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Prediction of specificity residues<p>A new algorithm is presented allows protein specificity residues to be assigned from multiple sequence alignments alone. This infor-mation can be used, amongst other things, to infer protein functions.</p>

Abstract

We use a new algorithm (combinatorial entropy optimization [CEO]) to identify specificity residues
and functional subfamilies in sets of proteins related by evolution. Specificity residues are conserved
within a subfamily but differ between subfamilies, and they typically encode functional diversity. We
obtain good agreement between predicted specificity residues and experimentally known
functional residues in protein interfaces. Such predicted functional determinants are useful for
interpreting the functional consequences of mutations in natural evolution and disease.

Background
The diversity of biologic phenomena arises from the complex-
ity and specificity of biomolecular interactions. Nucleic acid
and protein polymers encode and express biologic informa-
tion through the specific sequence of polymer units (resi-
dues). The sequences and corresponding molecular
structures are under selective constraints in evolution. At spe-
cific sequence position, changes in sequence alter intermo-
lecular communication and affect the phenotype and can lead
to disease [1-6]. Detailed understanding (quantitative and
predictive description) of how such molecular changes affect
cellular and organismic function lies at the heart of molecular
and systems biology. Our ability to predict the biologic and
medical consequences of human genetic variation and to
design therapeutic interventions can benefit hugely from
such detailed understanding. We are therefore motivated to
develop further our ability to identify functionally specific
residues in protein molecules.

Identifying interaction sites on protein molecules is difficult,
both experimentally and theoretically. Most proteins have
complicated three-dimensional shapes with interaction sites

that are composed of contributions from nonsequential resi-
dues. Even with the three-dimensional structure known,
however, the sites of functionally important interactions may
not be obvious. Mutational experiments to probe the contri-
butions of individual residues to such interactions are expen-
sive. Computational methods to simulate the interactions of
biologic macromolecules in molecular detail do not yet have
adequate power and accuracy. Fortunately, biologic evolution
has recorded rich and highly specific information in genetic
sequences. For proteins, this provides the opportunity to ana-
lyze conservation patterns in amino acid sequences and
extract valuable information about specific protein-partner
interactions. In particular, residues in protein active sites and
protein binding sites are under sufficiently strong selective
pressure to allow their identification from an analysis of pro-
tein family alignments.

In a sufficiently diverse family, globally conserved residues
(residues conserved in most or all family members) are easily
identified and are likely to be conserved as a result of strong
selective constraints. A number of research groups have
developed sophisticated methods to identify additional key
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residues that are involved in protein structure and function,
especially residues that are strongly conserved within each
subfamily but differ between subfamilies [7-18]. If subfamily
specific conservation patterns were perfect, then these meth-
ods would probably yield identical lists of functional residues.
However, real conservation patterns can be considerably
more complicated for a variety of reasons, for instance
because of superimposition of multiple evolutionary con-
straints involving several interactions partners. In addition,
current sequence collections are incomplete, for example
with respect to species representation, and particular protein
families are often not evenly sampled. Finally, results depend
on the level of subfamily granularity (the number of sub-
families defined in a given protein family). Consequently, the
extraction of biologically relevant conservation signals from
multiple sequence alignments remains a challenging
problem.

We present a new algorithm with which to solve the combina-
torial complex problem of identifying specificity residues and,
simultaneously, the corresponding optimal division into sub-
families. In our approach, called combinatorial entropy opti-
mization (CEO), we optimize a conservation contrast function
over different assignments (clusterings) of proteins to sub-
families. Hierarchical clustering [19] is used to explore the
space of alternative clusterings over a diverse set of clustering
trajectories to reach an optimum. Given an optimal cluster-
ing, individual residue positions (columns) vary considerably
in the value of the combinatorial entropy. The distribution of
column entropy values is a z-shaped curve and, reassuringly,
is drastically different from the corresponding distribution
for randomized alignments. Different entropy values are
interpreted to reflect different residue-specific functional
constraints, and residues with lowest entropy values are pre-
dicted to be functional.

We validate the method by comparing sets of predicted spe-
cificity residues with sets of experimentally known functional
residues, such as interaction residues observed in three-
dimensional macromolecular complexes, and we obtain good
agreement between prediction and observation. Interest-
ingly, the predictive power of the method goes beyond pro-
tein-protein interactions and is applicable to any functional
constraint that conserves specific residue types in particular
positions across all members of a protein subfamily.

The implementation of the method [20] takes a multiple
sequence alignment as input and returns subfamilies and a
set of specificity residues (Figure 1). The computed sub-
families may be used, for example, to assign a likely function
to new protein sequences or to choose maximally informative
targets for structural genomics projects. The computed spe-
cificity residues may be used to design highly specific muta-
tion experiments that test function with minimal side effects;
to build sharper and more informative evolutionary trees that
more accurately reflect functional relatedness; to predict

interactions with proteins; and to estimate the functional
consequences of genetic variation.

Results
Parameter choice and robustness of results
The clustering algorithm partitions the sequences of a protein
family into subfamilies and simultaneously selects a set of
characteristic residues. The value of the contrast function,
which is optimized; the number of subfamilies; and the set of
the characteristic residues, which constitute the resulting
optimal configuration, depend on the value of the parameter
A (see Materials and methods, below [Equation 7]). We tested
the robustness of the results with respect to parameter
changes. To explore the choice of A, we conducted tests in a
number of protein families with A ranging from 0.0 to 1.0, in
0.001 increments. Ideally, the selected set of characteristic
residues varies slowly with A in a region of suboptimal A. The
tests determined that A = 0.6 to 0.9 as the optimal range, and
we tested all local minima of ΔS0(A) in this range. We tested
the robustness of the results for many protein families, with
representative results for two protein families in Additional
data file 1. We conclude that the assignment of sequences to
subfamilies is reasonably consistent with prior biologic
knowledge (which in itself is incomplete and not formally
defined) and that the selection of characteristic residues is
reasonably stable in the range A = 0.6 to 0.9. For example, for
protein kinases, of the top 30 characteristic residues at the
overall minimum (A = 0.68), ranked by the column-specific
difference entropies, 26 are in the top 30 at the second best
local minimum (A = 0.72); alternatively, for ras-like small
GTPases, of the top 20 residues at A = 0.833, 19 are in the top
20 at A = 0.85.

As a practical consequence of these tests, for a given protein
family alignment the current software implementation of the
algorithm scans the values A = 0.6 to 0.9 in increments of
0.025 and reports results for the value of A for which ΔS0(A)
is minimum. For typical protein families this procedure yields
results that resonate well with the biologic intuition of protein
family experts (the reported protein subfamilies are not too
fine grained nor trivially unified), and the selection of charac-
teristic residues is a good starting point for detailed analysis
and design of mutational experiments. After an initial scan,
users can of course select any range of granularity parameter
A as input and obtain more fine grained or more unified fam-
ilies as output.

Validation: subfamilies and key residues of ras-like 
GTPases
To illustrate typical results of the CEO algorithm applied to
families of amino acid sequences, we chose the small
GTPases, a large and functionally diverse protein domain
family with members, probably, in all eukaryotes. These
GTPases are molecular switches, timed by their rate of GTP
hydrolysis, which is regulated by a number of interaction
Genome Biology 2007, 8:R232
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partners [21]. GTPase activating proteins accelerate the
GTPase by several orders of magnitude; guanine nucleotide
exchange factors catalyze the binding of nucleotide after dis-
sociation; and guanine nucleotide dissociation inhibitors sta-
bilize the prenylated form of the GTPase in the cytoplasm and
slow down dissociation of nucleotide. The switch is read out
in its active form by interaction with downstream effectors,
such as raf kinase for ras ad rho kinase for rho.

Small GTPases as testing ground
These multiple functional interactions provide an ideal test-
ing ground for specificity analysis. A plausible evolutionary
scenario involves repeated genomic duplication of an evolu-
tionary ancestor and subsequent selection of variants, follow-
ing mutation, in which the new family members have taken
on a specific function. For the more than 100 distinct small
GTPases in, for instance, mammalian genomes, many func-
tions are known but our knowledge is far from complete. It is
therefore interesting to analyze in which way our specificity
analysis agrees with known divisions into functional protein
subfamilies and to make explicit predictions pointing to can-
didate residues for mutational functional experiments.

Results for ras-like G-domains
Our analysis of 126 unique human sequences in the Protein
Families (PFAM) Ras family defines 18 subfamilies, with
from 2 to 15 proteins per subfamily and 22 specificity residues
that optimally discriminate between these subfamilies (Fig-
ure 2). Remarkably, a relatively small number of residues (22
out of about 200) capture the essence of subfamily discrimi-
nation, presumably as a result of functional fine tuning of
interaction sites in evolution. For example (Figure 2), the fol-
lowing residues are characteristic for the ras/rho discrimina-
tion (amino acid numbers as in ras) D33A, E37F, S65D,
A66R, D69P, and Q70L.

Agreement with known functional subfamilies
Because the analysis only used amino acid sequences and did
not use any functional information, the concentration of sim-
ilar functional names and annotations in the computed sub-
families immediately indicates successful functional
classification (Additional data file 2). For example, all Ras
and Rho proteins (as far as names have been assigned in the
literature) are in distinct subfamilies. Finer levels of classifi-
cation also appear to agree with known functional classifica-

Simple example illustrating the essence of the algorithmFigure 1
Simple example illustrating the essence of the algorithm. The input is a multiple sequence alignment (a protein family) in which residue 
conservation patterns are not obvious, except for highly conserved residues (dark blue blocks). More subtle but functionally important conservation 
patterns become evident after reordering the sequences and grouping them into subfamilies (output). In our algorithm, it is precisely the conservation 
pattern of the specificity residues (red blocks) that determines the grouping. For example, the third specificity residue is conserved as Q in the first 
subfamily, as R in the second, as E in the third, and as L in the fourth. An optimal subfamily arrangement of sequences has a minimal value of a sum of 
combinatorial entropy differences (for details, see Materials and methods).

1 G E K Q E S S S S Y E P K E E F A Q C V L
2 G E S L E E A S V N G P F Q Y F Y T V E C
3 G E S S E V A A Q N V P M L W F Y Q R H V
4 G E Q V E S S E S Q E P H E E F Y Q I R T
5 W E S K E E N A V N V P H Q K F F T V L T
6 K E T N E V PW F K K P M R E F Y S A W G
7 E E Q S E S A E S Q Q P E E P F Y Q I L E
8 G E K N E V E A F K L P F R E F Y S V Q R
9 H E R V E S A A S N V P M E T F Y Q I A E
10 W E E K E E F A V Y I P L Q P F L T F G R
11 R E C H E V K A Q Y V P M L E F Y Q V K P
12 G E T N E E E A F N V P R R V F F S V S N
13 G E S P E E N F V N V P H Q Y F Y T V E P
14 T E N P E V E L F K V P F R V F F S L S H
15 S GW K E E L A V N Q P V Q E F E T F E I
16 G E A S E V E H Q N V P H L K F Y Q E G P
17 R E A Q E S Q A S N V P M E T F Y Q V R T

15 S G W K E E L A V N Q P V Q E F E T F E I
10 W E E K E E F A V Y I P L Q P F L T F G R
13 G E S P E E N F V N V P H Q Y F Y T V E P
2 G E S L E E A S V N G P F Q Y F Y T V E C
5 W E S K E E N A V N V P H Q K F F T V L T
14 T E N P E E E L F K V P F R V F F S L S H
6 K E T N E E P W F K K P M R E F Y S A W G
12 G E T N E E E A F N V P R R V F F S V S N
8 G E K N E E E A F K L P F R E F Y S V Q R
7 E E Q S E S A E S Q Q P E E P F Y Q I L E
4 G E Q V E S S E S Q E P H E E F Y Q I R T
1 G E K Q E S S S S Y E P K E E F A Q C V L
17 R E A Q E S Q A S N V P M E T F Y Q V R T
9 H E R V E S A A S N V P M E T F Y Q I A E
11 R E C H E V K A Q Y V P M L E F Y Q V K P
3 G E S S E V A A Q N V P M L W F Y Q R H V
16 G E A S E V E H Q N V P H L K F Y Q E G P
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tions; for example, Rab5A, Rab5B, and Rab5C are in a
subfamiliy distinct from that of Rab6A, Rab6B, and Rab6C.
As a result of systematic focus on specificity conservation

patterns in our method, the implied functional distinctions
between subfamilies constitute predictions when the protein
class is known but functional details are not yet known.

Typical results and predictive power of the CEO method illustrated in the family of small GTPases (G-domains)Figure 2
Typical results and predictive power of the CEO method illustrated in the family of small GTPases (G-domains). The analysis used 126 
distinct human sequences of the Ras superfamily of GTPase domains obtained after removing redundant identical copies and gappy (>30% gaps relative to 
rasH) sequences from the 284 protein domain sequences in the PFAM Protein Family Database (version 20), which includes ras, rab, and rho subfamilies. 
(a) Alignments of 22 specificity residues (numbered as in RasH) in the two largest ras and rho subfamilies; these residues (out of a total of about 190) 
carry most of the information for the distinction between functional subfamilies; note the conservation of residue type within each subfamily and 
nonconservation between subfamilies. (b) Presence of the computed specificity residues in known molecular interfaces (marked '#') of three GTPases 
(RasH, RhoA, and CDC42). Seventeen of the 22 specificity residues are in these interfaces (yellow numbers). Nine of the specificity residues are in the 
functionally important switch I (magenta numbers) and switch II (orange numbers) regions, which are involved in sensing and/or communicating the 
differences between the GTP and GDP states. CEO, combinatorial entropy optimization.

GTPase
18 20 21 24 29 33 37 40 63 65 66 68 69 70 75 76 78 98 104 149 155 164

RASH A T I I V D E Y E S A R D Q G E F E K R A R
RALB A T L M V E A Y D A A R D N G E F E K R V R

Q6ZS74 A T L M V E A Y D A - R D N G E F E K R V R
RIT1 A T M I P D E Y E T A R D Q G E F Q R R V R

RASE A T I N V D Q Y I R - R D Q C D V T A R A Q
RASM A T I F V D E Y E S A R E Q G D F Q K P A R
RALA A T L M V E A Y D A A R D N G E F E K R V R
RIT2 A T M I P D E Y E T A R E Q G E F E R R A R

RRAS A T I I V D E Y E G A R E Q G H F T K R A R
RASK A T I I V D E Y E S A R D Q G E F E K R A R

Q92468 A T I I V D E Y E S A R D Q G E F E K - - -
RASN A T I I V D E Y E S A R D Q G E F E K R A R

Q14014 A T I I V D E Y E S A R D Q G E F E K R - -
Q14015 A T I I V D E Y E S A R D Q G E F E K R - -
RRAS2 A T I I V D E Y E G A R E Q G E F R K R A R
RHOF S L M S P A F Y D D R R P L T H V P C R V L
RHOJ C L M A P V F Y D N Q R P L T D F P M Q V F
CDC42 C L I T P V F Y D D R R P L T D F P C Q V L
Raslp2 C L M A P V F Y D N Q R P L T D F P M Q V F
RAC1 C L I T P I F Y D D R R P L T D F P C Q V L
RAC3 C L I T P I F Y D D R R P L T D F P C Q V L
RAC2 C L I T P I F Y D D R R P L T D F P C Q V L
RHOC C L I S P V F Y D D R R P L T D I P C K V L

Q8TDQ2 - - V T P I F F E D K R P L T D F P C Q V I
RHOU S V V T P I F F E D K R P L T D F P C Q V I
RHOV S I V T P R L F D D R R S L T D F P N Q V I
RHOA C L I S P V F Y D D R R P L T D I P C K V L
RHOQ C L M A P V F Y D D R R P L T D F P A Q V L
RHOH S L V T P K Y T A R S R P L A D V G L N V V
RHOD S L M A P T F Y D D R R P L A S L P C H V L
RHOG C L I T P I F Y E D R R T L T N F P C Q V L
RHOB C L I S P V F Y D D R R P L T D I P C K V L

GTPase Effector
RalGDS (1lfd) # # # # # # # # # #
PPD (1he8) # # # # # # # #

PK byr2 (1k8r) # # # # # #
P120Gap (1wq1) # # # # # # #

Sos (1xd2) # # # # # # # # # # #
PLC-E (2c5l) # # # # # # #
mDIA1 (1z2c) # # # # # # # # # #

Rho GDI (1cc0) # # # # # #
PKN (1cxz) # # # #

RhoGap (1ow3) # # # # # #

RhoGef (1xgf) # # # # #
Dbi (1lb1) # # # # # #

RockI (1s1c) # # # # # # #
ACK (1cf4) # # # # # # # # # # # # #
Dbs (1kzg) # # # # #
GEF (1ki1) # # # # # #

PAK-a (1e0A) # # # # # # # # # # # # # # #
Gap/Alf3 (1grn) # # # # # # #
RhoGDI (1doa) # # # # # # # # # #
WASP (1cee) # # # # # # # # # # #

PAR (1nf3) # # # # # # #
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Agreement with known functional residues
Many of the 22 specificity residues in the ras family of
GTPases map to well known interaction sites, triggers, and
readout points of conformational change, such as the switch I
region (residues 33 to 40, rasH numbering), the switch II
region (residues 63 to 70), plus six additional residues (see
'#'s in residue columns in Figure 2b and the corresponding
placement in three dimensions in Figure 3). For some of these
residues, mutation experiments have beautifully illustrated
their functional importance [2,21-25], and specificity-switch
experiments reveal the involvement of a few residues in favor-
ing or rejecting a particular protein-protein interaction [26].

Prediction of as yet uncharacterized functional residues
Given the excellent agreement of the set of specificity residues
derived from sequence family information with sets of func-
tional residues reported as the result of detailed experiments,
we are encouraged to identify potential functional residues in
prediction mode. The simple hypothesis, following detailed
analysis, is that all computed specificity residues have a func-
tional implication, defined either as an observed phenotypic
consequence upon changing the amino acid type or as direct
observation of specific interactions (above nonspecific back-
ground) with other biologic molecules. Although such
detailed predictions may be the subject of a subsequent anal-

ysis, we propose here that the following residues in the ras-
type GTPases that are not in the 'switch' regions and have not
been observed in protein-protein contacts in three-dimen-
sional structures are particularly interesting (Figure 2): G75,
E76, F78, K104, and A155. We propose mutational experi-
ments for these residues within the context of carefully cho-
sen available functional assays.

Validation: prediction of binding sites
Various functional constraints can give rise to patterns of spe-
cificity residues, including macromolecular interfaces. To
assess the predictive utility of the method for the prediction of
interactions, we compared the overlap between the set of pre-
dicted specificity residues with known binding sites in several
protein complexes. Although evolutionary constraints on spe-
cificity residues can be the result of any kind of functional
interaction, residues in protein-protein interactions and pro-
tein-nucleic acid (NA) interactions are particularly well
defined in three-dimensional structures of macromolecular
complexes. A strong overlap of predicted specificity residues
with binding sites would indicate that the method correctly
identifies functional constraints on binding site residues. If
that is the case, then one would expect a reasonable fraction
of specificity residues to be binding site residues. We there-
fore assess the predictive potential of the implied prediction

The predicted specificity residues of the human Ras family map to known functional sites in 3DFigure 3
The predicted specificity residues of the human Ras family map to known functional sites in 3D. The specificity residues (marked '#' in Figure 
2), such as the switch I and II regions, are separated along the sequence, but end up in functional positions near the active site, poised to modulate the 
interaction with protein partners such as the guanine nucleotide exchange factor Sos (colors as in fig. 2). Because the computation of specificity residues 
uses no information about known three-dimensional structures, molecular complexes, or interactions, the agreement between the computed specificity 
residues and their location in the experimentally observed interfaces illustrates the predictive power of the method.

Switch -I

Switch -II

RasH/Sos (1xd2)RasH (1xd2)
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method, aware of the risk for over-prediction in cases in
which other functional constraints operate outside binding
sites.

Statistical significance and accuracy of prediction
To evaluate the overlap of predicted specificity residues (and
conserved residues) with binding sites, we analyzed known
three-dimensional structures of eight protein-protein/pep-
tide complexes and five protein-NA complexes containing 19
unique proteins or protein domains belonging to 15 different
so-called superfamilies from the Structural Classification of
Proteins database [27]. To compute statistical significance,
we compared the actual number of specificity residues in the
binding site with that from a random distribution on the pro-
tein surface (see Materials and methods, below [Equation
12]). For this calculation binding site residues (interface resi-
dues) are defined as having at least one heavy (nonhydrogen)
atom at a distance of 4.5 Å or less to one of the heavy atoms of
the protein or NA binding partner. So what fraction of specif-
icity residues are in protein interfaces? For example in 21 of
the proteins presented in Table 1, 48% of the specificity resi-
dues are in the interfaces (and 36% of the conserved resi-
dues), with a much lower random expectation of 9% (5%);
together, the specificity and conserved residues constitute
about 36% of the binding interfaces (29% and 8%). The over-
lap is especially pronounced for protein-NA interfaces; in five
protein-NA complexes 67% of the specificity residues and
35% of the conserved residues are in binding interfaces. Over-
all, the observed overlap is statistically significant relative to
random at P < 0.1 in 19 out of 21 complexes (at level P < 0.05
in 14 complexes). In practice, interpreting specificity residues
as predicted binding site residues would yield accurate pre-
dictions in about half of the cases, which is a reasonable level
for planning mutational experiments. The remaining cases do
not necessarily represent false-positive predictions, because
other types of functional constraints, such as internal support
of interaction sites or requirements of overall protein stability
and correct folding, may also give rise to subfamily-specific
conservation patterns. We now present specific examples of
the distribution of specificity residues within the context of
three-dimensional structure complexes.

Example: interactions of cell cycle kinases
Specificity residues computed from family alignments reflect
functional constraints. The distribution of specificity residues
is particularly interesting for proteins engaged in multiple
interactions. An example is the cell cycle kinase cyclin-
dependent kinase CDK2, which plays a key role in the cell
cycle (phases S and G2) in all eukaryotes. CDK2 forms com-
plexes with cyclins (E and A) and specifically phosphorylates
numerous substrates, such as retinoblastoma protein (pRb),
retinoblastoma-like protein 1 (p107), cell division control
protein CDC6, cyclin-dependent kinase inhibitor p27, tumor
suppressor p53, and transcription factor E2F1. Currently, 72
proteins are reported in the Human Protein Reference Data-
base as interacting with CDK2. CDK2 is tightly regulated; it

requires specific activating phosphorylation at position
Thr160 by a CDK-activating enzymatic complex (CAK); it can
be inhibited by the Ink4 and Cip1/Kip1 families of cell cycle
inhibitors or by phoshorylation in the glycine-rich loop by the
Wee1 or Myt1 kinase. To derive specificity residues in CDK2,
we used 390 sequences of protein kinases related to CDK2.
We also derived specificity residues for cyclin A (379
sequences for domain N and 238 sequences for domain C).

The distribution of specificity residues mapped to the three-
dimensional structure of the CDK2-cyclin A complex is strik-
ingly non-uniform; almost all of them are located on the
'front' face of the complex and almost none on the 'back' side
(Figure 4). In addition, there are about ten specificity residues
in the interface of the CDK2-cyclin A complex. This front-
back asymmetry is suggestive of the assembly of a higher
order complex at the front face of the CDK2-cyclin A het-
erodimer. On this face, specificity residues of CDK2 are in or
near the following known interaction sites: phosphorylation
sites T160, T14, and Y15; cyclin binding interface; and peptide
substrate binding site. Some of the predicted specificity resi-
dues of cyclin A (Q228, N229, N312, Q313, T316, E330, and
M334) are located in one cavity on the heterodimer surface
and form a continuous molecular interface with specificity
residues of CDK2 (T158 and R157). This specificity surface
may reflect a previously uncharacterized binding site and may
be a potential novel target site for small molecule inhibitors of
CDK2-cyclin A function.

A related example, involving an inhibitor (p19-INK4d, gene
CDN2D) of the cell cycle kinase CDK6, illustrates the poten-
tial power of specificity residue analysis in predicting binding
site residues. The 21 specificity residues for p19-INK4d, pre-
dicted from our analysis of the alignment of 1048 human
ankyrin repeats, map primarily to one patch on the surface of
the molecule (Figure 5). The experimentally observed binding
site, as defined by the three-dimensional structure complex of
p19-INK4D with CDK6 (4.5 Å atomic proximity), overlaps
with two-thirds of the residues in that patch, so the interpre-
tation of specificity residues as predicted binding site resi-
dues would have been more than 60% accurate in this case
(see Table 1 for general accuracy statistics for this prediction
mode).

Discussion
Algorithmic innovation
The CEO algorithm is motivated by the observation that func-
tional constraints in many cases give rise to a position-spe-
cific signature of amino acid residue types in protein
sequences. Given a protein family alignment, the algorithm
developed and tested here solves the challenging computa-
tional problem of detecting functional protein subfamilies
and, at the same time, identifying a functional residue signa-
ture. This signature is a set of key residues (sequence posi-
tions) that vary characteristically between subfamilies but are
Genome Biology 2007, 8:R232
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Table 1

Statistical significance of the presence of predicted specificity residues in known interfaces of protein-protein and protein-DNA/RNA 
complexes

PDBa Protein nameb Superfamilyc Alignmentd Se Ce Ligandf Ig S&Ig PS&I
g C&Ig PC&I

g (S+C)&Ig P(S+C)&I
g

1wq1R1

(1 to 166)
Ras P-loop containing 

nucleoside triphosphate 
hydrolases

Superfamily (human)
156/0.90/0.90

13 7 1wq1G, GDP, 
Mg, AF3

42 8 0.00434 5 0.0118 13 0.00007

1wq1G2

(718 to 1, 037)
P120Gap GTPase activation domain, 

GAP
Superfamily (human)
20/0.90/0.90

36 15 1wq1R, GDP, 
Mg, AF3

33 11 0.00024 6 0.00183 17 0

1fvuA3

(1 to 133)
Botrocetin
α-chain

C-type lectin-like Superfamily (swiss)
64/0.90/0.90

21 14 1fvuB 39 10 0.092 5 0.391 15 0.035

1fvuB4 

(401 to 525)
Botrocetin
β-chain

C-type lectin-like Superfamily (swiss)
136/0.90/0.90

29 8 1fvuA, Mg 39 13 0.077 3 0.507 16 0.0668

1a2kA5 

(10 to 121)
NTF2 NTF2-like Pfam 87/0.90/0.90 18 2 1a2kD, GDP, 

Mg
16 7 0.005 0 1 7 0.0085

1a2kD6 

(12 to 170)
RAN P-loop containing 

nucleoside triphosphate 
hydrolases

Superfamily (human)
170/0.90/0.90

17 7 1a2kA, GDP, 
Mg

27 6 0.0445 6 0.00009 12 0.00004

1i2mB7
 (24 to 417)

RCC1 RCC1/BLIP-II Superfamily (nrd90)
77/0.90/0.90

45 23 1i2mA 37 10 0.008 0 1 10 0.089

1i2mA8 

(12 to 170)
RAN P-loop containing 

nucleoside triphosphate 
hydrolases

Superfamily (human)
170/0.90/0.90

17 7 1i2mB 42 6 0.096 1 0.8 7 0.18

1rrpB9 

(17 to 150)
NUP358 PH domain-like Superfamily 

(nrd90+swiss)
59/0.90/0.90

31 3 1rrpA 51 16 0.075 2 0.323 18 0.032

1rrpA10 

(12 to 170)
RAN P-loop containing 

nucleoside triphosphate 
hydrolases

Superfamily (human)
170/0.90/0.90

17 7 1rrpB, GNP, 
Mg

53 3 0.964 6 0.0058 9 0.4

1blxB11 

(41 to 72)
P19INK4D Ankyrin repeat PFAM (human)

1043/0.95/0.95
7 3 1blxA 11 7 0 0 1 7 0

1blxB11 

(73 to 105)
P19INK4D Ankyrin repeat PFAM (human)

1043/0.95/0.95
7 3 1blxA 7 5 0 0 1 5 0

1blxB11 

(106 to 137)
P19INK4D Ankyrin repeat PFAM (human)

1043/0.95/0.95
7 3 1blxA 1 1 0.21 0 1 1 0.3

1blxA12

(5 to 309)
CDK6 Protein kinase-like (PK-

like)
Superfamily (human)
81/0.90/0.95

31 25 1blxB 24 4 0.19 0 1 4 0.19

2cciA13 

(4 to 286)
CDK2 Protein kinase-like (PK-

like)
Protein Kinase Resource 
390

20 22 1h27B1, 
1h27B2, TPO

78 13 0.0003 11 0.0173 24 0

2cciB114

(181 to 307)
Cyclin A Cyclin-like Pfam N-cyclin

379/0.95/0.90
17 16 2cciA, 2cciF, 

TPO
48 12 0.00356 7 0.396 19 0.0063

2cciB215 

(309 to 431)
Cyclin A Cyclin-like Pfam C-cyclin

238/95/90
14 3 2cciA, TPO 4 2 0.063 0 1 2 0.092

1n7tA21 

(14 to 98)
Erbin PDZ 
domain

PDZ domain PFAM (human)
237/0.90/0.90

10 3 peptide 17 6 0.0036 1 0.493 7 0.0032

1g4dA16 

(13 to 81)
Repressor 
protein C

Putative DNA-binding 
domain

Superfamily (nrd90)
244/0.90/0.95

12 0 DNA 25 9 0.0034 0 n/a 9 0.0034

1e3oC17 

(104 to 160)
Oct-1 Pou lambda repressor-like 

DNA-binding domains
Superfamily (swiss)
397/0.90/0.90

4 5 DNA 17 4 0.00603 3 0.151 7 0.0018

2up1A18 

(10 to 92)
Hnrnp A1, 
Up1

RNA-binding domain 
(RBD)

Superfamily (swiss)
552/0.90/1.0

16 2 DNA 21 10 0.001 0 1 10 0.00166

1ec6A19 

(4 to 90)
NOVA-2 Eukaryotic type KH-

domain (KH-domain type 
I)

Superfamily 
(nrd90+swiss) 
463/0.90/0.80

12 2 RNA 24 7 0.019 2 0.074 9 0.0019

1serB20 

(501 to 610)
Seryl tRNA 
synthetase

tRNA-binding arm Superfamily (swiss)
96/0.90/0.90

18 8 tRNA 19 7 0.022 2 0.412 9 0.0106

aProtein Data Bank (PDB) four character code followed by the chain identifier. bName of the protein chain in the title of PDB file. cName of the 
corresponding Structural Classification of Proteins (SCOP) Superfamily. dSource of the alignment (Superfamily or Protein Families [PFAM]); actual 
number of homologous sequences used in calculations, and the fractional values of the selection filters used to clean the alignments: sequence identity 
and gap. eS and C represent the number of specificity and conserved residues, respectively. fPDB identifiers of the molecular fragments and co-factors 
(excluding water) interacting with the corresponding protein. gI, S&I, C&I, (S+C)&I stand, respectively, for the total number of interface residues 
(selected under ≤4.5 Å atom-atom distance threshold between ligands and the protein), the number of specificity residues in the interface, the 
number of conserved residues in the interface, and the number of specificity and conserved residues in the interface. PS&I, PC&I, and P(S+C)&I are the 
corresponding probabilities of obtaining these numbers by chance. Low values of the probabilities indicate good agreement between prediction and 
observation. Significant P values (< 0.05) are in bold.
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The specificity residues in the complex of cell division protein kinase CDK2 and cyclin AFigure 4
The specificity residues in the complex of cell division protein kinase CDK2 and cyclin A. These predicted functional residues (red and blue) 
are predominantly on the front (left) rather than the back (right) of the functional complex and reflect a remarkable asymmetry indicative of protein-
protein interactions on the front face. We propose a novel hypothetical functional cavity on the surface of the complex (yellow circle). Other colors: 
green, bound peptide; orange, phosphorylation sites Y15 and T160; and pink, ATP. Coordinates from data set 2cci of the Protein Data Bank.
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conserved within each subfamily. The computational proce-
dure ranks the key residues by their contribution to the opti-
mal value of the contrast function, defined in terms of
combinatorial entropy. One can use this residue ranking to
prioritize further analysis and design experiments. The
method also provides a signal-to-background criterion that is
used to automatically classify all residues into three broad
classes: specificity residues, conserved residues, and 'neutral'
residues.

Alternative solution to a complicated problem
As far as we know, the first algorithmic approaches to the
problem of identification of specificity residues appeared in
the mid-1990's, from the groups of Sander [7] and Cohen [8].
(See Background, above, for references to additional
methods.) The current approach is sufficiently different from
previous approaches to offer an alternative solution to this
complicated problem. We cannot, however, claim superior
performance relative to other approaches, because no 'gold
standard' of experimentally determined specificity residues
exists against which to validate different methods. In prac-
tice, we see a number of advantages relative to our own first
approach, which was based on multivariate correspondence
analysis, especially the automated definition of the resulting

set of specificity residues and corresponding protein sub-
families, with granularity of subfamily division depending on
a single adjustable parameter.

Method refinement and advanced use
The algorithm performs well in practice and has been tested
in many protein families in consultation with domain experts.
In the future, one interesting refinement of the algorithm
would be a strict distinction between paralogous (same spe-
cies) and orthologous (different species) variation, provided
that enough sequences are available. We are also interested in
applying the method to signal enhancement in the derivation
of evolutionary trees by restricting phylogenetic analysis to
the subset of functionally constrained residues. Our earlier
work has demonstrated the way in which evolutionary trees of
this type appear less noisy and potentially reach further back
in evolutionary time [7]. In another interesting application,
joint specificity analysis across two protein families of poten-
tial interaction partners may lead to successful prediction of
matched residues sets that are involved in protein-protein
interactions [7,28]. The kernel of the CEO method may also
be applicable to the analysis of gene expression patterns, pat-
terns of gene copy number changes, and large-scale genotyp-
ing datasets. This may lead to the discovery of novel subtypes

The specificity residues of the ankyrin repeat familyFigure 5
The specificity residues of the ankyrin repeat family. The specificity residues (red) of p19-INK4D (CDN2D) are concentrated on one molecular face 
in the three-dimensional structure (Protein Data Bank: 1blx; complex with cyclin-dependent kinase [CDK6]). As predicted, many of these residues are in 
the binding site. Colors as in Figure 4. The specificity residues for p19 were calculated from the PFAM alignment of ankyrin repeats and then mapped onto 
each of the three ankyrin repeats (residues 41 to 72, 73 to 105, and 106 to 137) of P19; the cyan structure contains all three repeats.
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of tissues and samples, and to the derivation of characteristic
genetic and molecular patterns corresponding to different
developmental and disease phenotypes (Reva B, Antipin Y,
Sander C, unpublished).

Conclusion
Our results and examples demonstrate that the method can
be used to identify functionally important residues from
sequence information alone, without the use of three-dimen-
sional structure or experimental functional annotation. Mul-
tiple applications are possible. The ability to locate functional
determinants will be useful for the identification of residues
in active sites that determine binding specificity; for the pre-
diction of binding sites of protein complexes with other pro-
teins, NAs, or other biomolecules; for assessing the biologic
or medical significance of nonsynonymous single nucleotide
polymorphisms; and for planning sharply focused mutation
experiments to explore protein function. A particularly
valuable application may be the design of therapeutic com-
pounds that are highly specific to one (or a select few) of a
series of paralogous proteins.

The method is publicly accessible via a web server [20] hosted
in the Computational Biology Center of Memorial Sloan Ket-
tering Cancer Center.

Materials and methods
Definition of the algorithmic problem
On the intuitive level, the algorithmic problem is as follows.
First, divide a given multiple sequence alignment into sub-
families (also called sequence clusters) such that each
subfamily has a characteristic conservation signature at a
number of sequence positions. Then, optimize the informa-
tion in the subfamily division to achieve a reasonable compro-
mise between the number of proteins in a subfamily and the
number of characteristic residues positions used to distin-
guish the subfamilies from each other (the larger the number
of proteins per subfamily, the smaller the number of charac-
teristic residue positions, and vice versa; the two extremes of
'one sequence per subfamily' and 'all sequences in a single
subfamily' are uninformative).

To solve this problem, one must introduce a measure to com-
pare different distributions of sequences into subfamilies.
The simplest measure is additive for the columns in the align-
ment. This means that the distribution of residues in align-
ment columns within a subfamily is treated independently
(all possible permutations of residues in a column within a
subfamily are equivalent). The total number of permutations
in a column i of a subfamily k is given by a simple combinato-
rial formula [29]:

Here Nk is the number of sequences in subfamily k; Nα,i,k is the
number of residues of the type α in column i of subfamily k.
(Gaps are taken into account as a separate residue type; α =
21 corresponds to a gap.) The numerator is the total number
of permutations of Nk symbols and the product in the denom-
inator divides out the number of indistinguishable permuta-
tions for each residue type α.

We then use the statistical or combinatorial entropy [29]:

Where

is an additive measure (both in terms of alignment columns
and subfamilies) for comparing different distributions of res-
idues. The statistical entropy depends on subfamily size. The
entropy of the union of two subfamilies is always greater than
or equal to the sum of entropies of the individual subfamilies.
The entropy is equal to zero when all sequences are separated
into subfamilies of a single sequence each (maximal fragmen-
tation); the entropy is maximal when all sequences are united
in one family (maximal unification). The dependence of the
statistical entropy on subfamily sizes allows one to formulate
an optimization problem, namely find the distribution of
sequences into subfamilies that is maximally different from a
random distribution of sequences. Subfamilies of sequences
with many conserved residue patterns (which change across
subfamilies) will contribute the most to the optimal solution.

We define specificity residues (also called characteristic or
key residues) as residues that are conserved in a subfamily
but differ between subfamilies. Thus, one is challenged to
determine simultaneously the best division of the set of
sequences into subfamilies and the subset of residues that
best discriminates between these subfamilies. 'Best' is defined
in terms of a contrast function that aims to measure the
degree to which the specificity residues are distinctly different
in each subfamily. The value of the contrast function is mini-
mal for the best solution, with the result reported as a set of
specificity residues and corresponding sequence subfamilies.
The sections below describe the contrast function, the mean-
ing of 'best', the optimization algorithm, and a criterion for
selecting the top-ranked specificity residues.
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Definition of the contrast function in terms of 
combinatorial entropy
Suppose a multiple alignment is divided into subfamilies or
clusters of sequences. For each column i (i = 1, ..., L) of the
alignment, one can compute the combinatorial entropy Si, as

defined by Equation 3 (above). At one extreme, the column-
specific Si is zero if residues of one type populate this column

in each of the clusters, no matter whether this residue type is
the same in all clusters or differs between clusters (for exam-
ple, see the specificity residue columns in Figure 1). So Si = 0

for completely conserved residues or perfect specificity resi-
dues in column i. At the other extreme, for uniformly
distributed residues, Si has a maximal value given by the

background entropy 

Where  is the expected number of the residues of a type

α in the column i of the subfamily k, provided that all the res-
idues in the column are uniformly mixed (across column
boundaries), namely where

and Nα,i is the number of residues of type α in column i and N

is the total number of sequences (lines) in alignment.

(Because  can be noninteger numbers, ! is com-

puted using the relation X! = Γ(X + 1) [30].)

As the numerical measure of order over disorder, the entropy

difference ΔSi = Si -  between the observed and uniformly

mixed distribution, summed over all L columns of the
alignment:

is the contrast function to be minimized in the process of find-
ing the best decomposition into subfamilies. (Because ΔS0 is a
negative number, this means that the absolute value of ΔS0 is
maximized.)

The optimization algorithm
A straightforward solution to the optimization problem
would be to enumerate all possible partitionings of the set of
sequences into subfamilies, calculate the combinatorial
entropy difference (the contrast function) as in Equation 6,
and then choose the partitioning with the lowest value of ΔS0.
The only problem with this approach is that the number of
partitionings of N sequences into K clusters is astronomically
large for all but very small values of N and K. One therefore

needs an effective strategy for exploring a reasonable subset
of partitonings with the aim of finding one with a value of the
contrast function close to the global optimum. Often such
complex value landscapes are explored using stochastic algo-
rithms, which can be used in future implementations. In this
report we use a simple deterministic hierarchical clustering
method [19] with each clustering step guided by evaluation of
a guide function (Equation 7) for all alternative choices in that
step.

Starting from N clusters, each containing one sequence, in
each clustering step all pairs of clusters are considered as
merger candidates. The pair of clusters with the lowest value
of the guide function is merged into one cluster. The merger
steps are repeated until all sequences are in one cluster. At
this stage the result is a complete trajectory of merger steps,
which can be represented as a tree (not shown) and the task is
to choose the best partioning (tree level). The best partioning
is defined as the one with the minimal value of ΔS0, or the
maximal absolute value of the combinatiorial entropy differ-
ence between the actual and uniformly mixed ('random') dis-
tribution of residue types (Equation 6). The complexity of the
hierarchical clustering algorithm is of O(N**2 ln N), where N
is the number of sequences in the multiple alignment [31].

To explore different partitionings of sequences into sub-
families, the guide function includes a penalty term [32]. The
penalty term affects the clustering trajectory by favoring
mergers that result in smaller clusters over those that result
in larger clusters. To explore a larger space of alternative par-
tionings, we perform hierarchical clustering for different rel-
ative weights of the penalty term.

The guide function used to evaluate a particular clustering
step (potential merger of clusters k and m) is defined as
follows:

The first term, ΔSk,m, is the entropy difference computed for
the new cluster resulting from the merger of clusters k and m:

averaged over all L columns of the alignment.

The second term, , the penalty term, makes reference

to the combinatorial entropy of an ideal system of the same
size:

Where Nk and Nm are the number of sequences in the corre-
sponding clusters k and m.
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ΔS'k,m is the maximal possible value of the combinatorial
entropy (per column) after merging clusters of size Nk and
Nm. This second term simply captures the mere size contribu-
tion to the entropy and counteracts the tendency toward tra-
jectories with early emergence of dominant large clusters.
This tendency is due to the fact that the entropy of a larger
system is always greater than the sum of the entropy values of
its subsystems. Whatever the trajectories explored and what-
ever the devices used to guide the exploration of trajectory
space, the evaluation of best partitioning is exclusively based
on the combinatorial entropy difference of Equation 6.

Extreme values of the granularity parameter A in Equation 7
lead to radically different trajectories in clustering space.
When A is approximately 1, the main contribution to the
guide function of Equation 7 comes from the entropy differ-
ence due to sequence assignment to subfamilies; when A is
approximately 0, clustering is driven by cluster size and
mergers into smaller clusters are favorable. Changing the
granularity parameter A in the guide function over a reasona-
ble range of values and repeating hierarchical clustering
explores sufficiently diverse partitionings to reach an opti-
mum (Figure 6).

Note that although the guide function determines the details
of each clustering step, the final optimum is chosen as the
minimum of the combinatorial entropy difference (Equation
6) in the two-dimensional space of two variables, the cluster-
ing step l, and the penalty weight (1 - A). Typical optimal val-
ues of A in tests for diverse protein families range between 0.6
and 0.9.

Evidence for selective pressure and selection of 
specificity residues
Selective pressure in evolution results in patterns of conser-
vation across all subfamilies (globally conserved residues) or
in particular subfamilies (specificity residues). Examples of
conserved residues are active site residues in enzyme fami-
lies, and examples of specificity residues are residues lining
active sites configured to bind a particular substrate opti-
mally. The combinatorial entropy difference (Equation 6) is
greatest for alignment columns with specificity residues (by
definition; see above), but close to zero for 'nonspecific'
columns that do not discriminate between subfamilies. Such
'nonspecific' columns have globally conserved residues or
diverse nonspecific residue distributions. All other residue
columns have intermediate values of ΔS0. Thus, if we sort res-
idue columns by their entropy difference ΔS0 and plot the
resulting distribution (Figure 7), then we can typically iden-
tify two regions of particularly low and particularly high
entropy difference ΔS0. For typical alignments, one can visu-
ally identify the characteristic extreme regions of the entropy
as deviations from the linear central region.

We compared entropy plots for the original alignment with
the entropy plot for a randomized alignment (for details, see
Figure 7). The differences between the original and the rand-
omized entropy plots are drastic; there are no downturn and
upturn regions in the entropy plots for randomized align-
ments, and the absolute values of the entropy differences pro-
duced for the randomized alignments are several times
smaller than those of the original alignments.

Value landscape of the contrast function for a large protein family illustrating the optimization processFigure 6
Value landscape of the contrast function for a large protein family illustrating the optimization process. The algorithm searches for the 
minimal value of the contrast function (a combinatorial entropy difference [Equation 6]) by systematic exploration of different clusterings (horizontal axis) 
and of different values of the granularity parameter A (vertical axis). The overall minimum (circle in red area, lower right, A = 0.68, value of normalized 
contrast function -187) determines which protein is in which subfamily and which residues contribute most to the specificity patterns across the 
subfamilies. Here, the value landscape (color contours, values normalized by the number of residues [283 columns] in the alignment) was computed for a 
multiple alignment of 390 protein kinases [36] with 0.0 <A < 1.0. Note that the lowest entropy value at A = 1 is far from the overall minimum, indicating 
the utility of this parameter.
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To distinguish between globally conserved columns and other
'nonspecific' columns, we compute the combinatorial entropy
for each alignment column:

Where

is the average entropy per residue for the residue distribution
in alignment column i; fα,i is the fraction of residues of type α
in column i (α = 21 for gaps). We require �s�i < 0.03 and f21,i <
0.5 for globally conserved columns; mathematical details
related to Equations 10 and 11 are provided in Additional data
file 3.

Test application: prediction of contact residues and 
evaluation of accuracy
Specificity residues - and, of course, globally conserved resi-
dues - reflect functional constraints that operate in evolution.
They are an informational fossil record, most clearly visible
over large evolutionary intervals during which the
background distribution may vary considerably. The con-
straints can be of diverse origin, but it is plausible that all con-
straints can be traced to the requirements of intermolecular
interactions that are important for survival. Therefore, pre-
diction of specificity residues has broad applicability for the
identification of functional interactions and, as a conse-
quence, for ranking genetic variation, for planning mutation
experiments, or for the molecular design of specificity.

Here, we test one particular application of the identification
of specificity residues from multiple sequence alignments:
the prediction of intermolecular interfaces. We use known
three-dimensional structures of protein and DNA complexes
from the Protein Data Bank (PDB) as defining experimental
reality against which predictions are compared. A key limita-

Definition of specificity residues based on entropy valuesFigure 7
Definition of specificity residues based on entropy values. Combinatorial entropy difference as a function of residue position (in rank order) for 
the actual (solid line) and randomized (dashed line) multiple alignment of 390 protein kinase sequences [36]. Deviations from the linear fit to the entropy 
curve define the specificity region (yellow, about 20 residues, conserved in subfamilies but varying between subfamilies) and conserved region (blue, about 
50 residues, conserved across all subfamilies). The randomized alignment, obtained by independently shuffling residues in each column of the original 
alignment, serves as a point of reference. The shuffling does not affect the residue content in the columns, but it washes out the subfamily distinctions. The 
greater the differences between the native and the randomized entropy curves, the more reliable the corresponding prediction of specificity residues. To 
automate visual parsing of the extreme ends of the entropy plots, we perform a simple linear fit to the central region, covering a fraction P = 0.5 to 0.7 
(depending on the length of the alignment) of the sequence length (horizontal range). The line segment is centered at a point corresponding to the best 

linear fit. To identify the turning points at the extremes, we compute the root mean square deviation  from a simple line 

in the central region and record the points outside of the central region where the curve deviates by more than δp from the extrapolated line segment. In 
most cases, this simple procedure is in agreement with visual identification of downturn and upturn at the extremes. A reasonable subset of specificity 
residues (low end of entropy difference) and conserved residues (high end) can then be read off from the horizontal axis of the entropy plot.
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tion is that there may be several such interfaces in a given pro-
tein family and that the complexes in the PDB contain only a
subset of these. Nonetheless, it is instructive to see the extent
to which specificity residues, interpreted as predicted inter-
face residues, overlap with known intermolecular interfaces.
A large overlap indicates good prediction accuracy, but over-
prediction (false positives) is expected.

To assess whether an observed overlap between specificity
residues and intermolecular interface residues is statistically
significant, we estimate the expected size of overlap in a ran-
dom model, in which specificity residues are scattered ran-
domly in the protein and may or may not end up in the known
interface by chance. Suppose that the total number of protein
residues is N, the number of the known interface residues is
L, the number of the specificity residues is S, and the number
of the specificity residues in the interface is A. If the specificity
residues are randomly distributed, then what is the probabil-
ity of observing A or more of the S specificity residues in the
interface? For reasons of permutational degeneracy, one
must compute the total number of indistinguishable variants
of A distinct residues assigned to four sets of size K, M, J and
(N - K - M - J) residues:

Then, the probability to observe at random A or more of S
specificity residues among the L interface residues is given by
the following ratio:

Where the numerator represents the number of all possible
assignments for which the sets of size S and L have A or more
common residues; and the denominator represents the total
number of all possible assignments up to complete overlap of
the two sets. To correct for the Nc globally conserved residues,
which by definition are excluded from being identifies as spe-
cificity residues, we use N - Nc in Equation 12 in place of N.

Choice of multiple sequence alignments
The multiple sequence alignments are the only source of
information used in the predictions. Predictions are best for
accurate, nonredundant alignments of diverse sequences
without significant gap regions. In the interface prediction
tests, we used alignments from the 'Superfamily' [33] and
PFAM [34] collections, as well as the Homology-Derived
Secondary Structure of Proteins database [35] and curated
alignments of human protein kinases [36] from the Protein
Kinase Resource [37]. As needed, the original alignments
were prepared for specificity analysis by trimming deletions

and insertions across the whole alignment so as to preserve
the continuity of the main sequence (the sequence of a given
protein); removing redundant sequences (typically at the
level of about 95% identical residues for large alignments)
using the MView program [38,39]; and removing sequences
with many gaps (for example, with more than about 10% to
20% gaps compared with the main sequence). Finally, the
total number of sequences in the alignment must be large
(>100).

Abbreviations
CDK, cyclin-dependent kinase; CEO, combinatorial entropy
optimization; NA, nucleic acid; PDB, Protein Data Bank;
PFAM, Protein Families.
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