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Abstract

A recent use of quantitative proteomics to determine the constituents of the endoplasmic
reticulum and Golgi complex is discussed in the light of other available methodologies for
cataloging the proteins associated with the mammalian secretory pathway.
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The secretory pathway in mammalian cells consists of an

array of membrane-bounded organelles and transport carriers

through which secretory proteins move in a stepwise fashion

to reach their different cellular destinations. This arrange-

ment means that biochemical operations carried out by the

pathway, such as protein folding, protein glycosylation or

lipid biosynthesis, can be compartmentalized, which enables

efficient and specific reactions. Because of this link between

subcellular localization and function, a quantitative map of

the distribution of all the protein and lipid constituents of

the secretory pathway (the secretome) is an essential first

step to a comprehensive molecular understanding of how

the pathway functions. For the past 30 years, cell biologists

and biochemists have addressed this problem by imaging

immunolabeled components in intact cells and by the

biochemical analysis of subcellular fractions (reviewed in

[1,2]). Although these approaches have generated an

enormous amount of detailed knowledge on the composition

of the secretory pathway, the availability of the complete

sequences of several eukaryotic genomes has recently enabled

more systematic attempts to describe the secretory pathway

comprehensively at the molecular level. Landmark studies in

which a large, almost genome-wide, fraction of yeast open

reading frames (ORFs) were tagged with green fluorescent

protein (GFP) and their subcellular localizations determined

in living cells have generated comprehensive localization maps

for the Saccharomyces cerevisiae and Schizosaccharomyces

pombe proteomes and thus also the secretory pathways in

these organisms [3,4]. Related approaches in mammalian

cells have also been reported [5,6], although these are still far

less comprehensive than for yeast.

Subcellular fractionation followed by mass spectrometry

(MS)-based analysis has also proved highly successful in

mapping proteins to specific subcellular structures, such as

the Golgi complex [7-9] or clathrin-coated vesicles [10,11].

Remarkably, recent advances in MS-based proteomics

(reviewed in [12]) now even allow estimation of the relative

abundance of proteins in a specific biochemical fraction,

opening up new avenues for defining a genome-wide

localization map of a mammalian proteome. Taking

advantage of this technological progress, Gilchrist and

colleagues [13] have recently produced an MS-based

proteomic map of the major membrane-bounded entities of

the mammalian secretory pathway - the endoplasmic

reticulum (ER) and the Golgi complex. The significance of

this well controlled piece of work is that it both complements

and extends previous proteomic analyses of the mammalian

secretory pathway [7-11,14].

Gilchrist et al. [13] used classical biochemical procedures to

isolate rough ER, smooth ER and Golgi membranes from rat

liver, and then assessed fraction purity by electron micro-

scopy and enzyme activity analyses. Solubilized membranes

were subjected to gel electrophoresis and quantitative

tandem MS, which identified peptides that could be mapped

to more than 2,000 proteins. Assignment of these proteins

to 23 different functional categories allowed the in silico

removal of 470 proteins that were probably contaminants,

with almost two-thirds of these being residents of

mitochondria and the plasma membrane. Throughout this

study, independent samples were prepared and analyzed in

triplicate, with principal coordinate analysis confirming that



the ER and Golgi fractions were consistently distinct from

one another. Further clustering of the identified proteins

was facilitated by subfractionation using salt washing and

Triton X-114 phase separation, which finally yielded an

impressive list of 832 unique ER proteins, 193 proteins of

the Golgi complex and COPI transport vesicles, and a further

405 proteins that were found in both fractions.

This seems to be the most comprehensive effort so far to

elucidate the proteomes of the organelles of the mammalian

secretory pathway. An impressive number of controls were

incorporated at every step to give the highest degree of

confidence in the lists obtained. Closer analysis of these lists

reveals that the vast majority of well known residents of the

organelles have been identified, for example the components

of the protein folding and glycosylation machinery in the ER,

and the protein-modification enzymes in the Golgi complex,

in addition to more than 300 uncharacterized proteins. Of

particular note is the identification of many cytoplasmic

proteins that are only transiently associated with mem-

branes, including many components of the actin and micro-

tubule cytoskeletons. However, a significant number of likely

contaminants also seem to be present in the fractions,

highlighting the fact that, despite improvements in the

sensitivity of MS, the limitation of this type of approach

remains at the level of the organelle separation techniques.

For example, the identification of proteins of the plasma

membrane/endocytic machinery (such as the clathrin

adaptor 2 alpha subunit (CALM) and the GTPase dynamin)

in the ER fraction indicates the difficulty of separating these

membranes.

How near are we to a complete secretome?
The work by Gilchrist et al. [13], together with the infor-

mation available in the literature, raises the question of

whether we are now able to define a mammalian secretome.

Considering the care taken to exclude likely contaminants in

this study, and comparing it with earlier proteomic analyses

(Table 1), the indication is that subcellular fractionation

combined with MS-based proteomics is unlikely to reveal

many more new proteins that map to the organelles of the

secretory pathway. Nevertheless, extrapolation of the

genome-wide localization data from S. cerevisiae [3,15] and

S. pombe [4] to the 30,000 ORFs of the human genome

suggests that the number of human proteins associated with

the ER and Golgi complex could be between 2,850 and 4,110

[16]. This is more than twice the number proposed by

Gilchrist et al. [13], and may indicate an intrinsic lack of

completeness in subcellular fractionation and MS-based

approaches. One reason for this may be that during

subcellular fractionation, a significant number of proteins

transiently associated with the organelles under

investigation may be lost to the extent that they fall below

the current detection level of MS. Future improvements in

MS sensitivity may help to overcome this problem. Also,
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Table 1

Notable experimental studies in the determination of the secretome

Year Approach Organelle Number of proteins Comment Reference

1980 Mutagenesis Cell-wide 23 First attempt to systematically identify secretory [27]
machinery (S. cerevisiae)

2000 Proteomics Golgi 93 (588)* First concerted effort to analyze the Golgi proteome. [7]
Cycloheximide treatment used to enrich for Golgi residents

2003 GFP-tagging ER 296 Subcellular localization of more than 75% of the yeast [3]
Golgi/TGN 118 proteome was determined using GFP fusions (S. cerevisiae)

2004 Proteomics Golgi 151 (421)† Improved proteomics technologies allowed more [9]
comprehensive identification of proteins

2006 Functional assay Cell-wide 130 First genome-wide RNAi screen to search for proteins [26]
with a functional involvement in secretion (Drosophila S2 cells)

2006 Proteomics ER 229 Proteomics and protein correlation profiling of multiple [14]
ER-Golgi vesicles 220 organelles separated by gradient centrifugation
Golgi 67

2006 GFP-tagging ER 382 (68)‡ Subcellular localization of 90% of the yeast proteome [4]
Golgi 156 (68)‡ was determined using GFP fusions (S. pombe)

2006 Proteomics ER 832 (405)§ Most quantitative proteomic characterization of the ER, [13]
Golgi 193 (405)§ Golgi and COPI vesicles reported to date

*Mass spectrometry was used to identify only 93 of the 588 unique spots observed on two-dimensional gels. †From 421 identified proteins, only 151
were annotated as being either unknown or bona fide Golgi residents. ‡An additional 68 proteins localized to the ER and Golgi. §An additional 405
proteins were identified in both ER and Golgi fractions.



most fractionation/MS-based studies focus on a single type

of tissue (predominantly brain and liver) as the material for

analysis. The number of proteins associated with the ER and

Golgi complex should, therefore, increase when the variety

of tissues in the human body is considered.

The problem of transient protein-organelle interactions

within the secretory pathway can be addressed by GFP-

tagging and subcellular localization in living cells. Light-

microscopy of cells expressing GFP-tagged markers provides

excellent resolution and sensitivity, and can, in principle,

monitor even very transient localizations lasting only

seconds. Many examples of functionally significant transient

interactions in the secretory pathway are known (see, for

example, [17-19]). Indeed, proteins shown to interact with

components of the secretory pathway in those experiments

(p150glued [17], γ-BAR [18], and the PICTAIRE kinases [19])

were not found by Gilchrist et al. [13] to be associated with

any of their fractions. This shows that approaches that can

also reveal transient interactions with membranes of the

secretory pathway are essential if the secretome is to be

completely defined.

Having defined the essential secretome components, the

next step will be to go beyond basic localization studies and

map these proteins to the organelles in which they function.

Live-cell imaging of GFP-tagged proteins can provide

sufficient spatial and temporal resolution but is, unfortu-

nately, still limited in throughput (reviewed in [20]).

Although simple cellular morphological changes can be

monitored by time-lapse microscopy in a high-throughput

manner [21], and sophisticated image-analysis technologies

have become available to accurately determine subcellular

localization (reviewed in [22]), large-scale quantitative

mapping of the GFP-tagged proteins to specific organelles is

still not possible, as it requires the acquisition of image data

in three dimensions, which is a slow process.

Combining localization and functional studies
Functional studies may help here as they not only support

the localization information but can also begin to provide

information about the networks in which each protein

operates. In cultured mammalian cells, protein over-

expression and downregulation are the most immediate

ways of studying a protein’s function [23,24]. Vast and easily

accessible collections of cDNAs and ORFs make over-

expression possible [25], while RNA interference (RNAi)

makes large-scale knockdown experiments feasible [26].

Understanding the molecular basis of the secretory pathway

using overexpression and downregulation techniques has

effectively been ‘work in progress’ for more than 25 years.

The pioneering experiments were carried out in yeast [27],

largely because of its genetic tractability and the fact that its

genome does not have the complexity of higher eukaryotes,

which have tissue-specific variation in gene expression and

extensive splice variants, for example. These first lists of

candidate secretome proteins have stood the test of time,

and represent much of the core secretion machinery found

in all eukaryotes.

More recently, a complete genome-wide downregulation

screen in Drosophila S2 cells was reported [26], highlighting

the advent of functional screening as a means of determining

the secretome in more complex organisms. Combining the

information from such approaches with proteomics-based

localization strategies is a potentially enormously powerful

approach, as the two methods are methodologically indepen-

dent yet aspire to the same goal. Indeed, of the 77 mamma-

lian orthologs identified in the Drosophila screen as affect-

ing secretion (from 130 fly candidates), a third were also

identified by Gilchrist et al. [13]. This correspondence allows

preliminary mapping of the functional effects of these

proteins to a particular subcellular compartment, but the

question remains as to why there is not greater overlap

between these lists. Incorrect identification of orthologs

across species may be one explanation, but this discrepancy

is more likely to reflect the fact that functional approaches

alone cannot provide comprehensive lists of the constituents

of the organelles involved. Similarly, determination of

localization does not directly infer function, but rather

should be considered as another essential piece of infor-

mation towards the goal of identifying the secretome.

The approaches outlined above are complementary to other

methods that are now being applied to studying cellular

composition and function on a genome-wide scale - for

example, comparative proteomics and mRNA expression

profiling [28]. The power of these approaches is that in silico

data can be readily incorporated to extrapolate and predict

discrete functional networks. An excellent example of this

strategy is the recent definition of the ‘membrome’, a

comprehensive listing of the key interacting components that

define the membrane architecture of a specific cell type [29].

The complete secretome may still not have been identified,

but the tools and technologies that will achieve this are now

established and in use. As well as its intrinsic interest, the

secretome is of great medical importance, because dysfunc-

tional membrane trafficking pathways have many clinical

implications [30]. Drug-discovery programs will surely

become more efficient if we have already mapped all the

relevant proteins to their organelle and functional inter-

action network.
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