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Abstract

Recent studies using single-nucleotide polymorphism arrays have pinpointed novel oncogenes and
tumor suppressors involved in specific types of human cancers.
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One of the most daunting, though rewarding, challenges in

cancer medicine is to determine how specific genetic

alterations in tumors may affect the prognosis and lead to

targeted therapies for the individual cancer patient. Current

methods of gene-expression profiling have revealed that

tumor types previously thought to be homogenous from

histological criteria alone often have different underlying

molecular signatures [1-3]. Complex mutational events seem

to have a major impact on the expression of specific genes

that contribute to the induction and progression of cancer,

and, therefore, on the aggressiveness of the tumor and the

clinical outcome of therapy [3-5]. The precise assessment of

tumor-cell heterogeneity has thus become a central focus of

cancer investigations. The ultimate goal of these efforts is to

identify disease subtypes that are driven by altered signaling

pathways whose genetic defects correlate well with

prognosis and that offer attractive targets for molecular

intervention [6-11].

The longest-established method of diagnosing and differen-

tiating tumor types is the detection of chromosomal

aberrations by cytogenetic analysis. Molecular cytogenetic

techniques, such as spectral karyotyping, fluorescence in situ

hybridization and chromosome-based comparative genomic

hybridization (CGH), substantially improved resolution and

genome coverage compared with conventional cytogenetics.

But these techniques still did not offer the resolution and

genome coverage of microarray gene-expression profiling.

This can provide clinically significant insights into the

heterogeneity of tumor cells and has been used to subclassify

various human tumors [1-3,12], but it can sometimes be

difficult to identify the truly relevant genes among the

multiplicity of differences in gene expression recorded.

Genomic methods that identify mutations directly and cover

the whole genome at a similarly high resolution are required

to help resolve such problems.

One attempt to improve the detection of structurally altered

genomic regions combines classic CGH with the microarray

platform, generating the array CGH technique, which relies

on competitive hybridization of fragmented, labeled tumor

DNA together with fragmented, but differentially labeled

control DNA [13,14]. The microarray platform facilitates

higher-resolution mapping of genomic regions that contain

copy-number aberrations, such as amplifications and

deletions, and the interpretation of data from array CGH

studies is much more straightforward than that of conven-

tional CGH. Another new microarray-based cytogenetic

technique, high-resolution single-nucleotide polymorphism

(SNP) array analysis, perhaps holds even greater promise for

detailed structural examination of the cancer genome. SNP

arrays allow the high resolution detection of loss of hetero-

zygosity, a common event in tumorigenesis, in addition to

the identification of DNA copy-number aberrations at a

resolution similar to that of array CGH. A recent study of

childhood acute lymphoblastic leukemia (ALL) by Mullighan

et al. [15] illustrates the strength of SNP arrays for the

identification of key genetic abnormalities in cancer.



Advantages of SNP array analysis
A SNP is defined as a DNA sequence variation at one specific

position in the genome that occurs in at least 1% of the

human population. Almost all SNPs have only two alleles,

and so the heterozygous genotype and the two types of

homozygous genotypes can generally be unambiguously

determined. On current microarray platforms, 300,000 to

500,000 SNPs can be genotyped simultaneously. Ideally, the

tumor sample is analyzed in parallel with a normal - or

‘germline’ - sample from the same patient; if such a control

sample is unavailable, algorithms can be used instead [16].

However, with this approach, the resolution will be lowered,

and the data interpretation could be hampered due to the

extensive somatic variation in copy number within human

populations (so-called copy number variation, or CNV) [17].

As the signal obtained for each position on the array is

quantitative, DNA copy number can be determined from it.

At the same time, a discrete genotype designation is

generated that can be used to detect regions of loss of

heterozygosity by comparison with the patient’s germline

DNA. Loss of heterozygosity means the loss of one allele at a

given position (or positions); it is classically associated with

tumorigenesis when a ‘good’ copy of a tumor suppressor

gene is physically lost as a result of the deletion of a

chromosome or a chromosomal region, leaving the cancer

cell with only one (usually defective) allele.

Copy-number analysis by comparison to a matched normal

DNA control for each patient’s tumor will rapidly detect gene

amplification, low-copy gain and deletion with a high degree

of confidence, even at the level of a single-copy gain or loss

(Figure 1). To identify regions of loss of heterozygosity, one

must infer genotype calls from a string of adjacent hetero-

zygous SNPs, because homozygous germline genotypes are

noninformative.

Most commonly, the loss of heterozygosity in tumor cells is a

result of deletion of a region of a chromosome or of a whole

chromosome, and SNP arrays identify these deleted regions

as having loss of heterozygosity combined with a copy-

number reduction. Loss of heterozygosity can, however,

appear without a copy-number change - copy-neutral loss of

heterozygosity. For example, a mutated tumor suppressor

allele and its surrounding DNA can be copied and replace the

other allele by somatic homologous recombination during the

development of the neoplastic clone, resulting in a tumor cell

that is homozygous for the mutated tumor suppressor allele

and has a growth or survival advantage. This type of

mutational event is known as uniparental disomy (UPD) and

represents an important but largely overlooked mechanism

for generating loss of heterozygosity. One of the advantages

of SNP microarrays is that they are unique among genomic

analysis methods in being able to identify UPD.

The study by Mullighan et al. [15] nicely illustrates the

advantages of SNP arrays. The authors analyzed 192 cases of

pediatric B-cell-progenitor acute lymphoblastic leukemia

(B-ALL), 94% of which had a matched control sample from a

time when the patient’s leukemia was in remission.

Recurrent chromosomal abnormalities are a hallmark of

early B-ALL and the karyotype is, therefore, used to classify

subtypes of the disease [18]. Copy-number analysis of the

B-ALL cases by Mullighan et al. [15] revealed an overall

prevalence of deletions in all subgroups except the

hyperdiploid cases (cases with more than 50 chromosomes

in the leukemic clone), in which gains dominated.

The highest frequency of deletions was found in hypodiploid

cases (cases with less than 45 chromosomes in the leukemic

clone), and in cases in which the ETV6 gene (on chromo-

some 12) and the RUNX1 gene (on chromosome 21; both

genes encode transcription factors) were fused as the result

of a translocation. A deletion involving ETV6 was detected in

33 of 46 cases also harboring this translocation between

chromosomes 12 and 21. By contrast, cases with rearrange-

ments affecting the MLL gene had a very low frequency of

deletions and almost no amplifications. Altogether, the study

identified more than 40 regions that were recurrently

deleted in different patients, with three focal segments of

chromosome 9 showing the highest overall frequency of

deletions. At 9p21.3, a third of all cases had deletions in the

tumor suppressor locus CDKN2A (encoding both p14-ARF

and p16-INK4A), often occuring in the context of a region of

UPD. A fifth of cases had a deleted MLL translocation

partner gene MLLT3 (AF9), located on 9p21. More than a

quarter of the cases (56 of 192) showed a deletion at 9p13.2,

a locus not previously identified as being involved in B-ALL.

Some informative cases had very focused deletions that

pinpointed the PAX5 gene as the likely target on chromo-

some band 9p13.2 [15]. Indeed, sequencing and functional

studies by Mullighan et al. [15] led to the identification of

PAX5 as a highly tumor type-specific tumor suppressor gene

in early B-cell lineage ALL. PAX5 encodes a transcription

factor that drives the differentiation of progenitor B cells by

repressing self-renewal programs and activating genes

specific for the B-cell lineage [19]. Mullighan et al. [15]

found that haploinsufficiency rather than total loss of PAX5

function predominated; the deletions were accompanied by

mutation of the remaining allele in only a minority of cases and

two cases were identified that had a heterozygous mutation

without a deletion. Other genes involved in B-cell development

were found to be deleted in some cases, including EBF1, a

transcription factor obligatory for B-progenitor cell differen-

tiation. Six of eight cases showed very focused deletions that

affected only the EBF1 locus and, therefore, were not

detectable by conventional cytogenetic analysis.

The identification of PAX5 and EBF1 as new mutational

targets in early B-lineage leukemogenesis shows the value

of SNP array studies for selecting genes for detailed

analysis. Like PAX5, the EBF1 gene retained one wild-type
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Figure 1
Illustration of SNP array analysis by example of matched neuroblastoma samples using the dChip software [25,26]. Normal (N) and tumor (T) DNA of
five selected patients were hybridized to 10K Affymetrix SNP arrays (data kindly provided by R George [22]). (a) Copy numbers are shown as shades of
red. Sample 1, 2 and 3 show a copy-number loss on 11q, whereas samples 4 and 5 are normal. (b) The inferred comparison of the genotype (loss of
heterozygosity (LOH) analysis) results in a single lane per case, in which regions of LOH are depicted in blue and heterozygous regions are in yellow.
Besides classical LOH with copy-number loss (11q region of samples 1-3), a region of UPD, identified by copy-neutral LOH, is identified in sample 3 on
11p. (c) The actual genotype calls for the UPD region and part of the adjacent region of sample 3 are shown in expanded form. The region of UPD
shows only red (A) or blue (B) SNP calls, whereas other regions have the expected numbers of retained heterozygous alleles resulting in an AB call
(yellow).
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allele in the majority of the cases, supporting the idea that

haploinsufficiency is an inherent property of some tumor

suppressors [20,21]. In cases with defects in such genes, it

may be possible to increase gene expression from the

remaining allele.

Other work has also shown the power of SNP array analysis

to identify the loss of functional tumor suppressors even in

cases lacking chromosomal deletions, or gain of regions

containing potential oncogenes. We have performed a

matched control study by SNP array of 22 neuroblastoma

patients [22] and identified chromosomal aberrations that

had been previously implicated in neuroblastoma by more

laborious analysis of loss of heterozygosity at individual loci.

A subset of four cases showed loss of heterozygosity of 11p

solely as a result of UPD, indicating that cells might not

tolerate the haploinsufficiency generated by large deletions

of some chromosomal regions. A matched control study of

14 basal cell carcinomas by Teh et al. [23] revealed that, in

almost all cases, the region on chromosome 9q harboring the

tumor suppressor gene PTCH1 has undergone loss of

heterozygosity. More than a third of these cases resulted

from UPD, implying the duplication of a mutated allele.

Sellers and colleagues [24] have taken a different approach

to exploiting the information provided by SNP arrays. To

uncover novel signaling pathways in human cancers, they

first examined the structural genomic aberrations of a cell

line panel by SNP array copy-number analysis. Clustering of

the cell lines according to their copy-number aberrations

identified subgroups that showed amplifications and deletions

in shared regions. One cluster, comprising six out of nine

melanoma cell lines, showed a copy-number gain in a

defined region of chromosome 3p. Comparison of the gene-

expression profiles of the six melanoma cell lines with the

other lines identified a small set of genes as highly

expressed, only one of which, that encoding transcription

factor MITF, was located within the chromosome 3p region.

Additional studies established that MITF is a survival factor

with oncogenic properties in melanoma.

Thus, SNP array technology can provide a global analysis of

DNA copy-number alterations in human cancers while

revealing important loss of heterozygosity due to UPD,

which would be entirely missed by conventional cytogenetic

analysis or array CGH. Identification of UPD in tumor cells

allows genetically similar cases to be classified together for

prognostic and therapeutic purposes in the absence of a

cytogenetically apparent deletion. In addition, the finding of

a UPD implies that a significant mutational or heritable

epigenetic event has occurred within the duplicated region,

thus providing a good reason for further detailed analysis at

the DNA sequence level.

A cross comparison of all cases included in a SNP array

study makes it possible to define shared regions of

copy-number change, loss of heterozygosity and UPD and to

delineate both minimally deleted and minimally amplified

regions. Thus, SNP array studies can pinpoint critical

structurally altered regions within the genome of a particular

type of cancer and contribute to the discovery of novel

oncogenes or tumor suppressors, as shown by the study of

Mullighan et al. [15]. The potential oncogenic function of

genes located in amplified regions that are also

overexpressed in the tumor cells can be tested functionally

in animal models.

Ultimately, SNP array analysis should provide a way to

reliably subclassify tumors on the basis of shared genetic

abnormalities, so that patients can be assigned to the most

appropriate therapies. This technology also seems especially

promising as a way of implicating oncogenic pathways and

initiating the search for targets that could be exploited in the

development of molecular therapeutics. For a protein to be a

useful therapeutic target within the cancer cell, it must have a

driving role in a pathway controlling tumor initiation, the

maintenance of the malignant phenotype or metastatic

behaviors. Tumors acquire multiple critical genetic aberra-

tions before they become clinically apparent, and, by the use

of powerful technologies, such as SNP analysis and eventually

whole genome resequencing, it should then be possible to

target several of these defects to reverse tumor growth.
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