI 41
HMGA2 41
FNDC3B 41
FBXO33 40
STCI 40
CPD 40
CHD9 40
KIAA026| 40
RNF38 40
BAZ2A 39
CBFA2T3 39
FNDC3A 39

NM_015268 Dnaj (Hsp40) homolog, subfamily
C, member 13

NM_020310 MAX binding protein

NM_013261 Peroxisome proliferative activated
receptor, gamma, coactivator |,
alpha

NM_015271 Tripartite motif-containing 2

NM_006352 Zinc finger protein 238

NM_000430 Platelet-activating factor
acetylhydrolase, isoform Ib, alpha
subunit 45 kDa

NM_003483 High mobility group AT-hook 2

NM_022763 Fibronectin type Ill domain
containing 3B

NM_203301 F-box protein 33

NM_003155 Stanniocalcin |

NM_001304 Carboxypeptidase D

NM_025134 Chromodomain helicase DNA
binding protein 9

NM_015045 Kiaa0261

NM_022781 Ring finger protein 38

NM_013449 Bromodomain adjacent to zinc
finger domain, 2A

NM_175931 Core-binding factor, runt domain,
alpha subunit 2; translocated to, 3

NM_014923 Fibronectin type Ill domain

containing 3A

More strikingly, in available NCI60 cancer cell line data all 58
samples had lower expression among highly targeted genes (P
=7 x 1078; Figure 6b). These results support a combinatorial
model of miRNA regulation, where different miRNAs simul-
taneously repress highly targeted genes to yield a lower aver-
age expression.

The possibility that many of these genes are tightly guarded
by multiple miRNAs suggested that the dysregulation of these
genes could lead to undesirable events, such as the develop-
ment of diseases like cancer. Considering cancer-related
genes from the Cancer Gene Census [47], we found that the
enrichment for cancer genes was most pronounced in genes
targeted by >30 miRNAs (over four-fold enrichment, P = 2 x
104; Figure 6c¢). By contrast, housekeeping genes, which are
highly conserved, had no enrichment, removing the possibil-
ity that conserved genes in general have more miRNAs target-
ing them (Figure 6¢). We tested whether the enrichment for
cancer genes was simply due to the overrepresentation of
transcription factors, which are known to be common among
cancer genes, but the enrichment remained after subtracting
out transcription factors (Figure 6d).

To determine whether cancer genes as a class are preferen-
tially targeted by multiple miRNAs, we computed the average

number of miRNAs targeting cancer-related genes. On aver-
age, 5.6 miRNAs targeted the cancer genes, over 7 standard
deviations higher than what would be expected by chance (P
= 2 x 1013). The same increased multiple targeting of cancer
genes was observed when using two other algorithms, Target-
ScanS and miRanda [24,25] (P = 4 x 10-8and P = 4 x 108,
respectively). Likewise, pruning miRNA families with multi-
ple members also did not attenuate the signal (data not
shown). Although many of the predicted miRNA targets are
not experimentally verified, the overwhelming trends we
observed will likely hold despite potential noise in the
datasets.

Discussion

In this study, we examined both single and multiple targeting
of miRNAs and their effects on repression. Because of the far-
ranging effects of miRNA repression, it is likely that miRNAs
are involved in many diseases as well. In the case of multiple
targeting, we show that cancer genes tend to be targeted by
more miRNAs, supporting the notion that miRNAs play a role
in cancer. In the case of single targeting, we describe below a
possible relationship between miRNAs and DMzi, using
observations about the repression of genes containing

Genome Biology 2007, 8:R166
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Figure 5

Abundance and functional enrichment of genes targeted by many distinct miRNAs. (a) The observed number of genes targeted by many miRNA:s is
dramatically greater than the expected number for all three algorithms. The threshold for the number of miRNAs to be considered highly targeted is
defined to be one standard deviation more than the average number of miRNAs predicted to target a gene. (b) A large proportion of genes targeted by
many miRNAs are transcriptional regulators and nuclear genes, but this enrichment decreases as the number of miRNAs is reduced. Genes involved in ion
transporters do not show this trend. In (b-d), asterisks denote P < 0.01. (c) Enrichment, instead of proportion (as before), is shown of transcriptional
regulators and nuclear genes for highly targeted genes, with the same enrichment for highly targeted genes. The expected enrichment for a random set of
genes targeted by any number of miRNAs is 1.0 (that is, no enrichment), shown by the dotted line. (d) The enrichment of transcriptional regulators and
nuclear genes among highly targeted genes remains after controlling for 3' UTR length.

multiple pairs of overlapping binding sites. These links to dis-
eases underline the importance of studying the mechanisms
behind miRNA targeting, which we discuss in the following.

Understanding multiple targeting

The fundamental motivation for having multiple miRNAs tar-
get a gene is so that these presumably important genes can be
regulated in a variety of conditions such as different tissue
types or transcriptional programs. While it is known that
some genes have recognition sites for multiple different
miRNAs, it is uncertain whether multiple miRNAs simply

supplement each other in different conditions or they act in
concert to provide enhanced gene repression. In a simple
model, each miRNA would be independently responsible for
regulating genes that need to be repressed for a given condi-
tion (for example, a specific tissue type). For genes that need
to be active under a number of specific conditions, a different
miRNA could be expressed under each condition that that
gene needed to be regulated. MiRNAs would, therefore, act
independently of each other, so that in the case that multiple
miRNAs happened to be expressed simultaneously, there
would not necessarily be any enhanced repression.

Genome Biology 2007, 8:R166
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Gene Ontology categories overrepresented among the 165 genes targeted by more than 30 miRNAs

Category Term Count % P value

Biological Process 5 Regulation of nucleobase, 51 3091 5.55E-12
nucleoside, nucleotide and
nucleic acid metabolism

Biological Process 4 Homophilic cell adhesion 15 9.09 1.82E-11

Biological Process 5 Transcription 51 3091 1.96E-11

Biological Process 4 Regulation of cellular 54 32.73 9.26E-11
metabolism

Biological Process 3 Nervous system 23 13.94 1.49E-10
development

Biological Process 3 Regulation of metabolism 54 32.73 I.71E-10

Biological Process 3 Regulation of cellular 6l 36.97 2.46E-09
physiological process

Biological Process 3 Cell-cell adhesion 15 9.09 1.10E-08

Biological Process 4 Nucleobase, nucleoside, 56 33.94 5.15E-06
nucleotide and nucleic acid
metabolism

Cellular Component 3 Nucleus 72 43.64 I.31E-08

Cellular Component 3 Intracellular membrane- 79 47.88 2.91E-04
bound organelle

Molecular Function 3 DNA binding 49 29.70 I.12E-08

Molecular Function 4 Transcription factor 30 18.18 8.45E-08
activity

Molecular Function 3 Metal ion binding 64 38.79 1.87E-07

Molecular Function 3 Cation binding 60 36.36 6.06E-07

Molecular Function 5 Zinc ion binding 35 21.21 6.33E-05

Molecular Function 4 Calcium ion binding 23 13.94 6.74E-05

Molecular Function 4 Sequence-specific DNA 14 8.48 4.49E-04
binding

Molecular Function 5 Transcription corepressor 6 3.64 I.12E-03
activity

Molecular Function 3 Transcription corepressor 6 3.64 1.69E-03
activity

Molecular Function 5 Calcium-transporting 3 1.82 6.05E-03

atpase activity

Significant terms (P < 0.01) from levels 3-5 of each ontology are shown.

A more intriguing model involves multiple miRNAs working
in concert to repress a gene. In this case, two different miR-
NAs expressed independently could each repress a given
gene. If both miRNAs are expressed simultaneously,
however, then that gene is much more strongly repressed
than the repression exerted by each miRNA on its own. This
coordinated regulation is achieved in transcriptional regula-
tion when two transcriptional factors interact in a transcrip-
tional complex while binding to the promoter of a gene. Since
miRNAs are much smaller than transcription factors and,
therefore, have little of a binding interface, it is unlikely that
miRNAs could directly interact. It is possible that miRNA
complexes (as part of a RISC complex) could instead interact,
but the binding interfaces to these complexes would need to

exhibit some unique characteristic of that miRNA to differen-
tiate one complex from another. Another possibility is that
two binding sites responsive to different miRNAs may have
different repressive potential depending on the distances
between the two sites, similar to the results shown above for
a single miRNA on multiple sites. Independent of the mecha-
nism, the fine degree of regulation allowed by coordinate
miRNA repression makes this an appealing model that
deserves further attention. Our observation that genes
targeted by more miRNAs tend to be repressed more than
genes targeted by fewer miRNAs is consistent with the com-
binatorial model where both the degree and specificity of
miRNA regulation can be modulated by various combinations
of relevant miRNAs.

Genome Biology 2007, 8:R166
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Figure 6

Downregulated expression and enrichment of cancer genes among highly targeted genes. (a) In a comparison of highly targeted genes (n > 20) versus less
targeted genes (I < n < 5) in normal tissue samples [46], 121 out of 158 samples exhibited decreased expression among highly targeted genes (P =1 x 10
I1). (b) Out of 58 NCI60 cancer cell line samples, 58 exhibited decreased expression among highly targeted genes (P = 7 % 10-'8). (c) Highly targeted genes
are enriched for cancer genes, with cancer genes targeted by >30 miRNAs having the most enrichment. In (c,d), asterisks denote P < 0.01 and crosses
denote P < 0.05.(d) This enrichment for cancer genes remains after removing transcriptional regulators, which are prevalent among cancer genes and, as

shown earlier, overrepresented among highly targeted genes.

CTG repeat-binding miRNAs and link to myotonic
dystrophy

Our observation that CTG repeat length correlates with
miRNA repression led us to surmise a possible role for this
phenomenon in disease, in particular DM1. If a 3' UTR were
to gain CTG repeats, it would be possible to abnormally
repress that transcript, affect the stoichiometry of free to
bound CTG-repeat binding miRNAs, or otherwise disrupt
CTG-repeat binding miRNA function. We focused on DM1
because CTG repeat expansion in DMPK has been shown to
be the cause of the disease and because the detailed mecha-
nism for DM1 pathogenesis remains unresolved.

We therefore propose that miRNA repression of CTG repeats
plays a role in the mechanism of DM1. In this model, CTG
repeat-binding miRNAs, such as mir-107 and mir-103,
preferentially bind to the mutated DMPK transcript. This
could have two miRNA-leaching effects: first, the amount of
unbound miRNA that would normally be regulating other
genes is reduced and could no longer repress other target
genes; or second, the strength of the repression due to long
CTG repeats could result in the sequestration of large
amounts of miRNA machinery and prevent normal miRNA
repression in general. MiRNA involvement could have signif-
icant consequences on known proteins in DM1 disease pro-
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gression. In the current view, the CTG repeat expansion
triggers sequestration of the DMPK transcript into nuclear
foci [48] along with MBNL [49], implicating MBNL as a key
player in DM pathogenesis. Instead of the prevalent view that
MBNL binds directly to DMPK mRNA, MBNL might instead
be responsive to the complex with miRNAs binding to the
DMPK 3' UTR.

This proposed relationship between MBNL and miRNAs
might explain why colocalization of MBNL with RNA foci
does not necessarily trigger DM1 downstream events [50] and
why MBNL1 apparently binds to other types of repeats even
better than CTG repeats [51]; in both cases, miRNA-binding
to CTG repeats might mediate this interaction. One potential
complication to this theory is that while, traditionally, miRNA
biogenesis assumes that mature miRNA is active only within
the cytoplasm, miRNA binding to DMPK transcripts would
require that miRNAs and their machinery exist within the
nucleus. In fact, recent evidence has shown that miRNAs are
also active within the nucleus [52], facilitated by a nuclear
import mechanism [53].

Several lines of evidence support our theory that miRNAs
might be involved in DM1. First, as we showed earlier, miRNA
repression increased as the length of CTG repeats increased,
suggesting a relationship between CTG repeat length and
miRNA repression. Second, we also showed that wild-type
DMPK is responsive to repression by CTG repeat-binding
miRNAs. Additionally, disrupting miRNA biogenesis through
the knockdown of Dicer has been shown to increase DMPK
expression [54], suggesting that miRNAs regulate DMPK.
Finally, the model implies that CTG repeat-binding miRNAs
should be expressed in the tissues that exhibit DM1 symp-
toms. Using published mouse miRNA expression data [55],
we found that our strongest candidates, mir-107 and mir-103,
are indeed strongly expressed in brain, heart, and muscle.
Together, these results support a role for miRNAs in DM1
pathogenesis, and, in particular, highlight mir-107 and mir-
103 as attractive candidates for binding to DMPK.

Observations about the relative expression metric

The RE metric as used in this paper is unique compared to
previous efforts in understanding miRNA targeting in that
both miRNA and mRNA expression data have been used
together to measure miRNA repression. Previous efforts uti-
lizing only expression microarray or in situ hybridization data
indirectly measured differential expression of mRNA targets
by taking advantage of knowledge about tissue- or stage-spe-
cific expression of miRNAs. For example, since mir-1 tends to
be expressed in skeletal muscle, it is expected that targets of
mir-1 should be downregulated in muscle samples. However,
miRNA expression characteristics can be inferred for only a
limited number of miRNAs for a given sample type. In this
approach, the experimentally derived expression of many dif-
ferent miRNAs is known for multiple samples, making it pos-
sible to calculate the differential expression of target genes
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using measurements of actual miRNA expression levels.
Using this approach, we performed an in silico genome-wide
assessment of binding site-specific characteristics of miRNA
repression, including the number of binding sites, distances
between binding sites, pairs of extensively overlapping sites,
and length of the 3' UTR. While some of these morphological
features have been previously discussed as factors linked to or
contributing to miRNA repression, they had generally been
studied under specific and limited experimental conditions or
in the context of miRNA target predictions without regard to
expression data.

Because the Lu et al. dataset [21] used here comprises a het-
erogeneous set of samples drawn from different tissue types
and cancer status, tissue- and cancer-specific gene expression
complicates analysis of miRNA repression. For this reason,
housekeeping genes, which are universally expressed, served
to reduce variation in gene expression across different tissues
due to non-miRNA specific effects. It is also for this reason
that we chose to employ the RE metric and not a correlation
metric. Because of the complexity of the data, the expected
anti-correlations that correspond to repression tend to be
very slight and, therefore, difficult to interpret. Additionally,
the RE metric corresponds more closely to the concept of
degree of repression, where smaller RE values correspond to
down-regulation and thus greater repression.

While larger changes have been observed in translational
inhibition by miRNAs compared with transcriptional repres-
sion, the relatively small changes in RE values that we
observed nevertheless emphasize the importance of miRNA-
mediated transcriptional repression. As we showed, the 5-
10% lower RE values for a set of gene interactions is in line
with the average repression of target genes in cells transfected
with miRNA in Lim et al. [15]. Importantly, both calculations
are based on a large number of gene targets, and, therefore,
subject to various sources of noise and uncertainty. These
include the possibility that some genes might be more
strongly repressed by a miRNA than others, that some gene
targets might have been mis-predicted by PicTar, or that
some gene targets might only be expressed or responsive to a
miRNA in certain tissues. Despite these potential sources of
noise, our ability to detect the observed trends shows that the
results are applicable genome-wide and emphasize the role of
miRNA repression at the transcriptional level. Since it
appears that the same sequence features (that is, the distance
between binding sites) can influence repression both at the
translational level [29] and transcriptional level (shown
here), this suggests that the mechanisms driving miRNA-
mediated transcriptional and translational repression may be
linked.

One unexpected observation was the presence of RE values
greater than 1.0 in various analyses. This effect is possible if
considered within the context of total gene regulation, where
multiple factors compete to up- and downregulate a gene. In
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this scenario, transcription factors and miRNAs that are
simultaneously expressed exert opposing effects on the
regulation of genes. If, on balance, a gene experiences greater
transcriptional activation than miRNA repression, then this
gene could exhibit RE values greater than 1.0 despite the
miRNA repression. This apparent upregulation in the pres-
ence of miRNA repression should not be considered surpris-
ing given the belief that miRNAs serve to fine-tune gene
regulation in feedback loops, increasing the precision and
robustness of gene expression [31,56,57].

We anticipate that the RE metric will be able to reveal addi-
tional features of miRNA repression when applied to larger
datasets containing more uniform data, such as those con-
taining the same tissues or cancer state. Some potential
experiments include testing for cooperative effects of multi-
ple miRNAs working together to repress a gene, interactions
between miRNAs and transcription factors when targeting a
gene, and binding site specific effects, such as the importance
of the seed region or the tolerability of G/U mismatches.

Conclusion

Through the integration of miRNA target predictions and
miRNA and mRNA expression data, we have been able to
analyze features of single and multiple targeting. We first
showed that a relative expression metric could be used to
measure the degree of repression by miRNAs, demonstrating
that 3' UTR length, number of binding sites responsive to a
miRNA, and distance between two binding sites responsive to
the same miRNA are all important factors that influence
miRNA repression. Interestingly, we also showed that
miRNA repression increases as the number of pairs of exten-
sively overlapping sites increases, in many cases due to
regions of CTG repeats. This creates the possibility that
miRNA repression of CTG repeats might be involved in dis-
eases that involve expansions in CTG repeats, such as DM1,
for which we had some preliminary evidence. We then ana-
lyzed genes that are targeted by multiple miRNAs and found
an unexpected abundance of such genes, with significant
enrichment for transcriptional regulators and nuclear genes.
Exploring the notion that highly targeted genes might be
more tightly regulated, we demonstrated that highly targeted
genes are downregulated relative to less targeted genes.
Finally, supporting the idea that dysregulation of tightly reg-
ulated genes could lead to disease, we showed that highly tar-
geted genes were enriched for cancer genes. The results
presented here show that approaches that integrate multiple
types of data are a powerful way to elucidate miRNA mecha-
nisms in both single and multiple targeting and can further
our understanding of disease.
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Materials and methods

Datasets

We utilized expression data from 89 samples from Lu et al.
[21] and Ramaswamy et al. [40], for which both miRNA and
mRNA expression data are available. Both datasets under-
went data preprocessing as described by Lu et al. This
resulted in 195 miRNAs and 14,546 mRNAs available to be
used for analysis. We also obtained expression data from the
NCI-60 set of cell lines, using miRNA expression data from
Blower et al. [58] and mRNA data from Genelogic [59]. For
the NCI-60 miRNA data, we followed the data normalization
as described by Blower et al. and for each miRNA used the
probe that had the higher median expression. For the NCI-60
mRNA data, we set a minimum log2 expression value of 5. For
the multiple targeting analysis, we used, in addition, the NCI-
60 cancer cell line gene expression dataset, generated by
Novartis based on the Affymetrix Ugsv2 array platform, and
the normal human tissue expression dataset based on the
Affymetrix U133A array platform [46].

For the multiple targeting analysis, we used miRNA target
prediction data obtained from PicTar [23], TargetScansS [24],
and miRanda [25]. For PicTar, we chose the results based on
conservation in human, chimp, mouse, rat, and dog. For Tar-
getScanS predictions we chose the four species comparison
and only SeedM matching to increase the number of predic-
tions available. In the single targeting analysis, to increase the
number of binding site predictions available, we used the
updated PicTar algorithm [60], which includes sites that may
not be fully conserved. We also used publicly available rna22
target predictions [27,61], which predicts relatively fewer
sites per target gene and, therefore, was used for analyses that
depend less on having multiple sites per target gene.

For the locations of predicted miRNA binding sites within the
3' UTR, we mapped the sequences onto Release 16 of RefSeq
[62] transcripts. 3' UTR lengths of genes were also extracted
from the RefSeq data. We obtained 340 cancer-related genes
from the Cancer Gene Census [47], and 556 genes designated
as housekeeping genes from Eisenberg and Levanon [42].

Relative expression metric

The RE metric as applied to miRNA and mRNA expression
data is an estimate of the degree of repression of a gene (at the
transcriptional level) resulting from a miRNA binding to a
target transcript. To calculate the RE for a given gene
repressed by a given miRNA, for n samples for which both
miRNA and mRNA expression data are available, we first sort
the samples by miRNA expression. We then equally divide the
samples into two groups, group A with low miRNA expression
(samples 1 to n/2), and group B with high miRNA expression
(samples n/2 + 1to n). The RE is thus the ratio of the median
mRNA expression of samples in group B divided by the
median mRNA expression of samples in group A. Interactions
with strong miRNA repression yield smaller RE values, since
group B should have lower mRNA expression because of the
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higher miRNA expression, and group A should have higher
mRNA expression because of the lower mRNA expression.
The experiments are illustrated in Additional data file 1.

To focus on miRNA-mRNA interactions with the most poten-
tial signal, we considered the subset of interactions with suf-
ficient variation among the samples. For analysis of 3' UTR
lengths, we considered only miRNAs where, for each miRNA,
the median miRNA expression in group B (samples with high
miRNA expression) was at least four times greater than the
median miRNA expression in group A (samples with low
miRNA expression). In the experiment considering the
number of binding sites versus repression, we only required
that the two groups have different median miRNA expression
to maximize the number of interactions available. Addition-
ally, for all experiments, we removed interactions for which
there was no difference in median mRNA expression between
the two groups. The average relative expression for a particu-
lar condition was defined to be the median of the remaining
RE values that satisfy that condition. The significance of a
group of RE values was assessed using the double-sided t-
test; for the tests shown, varying the thresholds did not signif-
icantly affect the P value.

To determine the expected RE values for a given experiment,
we created a null distribution of experiments, where for a
given miRNA randomized miRNA expression values were
used so that the samples used in groups A and B would be
scrambled. The expected value consists of ten permutations
of this data, from which the error bar is derived.

Maximum expected repression

To determine if a 10% repression was reasonable using the RE
metric, we examined the downregulation of miRNA target
genes using data from Lim et al. [15]. To choose a subset of
miRNA predicted targets with the largest possible repression,
we sorted the gene targets by the degree of downregulation
and identified the top 10% most downregulated targets. A
separate set of predicted targets was defined using 3' UTRs
that contain 7-mer seed matches to the miRNA (positions 2-
8).

Distance between binding sites

We defined a pair of binding sites to be two binding sites
responsive to the same miRNA, for which there are no other
binding sites responsive to that miRNA in between them. The
distance between the pair of binding sites was calculated
based on the 5' end of the binding site relative to the mRNA
transcript. To identify distance ranges having significantly
increased repression, we used a 10 bp sliding window of dis-
tances for distances between 1 and 100 bp apart, and per-
formed a double-sided t-test between RE values contained in
the window versus RE values outside of the window, using a
Bonferroni correction of 9o hypotheses.
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Number of miRNAs that target a gene

For each transcript, we tallied the number of different miR-
NAs predicted to target that transcript. For genes with multi-
ple transcripts, a representative transcript was chosen, so that
results could be reported at the gene level.

Enrichment analysis

We used DAVID [63] to determine enrichment of types of
genes within the highly miRNA-targeted genes, focusing on
gene sets obtained from GO [64]. Significance was assessed
using the EASE score from DAVID [63], a modified Fisher's
Exact Test. Fisher's Exact Test was used to determine the sig-
nificance of the enrichment of a subset of genes targeted by a
range of miRNAs shown in the figures. Enrichment was cal-
culated in the following way: if, for a gene set R, among all
genes genome wide G, we observe R, (a subset of R) within G,
(a subset of G), then the enrichment of R within this subset is
RS/GS

R/G

expected proportion of R, is R/G. A multiple testing signifi-

, where the observed proportion of R, is R,/G,and the

cance threshold can be conservatively defined in this enrich-
ment analysis by applying a Bonferroni correction to yield P <
5 x 105 as the adjusted P value required for significance
(given approximately 1,000 GO categories used by DAVID).

Statistical tests

The statistical significance of seeing a number of genes tar-
geted by at least a lower threshold n miRNAs was computed
using permutation testing. For a given algorithm's target pre-
dictions, we determined the number of targets a given miRNA
targeted, and assigned the same number of random genes to
that miRNA. In the case that a miRNA belonged to a family of
miRNAs, we assigned the same set of random genes to all of
the miRNAs in that family. This procedure was repeated
1,000 times, and the P-value could be assessed by determin-
ing the fraction of permutations that the number of genes tar-
geted by at least n miRNAs was greater than the observed
number of genes. To account for differences in the algo-
rithms, for each algorithm we defined n to be one standard
deviation more than the average number of miRNAs pre-
dicted to target a gene.

Permutation testing was also used to control for the possibil-
ity that the enrichment for transcription and nuclear factors
targeted by multiple miRNAs was due to longer 3' UTRs. To
do this, we created a null distribution containing 10,000 ran-
dom sets of genes with the same average 3' UTR lengths and
gene set sizes as those of transcription factors or nuclear pro-
teins, respectively. From this distribution, we determined, for
example, the likelihood of seeing 36 transcription factors tar-
geted by >30 miRNAs, controlled for both 3' UTR length and
gene set size, based on the number of times more than 36
genes were found to be targeted by >30 miRNAs.
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To determine the significance of the number of miRNAs tar-
geting a particular gene set, we examined the mean number of
miRNAs targeting the genes in the gene set (referred to here-
after as 'score') and compared it against the null distribution.
The null distribution was generated by creating 1,000 ran-
dom gene sets containing the same number of genes as the
test set, and calculating the score for these random gene sets.
Because the null distribution is normally distributed, we
could compute the P value based on the z-value, where Z =
(observed score - expected score)/standard deviation.

Testing for miRNA family effects

MiRNAs are known to cluster into families having highly sim-
ilar binding sites. To avoid having an a priori definition of
which miRNAs belong to a family, we instead considered the
miRNAs in the context of each target gene. For a given target
gene, we tracked the predicted locations of target sites for
each miRNA, and we discarded the miRNAs that were
predicted to bind to the same location recognized by another
miRNA. This would yield a set of miRNAs with unique target
sites, predicted to target a gene. This number by definition is
less than or equal to the total number of miRNAs that are pre-
dicted to target a gene.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 illustrates the dif-
ferent analyses performed using the relative expression met-
ric. Additional data file 2 contains figures using alternative
data sets that support the observed trends. Additional data
file 3 contains a description of the tables of the raw relative
expression data and associated data found in Additional data
files 4, 5, 6, 7, 8. Additional data file 4 contains relative
expression values for all PicTar predicted interactions using
the Lu/Ramaswamy set of expression data. Additional data
file 5 contains relative expression values for all PicTar pre-
dicted interactions using the NCI-60 set of expression data.
Additional data file 6 contains relative expression values for
all rna22 predicted interactions using the Lu/Ramaswamy set
of expression data. Additional data file 7 contains relative
expression values for specific pairs of binding sites (<1000 bp
apart) responsive to a miRNA, using Lu/Ramaswamy data
and PicTar predictions. Additional data file 8 contains rela-
tive expression values for specific pairs of binding sites
(<1000 bp apart) responsive to a miRNA, using NCI-60 data
and PicTar predictions.

Abbreviations

DM1 = myotonic dystrophy type 1; GO = Gene Ontology;
miRNA = microRNA; RE = relative expression; RISC = RNA-
induced silencing complex; UTR = untranslated region.
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