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Background
The successful completion of the Human Genome Project

has demonstrated that large-scale sequencing projects can

generate high-quality data at a reasonable cost. In addition

to the human genome, researchers have already sequenced

the genomes of a number of important model organisms that

are commonly used as test beds in studying human biology.

These are chimpanzee, mouse, rat, two puffer fish, two fruit

flies, two sea squirts, two roundworms, and baker’s yeast.

Currently, sequencing centers are close to completing work-

ing drafts of the genomes of chicken, dog, honey bee, sea

urchin and a set of four fungi, and variety of other genomes

are currently in the sequencing pipelines [1].

Many new genomes lack such rich experimental information

as the human genome and, therefore, their initial computa-

tional annotation is even more important as a starting point

for further research to uncover their biology. The more
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Abstract

Background: The ENCODE gene prediction workshop (EGASP) has been organized to evaluate
how well state-of-the-art automatic gene finding methods are able to reproduce the manual and
experimental gene annotation of the human genome. We have used Softberry gene finding software
to predict genes, pseudogenes and promoters in 44 selected ENCODE sequences representing
approximately 1% (30 Mb) of the human genome. Predictions of gene finding programs were
evaluated in terms of their ability to reproduce the ENCODE-HAVANA annotation.

Results: The Fgenesh++ gene prediction pipeline can identify 91% of coding nucleotides with a
specificity of 90%. Our automatic pseudogene finder (PSF program) found 90% of the manually
annotated pseudogenes and some new ones. The Fprom promoter prediction program identifies
80% of TATA promoters sequences with one false positive prediction per 2,000 base-pairs (bp)
and 50% of TATA-less promoters with one false positive prediction per 650 bp. It can be used to
identify transcription start sites upstream of annotated coding parts of genes found by gene
prediction software.

Conclusions: We review our software and underlying methods for identifying these three
important structural and functional genome components and discuss the accuracy of predictions,
recent advances and open problems in annotating genomic sequences. We have demonstrated that
our methods can be effectively used for initial automatic annotation of the eukaryotic genome.
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comprehensive and accurate are such computational

analyses, the less time-consuming and costly experimental

work will have to be done to determine all functional

elements in new genomes. Using computational predictions,

the scientific community can get at least partial knowledge

of a majority of real genes, because gene finding programs

usually correctly predict most exons of each gene.

The National Human Genome Research Institute (NHGRI)

has initiated the ENCODE project to discover all human

genome functional elements [2]. Its pilot phase is focused on

performance evaluation of different techniques of genome

annotation, including computational analysis, on a specified

30 Mb of human genome sequence. The 2005 ENCODE

gene prediction workshop (E-GASP ’05) [3] was organized to

evaluate how well automatic annotation methods are able to

reproduce manual annotations.

This paper describes computational methods for identifying

three important structural and functional genome compo-

nents: genes, pseudogenes and promoters. We used

Softberry gene finding software to predict genes, pseudo-

genes and promoters in 44 ENCODE sequences. We review

the performance of our software and underlying methods for

identifying these three important structural and functional

genome components, and discuss the accuracy of predic-

tions, recent advances and open problems in annotating

genomic sequences.

Results and discussion
Running Fgenesh++ on ENCODE sequences
Two sets of ENCODE sequences were prepared to run on the

gene prediction pipeline: 44 original ENCODE sequences,

and 44 ENCODE sequences with repeats masked by N. Files

with coordinates of repeats were downloaded from UCSC

web pages devoted to ENCODE project [4]. Low complexity

regions and simple repeats were not masked. All three steps

of the pipeline were run to annotate ENCODE sequences.

Step 1: mapping known mRNAs and selecting good mappings
A set of known human mRNA sequences was prepared from

RefSeq. Only RefSeq records with an accession prefix NM_

and a status key REVIEWED, that is, those corresponding to

curated and reviewed RefSeq mRNA records, were taken

into account. Known mRNAs were mapped by Est_map to

44 ENCODE sequences, and good mappings were

automatically selected by the pipeline. Areas corresponding

to mapped mRNAs were masked to exclude them from

subsequent gene prediction steps.

Step 2: mapping known proteins by Prot_map followed by protein
homology-based gene prediction by Fgenesh+
In this step, genes are predicted based on homology to

known proteins - as a rule, it improves quality of predicted

gene models. The NR (non-redundant) database of protein

sequences was used as a source of known proteins. First,

gene models were predicted using a combination of

Prot_map and Fgenesh+: Prot_map maps the NR database

to genomic sequences, and Fgenesh+ predicts more refined

gene models in regions corresponding to mapped proteins.

Then, predicted gene models were additionally filtered by a

script that analyses blast2 alignment between predicted

proteins and protein homologs. Only reliable models that

have a blast score >100 and coverage >80% for both

proteins and homologs were selected.

Step 3: ab initio gene prediction
In this step, special scripts prepared sequence fragments

that contained no gene models from steps 1 and 2. Then gene

models in these sequence fragments were predicted ab initio

by Fgenesh. Finally, gene predictions were converted from

the Fgenesh-like output format into GTF format, which is

required for submission of results to E-GASP ’05.

Results of Fgenesh++ application to ENCODE sequences
While doing calculations for EGASP, we annotated ENCODE

regions of the hg16 version (NCBI build 34). HAVANA

annotation, against which results were compared by EGASP,

was done on the hg17 version. Four ENCODE sequences

were changed upon transition from hg16 to hg17: ENm006,

ENm014, ENr131, ENr211. We re-annotated these four

sequences (after the EGASP deadline), and the results

presented here include this correction.

When calculating the prediction accuracy, only coding

sequence (CDS) blocks, from Softberry predictions as well as

from the HAVANA annotation, were taken into account. We

used the HAVANA annotation file ‘44regions_coding.gff’, the

version of 7 June 2005, which describes 1,078 transcripts with

CDS containing 673,501 nucleotides (the HAVANA annotation

was taken into account only within the range of ENCODE

sequences). The accuracy results are presented in Table 1. At

the nucleotide level we estimated sensitivity (Sn) as the

percentage of true coding bases that were correctly predicted

as coding, and specificity (Sp) as the percentage of bases

predicted to be in coding regions that were actually coding.

We observed Sn = 0.9 and Sp = 0.8 at the nucleotide level. To

measure accuracy at the CDS level, a non-redundant set of

CDS was considered. Sensitivity (Sn) at the CDS level is the

number of CDS predicted correctly divided by the number of

known CDS, and specificity (Sp) is the number of predicted

CDS that are correct divided by the number of all predicted

CDS. When calculating the accuracies, CDS orientation is

checked for known and predicted CDS. We observed Sn = 0.78

and Sp = 0.74 at the CDS level. More than 50% of predicted

coding bases were predicted with the help of homologous

proteins from the NR database, and approximately 35% were

predicted with the help of mRNAs from RefSeq.

Performance at the level of exact prediction of all CDS in a

gene is presented in Table 2. We can see that all CDSs were
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predicted exactly for 61% and 52% of genes computed with

mRNA and protein support, respectively. It is interesting to

note that the Sp for ab initio predictions, which comprise

approximately 13% of all predicted nucleotides, is very low.

If we exclude ab initio predictions and calculate an accuracy

only for mRNA and protein supported predictions, the

specificity rises up to 89.5% at the nucleotide level with just

a slight decrease in sensitivity (Table 3). On the other hand,

if we run just ab initio predictions for 44 ENCODE

sequences, we have Sn = 0.88 and Sp = 0.74 at the nucleo-

tide and CDS levels, respectively (Table 3). That is

significantly higher than the values for ab initio predictions

in Table 1. It might indicate that regions having neither

known mRNAs nor homology to known proteins can contain

genes that are missed in the HAVANA annotation. Another

interesting observation is that ab initio gene finding

demonstrates a good performance at the nucleotide level

(Sn = 0.88, Sp = 0.74), while it is relatively weak at the level

of exact CDS prediction, compared to mRNA- or protein-

supported predictions. Ab initio predictions seem to usually

contain one or several errors in a set of gene CDSs, as well as

tend to split one gene into two or merge neighbor genes

more often.

We did not use expressed sequence tag (EST) information

[5] in the generation of our predictions that resulted in the

smaller number of predicted alternative transcripts

compared with the HAVANA annotation. EST data also can

be used for extension of terminal coding exons to their 5’ or

3’ non-coding parts. Including EST data as well as inter-

genome similarity data can further improve the annotation

quality of our gene prediction pipeline.

Prediction of pseudogenes
We used Softberry gene PSF (pseudogene finding) to identify

pseudogenes in 44 ENCODE sequences. This program,

described in Materials and methods, recognizes pseudogene

sequences using some characteristics of genome alignment

regions with their parent proteins. Examples of two types of

http://genomebiology.com/2006/7/S1/S10 Genome Biology 2006, Volume 7, Supplement 1, Article S10 Solovyev et al. S10.3
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Table 1

Accuracy of coding exon prediction by Fgenesh++ pipeline

All genes, Sn/Sp (%) mRNA supported, Sp (%) Protein supported, Sp (%) Ab initio, Sp (%)

Nucleotide level 93.00/79.54 94.19 86.64 13.98

CDS EXACT 78.42/74.18 90.20 84.28 7.85

CDS 1EDGE 91.55/78.51 95.00 88.77 10.47

CDS OVERLAP 92.31/78.85 95.53 89.02 10.74

CDS is considered to be predicted correctly if: both CDS coordinates are predicted correctly (CDS EXACT); at least one CDS edge is predicted
correctly (CDS 1EDGE);or predicted CDS overlaps with known CDS (CDS OVERLAP).

Table 2

Exact prediction of all CDS in a gene

All genes mRNA supported Protein supported Ab initio

No. of nucleotides predicted (%) 787,505 (100%) 274,889 (34.91%) 417,202 (52.98%) 104,003 (13.21%)

No. of transcripts predicted (%) 820 (100%) 314 (38.29%) 298 (36.34%) 208 (25.37%)

No. of SoftBerry transcripts identical to 346 of 820 (42%) 191 of 314 (61%) 154 of 298 (52%) 1 of 208 (0.48%)
HAVANA transcripts (%)*

*Transcripts identical means that their CDS parts (including protein coding exons and coding parts of 5’ and 3’ exons) are identical; the percentage of
SoftBerry transcripts is relative to the number of Softberry transcripts predicted in the corresponding category: mRNA supported, protein supported or
ab initio.

Table 3

Performance data for annotating 44 ENCODE sequences by
either mRNA and protein supported or ab initio predictions

mRNA + protein 
supported, Sn/Sp (%) Ab initio, Sn/Sp (%)

Nucleotide level 91.14/89.54 88.44/74.46

CDS EXACT 77.19/86.48 67.54/64.22

CDS OVERLAP 90.60/91.4 85.00/71.71

SoftBerry transcripts identical 56.37% (of 612) 14.75% (of 590)
to HAVANA transcripts*

*Transcripts identical means that their CDS parts (including protein
coding exons and coding parts of 5’ and 3’ exons) are identical; the
percentage of SoftBerry transcripts is relative to the number of Softberry
transcripts predicted in the corresponding category: mRNA supported,
protein supported or ab initio.



pseudogenes, processed and non-processed, and their

characteristics are presented in Figures 1 and 2.

We presented to EGASP two sets of pseudogenes found in

ENCODE sequences (hg16 release). Four ENCODE sequences

were changed upon transition from hg16 to hg17 (ENm006,

ENm014, ENr131, ENr211) and the results presented here

exclude them. One set, which we called ‘reliable set’,

contained 56 processed pseudogenes, 93% of which almost

completely overlap with 52 of 145 HAVANA pseudogenes.

Overall, 80 (59%) of 135 pseudogenes from two sets

overlapped 82 (57%) of 145 HAVANA pseudogenes.

We improved our PSF automatic pseudogene predictor and

reran it. As a result, we found 181 potential pseudogenes, 118

of which had a significant overlap with the annotated 145

HAVANA pseudogenes. Of these 118 pseudogenes, 68 (58%)

had only one exon and could be classified as processed

pseudogenes: 58 had the parent gene with more than one

exon and 7 others had polyA tail. Of the 118 pseudogenes,

106 (90%) had one or more defects in their open reading

frames (ORFs). Among the remaining 12, there are 4 pseudo-

genes with a single exon (while their parents have 4 or more

exons), 4 contain both polyA signal and polyA tract, 4 have

only a polyA tract, and 2 have only high Ka/Ks ratios (0.59

and 1.04).

PSF did not find 27 HAVANA annotated pseudogenes. Three

of them were not reported because they are located in

introns of larger pseudogenes (AC006326.4-001,

AC006326.2-001 and AL162151.3-001). The other 10

represent fragments of some human proteins and are

missing stop codons or frameshifts. We did not include

pseudogenes corresponding to fragments of proteins in our

pseudogene set. The remaining 14 HAVANA pseudogenes

were not found, probably because of some limitation of our

program and the processed datasets. Some of them might

have parent genes that were absent from our initial protein

set compiled by the Fgenesh++ gene prediction pipeline.

Some of the 63 pseudogenes that have been predicted by

PSF but were absent from the HAVANA set might have

appeared because of imperfect predictions by the pipeline,

which produced frameshifts when a pseudogene candidate

and its parent gene were aligned. However, some of these

‘over-predicted’ pseudogenes might be actual pseudogenes

missed by the HAVANA annotators (see Figure 3 for such an

example).

To summarize, the PSF pseudogene prediction program

found 81% of annotated pseudogenes. Its quality can further

be improved by improving the quality of parent gene-protein

sets.

Pol-II promoter recognition
Since each eukaryotic polymerase II promoter has a unique

selection and arrangement of regulatory elements, which

provide unique instructions for gene expression, the

computational identification of promoters in genomic DNA

is an extremely difficult problem [6]. This task is two-fold:

finding the exact position of a transcription start site within

a long upstream region of a typical eukaryotic gene; and

avoiding false positive predictions within exon and intron

sequences. To resolve the second problem, some authors of

promoter finding software include special procedures for

recognition of coding parts of gene blocks inside promoter

prediction programs [7,8]. However, gene prediction

software such as Genscan [9] or Fgenesh [6,10] provides

much better accuracy in the identification of coding exons

and introns than any such procedures. We think that the

best promoter identification strategy is to combine

prediction of all gene components in one program. While

trying to create such a program, we decided to use some
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Figure 1
Example of a processed pseudogene. Alignment versus protein encoded by the parent gene. Identity, 83.7%; coverage of protein sequence, 93.9%;
number of internal stop codons, 2; number of frameshifts, 1; Ka/Ks, 0.484.

[DD] Sequence: 11931(1), S: 21.993, L:99 C14000887 chr14 2 exon (s) 75425067 - 75425530 ORF: 1 - 297
98 aa, chain + ## BY PROTMAP: gi|18597373|ref|XP_090893.1| similar to 60S acidic ribosomal protein

          1  58970658  58970665  58970695  58970725  58970755  58970785  58970815  58970835 
          nnnnnnn(..)ccgcgcc?[MASVSELACIY*ALILHDDEVTVTEDKINALIKAAGVNIEPF*PGLFAKAtggtcNVNIGSLICSVEAGG 
          .......(..).......  |||7|||||||0||||||5||||||0||2|||||||||7|||0|||||||.....||||0||||5|0||| 
          -------(..)-------  MASISELACIYSALILHDNEVTVTEYKIKALIKAAGVNVEPFRPGLFAKAp---aNVNIRSLICNVGAGG 
          1         1         1        11        21        31        41        51        58 

   58970865  58970889  58970919  58970947  58970956  63811645 
          AAP--AEEKKVEAKKEESEDGDDDMRFGLtttcactga]acctctt(..)nnnnnnn 
          0||..|||||5||||||0||2||||0|||......... .......(..)....... 
          PAPaaAEEKKMEAKKEEFEDSDDDMGFGLsd*------ -------(..)------- 
         68        78        88        98       100       100 



intermediate variant that includes the following steps:

computation of gene annotation using a gene prediction

pipeline, and promoter prediction within 5’ regions up-

stream of the annotated coding regions of predicted genes.

We extracted 5’ regions (upstream from the first CDS) from

predicted genes and ran Fprom on these sequences. For each

region, we selected one predicted promoter closest to the CDS

and presented it in our results. There are no data on the exact

location of transcription start sites for most of genes. But 5’

ends of ‘full length’ mRNAs from Refseq could, on average, be

considered pretty close to actual transcription start sites,

whereas their 3’ ends are often incomplete. With this in mind,

we estimated the accuracy of promoter prediction on 251

genes derived from known Refseq mRNAs with >40 bp in

their 5’ non-coding sequence. Promoters were predicted for

90% (226) of them. Among them, there were 95 TATA+ and

131 TATA- promoters. Figure 4 shows how close predicted

promoters are to starts of corresponding mRNAs.

In Figure 5, we see a sharp peak showing that a substantial

fraction of predicted promoters is as close as several bases to

mRNA starts. The ability to find many promoters with such

precision is a remarkable characteristic of our program that

distinguishes it from many promoter finding programs that

usually assign promoter within a 200 to 1,000 bp range

around actual Transcription Start Site (TSS). We should take

into account the occurrence of multiple transcription start

sites, especially in genes with TATA-less promoters; there-

fore, some scattering of the predictions around the

annotated TSS should not be unusual. Some predictions that

deviate significantly from known 5’ ends of mRNAs could

belong to alternative promoters, which are not unusual for

human genes. The histogram (Figure 5) might serve as an

approximate criterion of program quality and can be used to

compare results produced by different approaches. The ideal

test should be done with experimentally verified trans-

cription start sites, but accounting for multiple TSSs will

present complications even in such a setting.
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Figure 2
Example of a pseudogene that has not been processed. Alignment versus protein encoded by the parent gene. Identity, 86.4%; coverage of protein
sequence, 97.6%; number of internal stop codons, 3; number of frameshifts, 4; Ka/Ks, 0.594.

[RD] Sequence: 35522(1), S: 50.463, L:423 C7000711 chr7 3 exon (s) 51197888 - 51195897 ORF: 1 - 1269
422 aa, chain - ## BY PROTMAP: gi|27481026|ref|XP_209794.1| similar to hypothetical protein DKFZp43

          1  63659329  63659336  63659366  63659385  63659392  63659422  63659452  63659472 
          nnnnnnn(..)tacagtc?[PTSASQQILHAQcatctac(..)gtggaccPQAKLPTFQQLLHTQLPPASGLFRPatggggcSFLTTAFP 
          .......(..).......  |2||||50||||.......(..).......||5|0|2|50|022||0||||||||.......|||||||| 
          -------(..)-----mg  PASASQRTLHAQlala---(..)---slrpPQSKAPAFRPLRQAQLLPASGLFRP------sSFLTTAFP 
          1         1         3        13        19        23        33        43        48 

   63659498  63659528  63659558  63659588  63659618  63659648  63659678  63659708  63659738 
          GPVFPFRRPLRAQNLLKSASPDPLAPSGRSLRAQLFFLVGSPGPIPASQQPLWTQCLPISWRPWSAHSFLKPSSPGPGQASRWPLQDELL 
          ||7|||5|||5||||||0|||0|||||||0|5||||2022||||0||||||||||||||||||||||||||||||||||||||||||6|| 
          GPIFPFQRPLQAQNLLKLASPGPLAPSGRPLQAQLFLPAASPGPTPASQQPLWTQCLPISWRPWSAHSFLKPSSPGPGQASRWPLQDQLL 
         57        67        77        87        97       107       117       127       137 

   63659768  63659798  63659828  63659858  63659888  63659907  63659952  63659971  63660001 
          PSDGISRPQMVSGRWAPPRQGWASRRLPQAQVVLKSGSPGPASQQ]gtaagca(..)tttgtag[APNFLQPSSEGPPPASWWPVQF*HW 
          ||||7||||||||||||||02|||||00||||||||2|||||||| .......(..)....... |||||||||2||||||0||||000| 
          PSDGVSRPQMVSGRWAPPRPAWASRRPLQAQVVLKSASPGPASQQ -------(..)------- APNFLQPSSSGPPPASRWPVQAQLW 
        147       157       167       177       187       192       192       197       207 

   63660031  63660061  63660089  63660119  63660147  63662724  63662731  63662748  63662766 
          LENSLCRPRPCLPgGPLQAQLLPPRRPPGAKSLPASQQPgc]gtgcggc(..)tctccag[gPDSGccgactccagVPTTSLDSAPAQLP 
          |||||||||0|||.|||||||0||5|||||||||||5||.. .......(..)....... .||||..........5|00|||||||||| 
          LENSLCRPRSCLP-GPLQAQLSPPQRPPGAKSLPASRQP-- -------(..)------- aPDSG----------LPIRSLDSAPAQLP 
        217       227       236       246       255       255       255       260       264 

   63662796  63662826  63662856  63662884  63662914  63662944  63662974  63663004  63663034 
          AALVGPQLP*AKLPRPSSGLAVASPGSAPgALR*HLQAPNGLRSVGSSRPSLGLPAASAGPNRPEVSLSRLSSSLPAASAGPSRPQVGLE
          |||||||||0||||||||||2||||||||.|||0||||||||||||||||||||||||||||||||2|||0||2|||||||0|||||||| 
          AALVGPQLPEAKLPRPSSGLTVASPGSAP-ALRRHLQAPNGLRSVGSSRPSLGLPAASAGPNRPEVGLSRPSSGLPAASAGLSRPQVGLE 
        274       284       294       303       313       323       333       343       353 

   63663064  63663094  63663124  63663154  63663184  63663214  63663244  63811645 
          VGLEEQQVGLPGPSSVLSTASPGAKLPRVSLSRPSSSCLPVASFSPAQLMALGGLRRPCF*]cttttgg(..)nnnnnnn 
          |||||0||||||||||||2|||||||||||||||||||||||||2||||||||2|0||0|| .......(..)....... 
          VGLEELQVGLPGPSSVLSAASPGAKLPRVSLSRPSSSCLPVASFGPAQLMALGSLPRPRF* -------(..)------- 
        363       373       383       393       403       413       423       424 



Conclusions
In this paper we present an implementation of three

computational pipelines (Fgenesh++, PSF and Fprom) for

automatic identification of protein coding genes, pseudo-

genes and promoters in eukaryotic genomes. These pipe-

lines, applied to analysis of 44 selected ENCODE sequences,

demonstrated an ability to reproduce, to a significant extent,

the manual ENCODE-HAVANA annotation. Fgenesh++

gene prediction pipeline can identify 91% of coding nucleo-

tides with a specificity of 90%. The automatic pseudogene

finder (PSF program) found 90% of manually annotated

pseudogenes and some new ones. Fprom promoter predic-

tion program identifies 80% of TATA promoter sequences

with one false positive prediction per 2,000 base pairs (bp),

and 50% of TATA-less promoters with one false positive per

650 bp. It can be used to identify transcription start sites

upstream of annotated coding parts of genes found by gene

prediction software. Thus, the pipelines could be used for

easy and fast production of reasonably accurate first pass

annotation of a new genome. The described software and its

components can be run on computers with Unix operation

systems, as well as with Windows as part of the Molquest

program package.

Materials and methods
Fgenesh++ gene identification pipeline
About 41% of sequenced human DNA consists of different

kinds of repeats. Only approximately 3% of the genome

sequence contains protein coding exon sequences. Gene

sizes can be as large as hundreds of megabases in verte-

brates, especially in primates. The average size of an exon is

S10.6 Genome Biology 2006, Volume 7, Supplement 1, Article S10 Solovyev et al. http://genomebiology.com/2006/7/S1/S10
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Figure 3
Pseudogene in ENm004 sequence, absent from HAVANA annotation. The alignment has a stop codon close to position 151636.

[DD] Sequence: 622(1), S: 27.323, L:153 C6000781 chr6 6 exon (s) 840966 - 845318 ORF: 1 - 459  152 aa,
chain + ## gi|6755368|ref|NP_035426.1| ribosomal protein S18 [Mus musculus] gi|11968182|ref ## 152 

     1    151509    151516    151546    151576    151606    151636    151664    151694    151724 
     caaannn(..)tcctgct?[MSLVIPEKFQRILRILNSNINGQQKIGFAITAIKDVG*QYTHaVLRKADVDLTKWAGELTEDEMERVMTIM
     .......(..).......  ||||||||||2|||7||5||5|55||2|||||||0||05|2|.||||||7||||0||||||||5|||5||| 
     -------(..)-------  MSLVIPEKFQHILRVLNTNIDGRRKIAFAITAIKGVGRRYAHvVLRKADIDLTKRAGELTEDEVERVITIM 
     1         1         1        11        21        31        41        51        61        71 

        151754    151784    151814    151844    151874    151904    151934    151964
    QNPCQYKIPDWFLNRRKDVKDGKYSQVLASGLDKKLRADVERLKKIQAHRGPHHFWGLRVRGQHTKTTGHHGCTMGGSKKK*]gtctgca(..)aaaataa 
    |||0|||||||||||5|||||||||||||5|||2|||0|5||||||5||||02||||||||||||||||22|0|5|0||||| .......(..)....... 
    QNPRQYKIPDWFLNRQKDVKDGKYSQVLANGLDNKLREDLERLKKIRAHRGLRHFWGLRVRGQHTKTTGRRGRTVGVSKKK* -------(..)------- 
            81        91       101       111       121       131       141       151

Figure 4
A distribution of predicted TSS relative to the start of mRNA sequences. Figures on the x-axis are centers of 100 bp intervals, for example, mark 50
corresponds to [+1,+100] interval.
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about 190 bp, which is close to the DNA length associated

with a nucleosome particle. Human exons are significantly

smaller than genes. There are many exons as short as several

bases. Moreover, the same DNA sequences may code several

different proteins due to alternative promoters or termina-

tors and alternative splicing. These processes make compu-

tational gene finding a rather nontrivial task.

Hidden Markov model based eukaryotic gene identification
Exons, introns, 5’ and 3’ UTRs regions are different compo-

nents (states) of gene structure that occupy k non-

overlapping subsequences of a sequence. There are 35 states

in a eukaryotic gene model, considering direct and reverse

chains as possible gene location. A gene structure can be

considered as an ordered set of state/sub-sequence pairs, φ =

{(q1,x1),(q2,x2), … ,(qk,xk)}, called a parse. A parse φ is con-

sidered a predicted gene structure if probability P(X, φ) of

generating X according to φ is maximal over all possible

parses, or when a score is optimal in some meaningful sense.

This probability can be computed using statistical

parameters describing a particular state and generated from

a training set of known gene structures and sequences.

Successive states of this hidden Markov model (HMM) are

generated according to the Markov process with inclusion of

explicit state duration density. A simple technique based on

a dynamic programming method for finding an optimal

parse, or the best sequence of states, is the Viterbi algorithm,

which requires o(N2D2L) calculations, where N is the

number of states, D is the longest duration and L is the

sequence length [11]. A helpful technique to reduce the

number of states and simplify computations by modeling

non-coding state length with a geometrical distribution to

predict multiple genes was initially implemented in the

Genscan algorithm [9]. Several other successful HMM-based

gene finding programs, such as HMMgene [12], a variant of

Genie [13] and GeneMark [14], and Fgenesh [6,10] have

been developed. Fgenesh (Find GENES using Hmm) is

currently one of the most accurate and the fastest program.

The run time of Fgenesh is practically linear, and the current

version has no practical limit on length of analyzed

sequence. Predicting genes in 34.5 Mb of human chromo-

some 22 sequence takes about 1.5 minutes with a EV6 Dec-

alpha processor and is even faster on modern Linux

computers.

An ab initio gene prediction program such as Fgenesh

predicts about 93% of all coding exon bases and exactly

predicts about 80% of human exons when applied to single

gene sequences (Table 4). Analysis of multi-gene, long

genomic sequences is a more complicated task. A program

can erroneously join neighboring genes or split a gene into

two or more. To improve automatic annotation accuracy, we
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Figure 5
A distribution of predicted TSS near the start of mRNA sequences. Figures on the x-axis are centers of 10 bp intervals, for example, mark 5 corresponds
to [+1,+10] interval.
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developed a pipeline Fgenesh++, which can take into

account available supporting data such as mRNA or

homologous protein sequences.

Components of the Fgenesh++ gene prediction pipeline
Fgenesh++ is a pipeline for automatic prediction of genes in

eukaryotic genomes without human modification of results.

It uses the following sequence analysis software.

Fgenesh
Fgenesh is a HMM-based ab initio gene prediction program.

Fgenesh+
Fgenesh+ is a gene prediction program that uses homolo-

gous protein sequence to improve performance.

Est_map
Est_map is a program for mapping known mRNAs/ESTs to

a genome, producing genome alignment with splice site

identification.

Prot_map
Prot_map is a program for mapping a protein database to

genomic sequence.

Est_map
Est_map can map a set of mRNAs/ESTs to a chromosome

sequence. For example, 11,000 full-length mRNA sequences

from a NCBI reference set were mapped to a 52 Mb

unmasked Y chromosome fragment in approximately 20

minutes. Est_map takes into account statistical features of

splice sites for more accurate mapping.

Prot_map
The Prot_map program maps a set of protein sequences to a

genomic sequence, producing gene structures and corres-

ponding alignments of coding exons with similar or identical

protein queries. Prot_map uses a genomic sequence and a

set of protein sequences as its input data, and reconstructs

gene structure based on protein identity or homology, in

contrast to a set of unordered alignment fragments

generated by Blast [15]. The program is very fast (Table 4),

produces gene structures with similar accuracy to those of

the relatively slow GeneWise program [16] and does not

require knowledge of protein genomic location. The accuracy

of gene reconstruction can further be significantly improved

using the Fgenesh+ program on the output of Prot_map,

that is, a fragment of genomic sequence and the protein

sequence mapped to it.

Comparison of accuracy of gene prediction by ab initio Fgenesh

and gene prediction with protein support by Fgenesh+ or

GeneWise and Prot_map was performed on a large set of

human genes with homologous proteins from mouse or

Drosophila. We can see that Fgenesh+ shows the best

performance with mouse proteins (Table 5). With Drosophila

proteins, ab initio prediction by Fgenesh works better than

GeneWise for all ranges of similarity, and Fgenesh+ is the best

predictor if similarity is higher than 60% (Table 6).
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Table 4

Speed of gene prediction programs

Fgenesh+ Prot_map GeneWise

88 sequences of genes <20 kb 1 minute 1 minute 90 minutes

8 sequences of genes >400 kb 1 minute 1 minute 1,200 minutes

All values are approximate.

Table 5

Accuracy of human gene prediction using similar mouse proteins

Sn ex Sno ex Sp ex Sn nuc Sp nuc CC %CG

Similarity of mouse protein >90% in 921 sequences

Fgenesh 86.2 91.7 88.6 93.9 93.4 0.9334 34

Genwise 93.9 97.6 95.9 99.0 99.6 0.9926 66

Fgenesh+ 97.3 98.9 98.0 99.1 99.6 0.9936 81

Prot_map 95.9 98.3 96.9 99.1 99.5 0.9924 73

80% < similarity of mouse protein <90% in 1,441 sequences

Fgenesh 85.8 92.1 87.7 94.0 93.4 0.9334 30

Genewise 92.6 98.0 94.1 98.9 99.5 0.9912 58

Fgenesh+ 96.8 99.0 97.2 99.1 99.5 0.9929 77

Prot_map 93.9 98.5 94.1 98.9 99.3 0.9898 60

Sn_ex, sensitivity on the exon level (exact exon predictions); Sno_ex, sensitivity with exon overlap; Sp_ex, specificity on the exon level; Sn_nuc,
sensitivity, nucleotides; Sp_nuc, specificity, nucleotides; CC, correlation coefficient; %CG, percent of genes predicted completely correctly (no missing
and no extra exons, and all exon boundaries are predicted exactly correctly).



Besides the programs listed above, the Fgenesh++ package

also includes files with gene finding parameters for specific

genomes, configuration files for programs and a number of

Perl scripts. In addition, the Fgenesh++ package uses the

following public software and data: BLAST executables

blastall and bl2seq [15], the NCBI NR database (non-

redundant protein database) formatted for BLAST, and the

NCBI RefSeq database [17].

Fgenesh++ requires genome sequences and, optionally, the

same sequences with repeats masked by N. Sequences can be

either complete chromosomes or their fragments, such as

scaffolds, contigs, and so on. When preparing repeat-masked

sequences, we recommend not masking low complexity

regions and simple repeats, as they can be parts of coding

sequences.

Three main steps of the Fgenesh++ pipeline
There are three main steps in running the pipeline: step 1

involves mapping known mRNAs/cDNAs (for example, from

RefSeq) to genomic sequences; step 2 involves the prediction

of genes based on homology to known proteins (for example,

from NR); and step 3 involves ab initio gene prediction in

regions having neither mapped mRNAs nor genes predicted

based on protein homology.

A user can skip some steps while running the pipeline. For

example, to take a first very cursory look at gene models, a

user can skip the first two steps and go right to ab initio gene

predictions. Generally, step 1 (mapping known mRNAs) can

be skipped in the following cases: if there is no represen-

tative collection of known mRNAs for a query genome, that

is, RefSeq does not contain enough entries and the user does

not have their own collection; and if genomic sequences are

fragmented, so that individual mRNAs are likely to be

broken among several genomic fragments. The output of the

pipeline consists of predicted gene structures and

corresponding proteins. It also indicates whether particular

gene structure was assigned based on mRNA mapping,

protein homology, or ab initio gene prediction.

The pseudogene annotation program (PSF)
Our method of searching for pseudogenes can work with two

types of initial information available. One type contains

exon-intron structures of annotated genes and their protein

sequences for a genome under analysis. To get such informa-

tion, we can execute a gene finding pipeline, such as

Fgenesh++. In this case, we run Prot_map program with a

set of protein sequences to find possible significant genome-

protein alignments that do not correspond to a location of a

gene for mapped protein. Another type of initial data can be

a set of known proteins for a given organism. Having such

data, we can restore gene structure of a given protein using

the Prot_map program. For each mapped protein, we can

select the best scoring mapping and the computed exon-

intron structure as the ‘parent’ gene structure of this protein.

If the alignment of a protein with its own parent has obvious

internal stop codons or frameshifts, this locus could be

included in the list of potential pseudogenes, but we need to

keep in mind more trivial explanations, such as sequencing

errors. Such loci cannot be analyzed on the basis of their

Ka/Ks or checked for intron losses. In any case, for each of

two cases we have a set of protein sequences, their parent

gene structures, and protein-genome alignments for further

analysis to identify pseudogenes.

Selecting potential pseudogenes
Using genome-protein alignments generated by the

Prot_map program, the PSF program produces a list of

alignments possessing the following properties for each

protein. First, the identity in blocks of alignment exceeds a

certain value. Second, a substantial portion of protein
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Table 6

Accuracy of gene prediction using similar Drosophila proteins

Sn ex Sno ex Sp ex Sn nuc Sp nuc CC %CG

Similarity of Drosophila protein >80% in 66 sequences

Fgenesh 90.5 93.8 95.1 97.9 96.9 0.950 55

Genewise 79.3 83.9 86.8 97.3 99.5 0.985 23

Fgenesh+ 95.1 97.8 97.0 98.9 99.5 0.9914 70

Prot_map 86.4 95.3 88.1 97.6 99.0 0.982 41

60% < similarity of Drosophila protein <80% in 290 sequences

Fgenesh 88.6 93.1 90.8 94.9 93.8 0.941 34

Genewise 76.3 91.8 82.9 92.8 99.4 0.959 7

Fgenesh+ 89.2 94.4 92.7 95.5 98.5 0.968 44

Prot_map 75.1 92.5 74.9 91.4 97.5 0.941 10



sequence is included in the alignment. Third, the genomic

location of alignment differs from that of parent gene. And

fourth, at least one of four events is observed: damage to an

ORF - there is one or more frameshifts or internal stop

codons; a single exon with a close poly-A site – the poly-A

site is too close to a 3’ end of an alignment, while the

carboxyl terminus of the protein sequence is aligned to the

last amino acid, and a single exon covers 95% of protein

sequence; loss of introns - protein coverage by alignment is

at least 95%, and the number of exons is fewer than in the

parent gene by a certain number; or the protein sequence is

not preserved - the ratio of non-synonymous to synonymous

replacements exceeds a certain threshold (Ka/Ks > 0.5).

Ka/Ks is calculated relative to the parent gene by the method

presented by Nei and Gojobori [18].

Selecting a reliable part of alignment
The procedures described apply to a so-called reliable part of

alignment. The necessity of introducing this concept appears

due to imperfections in aligning a protein against a

chromosome sequence. There are complex cases where

accurate alignment cannot be produced, such as very short (1

to 3 bp) exons separated by a large intron, or because of

some errors in the protein or genome draft sequence that

prevent perfect alignment. For instance, if a protein as a

whole is well aligned to a chromosome, but about 20 amino

acids on its 5’ end cannot be aligned in one continuous block,

Prot_map will most likely try to align these 20 amino acids

by scattering them along several short blocks. Most likely,

these blocks will not have any relation to a gene or a

pseudogene. Therefore, when searching for pseudogenes, we

remove short insignificant trailer blocks. The rest of the

alignment is considered its reliable part. To find the reliable

part of an alignment, we evaluate the quality of the align-

ment blocks (exons). For each exon found by Prot_map, we

calculate the number of aligned amino acids (M), the

number of non-aligned amino acids (AI) and nucleotides

(NI) within an exon, and the number of aligned amino acids

(AO) and nucleotides (NO) located outside of the exon

region to the left and to the right side of an exon. Also, we

compute the ‘correctness’ of splice site conserved dinucleo-

tides (SSC) that flank an exon. If an exon is an amino or

carboxy-terminal one, we also compute the ‘correctness’ of

corresponding start or stop codons. The length of an intron (IL)

that separates an exon from its nearest exon in the direction of

the longest mapped exon is also computed. The empirical

‘quality’ measure is defined by the following formula:

Q = M - PAI(AI) - PNI(NI) - PAO(AO) - PNO(NO) + BSSC(SSC) - PIL(IL)

where PAI, PNI, PAO and PNO are the penalties for the internal

and external unaligned amino acids and nucleotides, BSSC is

a bonus for the correctness of splice sites or start/stop

codons, and PIL is the penalty for high intron length. The

reliable part of the alignment consists of a set of neighboring

alignment exons that each have Q > 5.

After Prot_map mapping, many loci on a chromosome

include alignments with more than one protein. In such

cases, we choose only one most reliable alignment, based on

a sum of included exon’s qualities.

FPROM Pol-II promoter recognition program
The gene annotation pipeline was described above. Here we

present our promoter recognition program Fprom (find

promoter), which is based on further development of an

algorithm realized earlier in the TSSW/TSSG programs

[6,19]. It was assumed that TATA+ and TATA- promoters

have very different sequence features, so these groups were

analyzed separately. Potential TATA+ promoter sequences

were selected according to the score value of a Bucher TATA

box weight matrix [20], with the threshold close to the

minimal score value for the TATA+ promoters in the

learning set. Selected significant characteristics of the

TATA+ promoter group found by discriminant analysis are

presented in Table 7.

For each position on a given sequence, the Fprom program

evaluates the occurrence of TSS using two linear discrimi-

nant functions (separate for TATA+ and TATA- promoters)

with characteristics computed in the [-200, +50] region

around a given position. If it finds a TATA-box (using a

TATA-box weight matrix) in the region, then it computes the

value of Linear Discriminant Function (LDF) for TATA+

S10.10 Genome Biology 2006, Volume 7, Supplement 1, Article S10 Solovyev et al. http://genomebiology.com/2006/7/S1/S10

Genome Biology 2006, 7(Suppl 1):S10

Table 7

Characteristics of promoter sequences used by Fprom for
identification of TATA+ promoters

Characteristics D2 for TATA+ promoters

Hexaplets in region [-200, -45] 3.1

Hexaplets in region [1, 40] 4.0

TATA box score in region [-45, -25] 2.3

TATA box average score in region [-45, -25] 2.2

Triplets in region [-200, -45] 2.2

Triplets in region [0, 40] 2.9

Position triplet matrix in region [-50, +30] 7.0

Protein-induced deformability 2.9

CpG content 3.0

Similarity in region [-200, -100] 1.0

Motif density in region [-200, -100] 4.5

Protein-DNA-twist 0.3

Motif density in region [-100, -1] (reverse chain) 2.3

Total Mahalonobis distance 14.8

Number of promoters/non-promoters 366/18600

D2 is the Mahalonobis distance [26] showing the strength of
characteristics to separate promoter from non-promoter test set
sequences.



promoters, otherwise the value of LDF for TATA-less

promoters. Only one prediction with the highest LDF score

and that is greater then a certain threshold is selected within

any 300 bp region.

Examples of Fprom predictions are presented in Table 8.

The distances between true TSSs and correctly predicted

ones varied from matching exactly to 151 bp. It should be

noted that experimental mapping of TSSs has the estimated

precision of ± 5 bp [20].

Testing Fprom on a control set of 366 TATA and 650 TATA-

less promoter sequences demonstrated that the program

identified 80% of TATA promoter sequences, with one false

positive prediction per 2,000 bp, and 50% of TATA-less

promoters, with one false positive prediction per 650 bp. The

prediction algorithm described above uses the propensities of

each Transcription Factor (TF) binding site [21] indepen-

dently, not taking into account their mutual orientation and

positioning. At the same time, it is well known that trans-

cription regulation is a highly cooperative process, involving

simultaneous binding of several transcription factors to their

corresponding sites. In future algorithms, we should analyze

patterns of regulatory sequences where mutual orientation

and location of individual regulatory elements are necessary

requirements for their function.

Prediction of genes, ORFs, promoters, and splice sites using

the methods described above is available via the web.

Fgenesh (ab initio gene finding program with parameters for

27 organisms), Fgenesh-M (program for prediction of alter-

native spliced gene variants), Fgenesh+ (gene prediction

based on protein homology), Fgenesh_c (gene prediction with

EST support), and Fgenesh2 (gene prediction with support

of second, homologous genome sequence) can be found at

[22]. Prot_map and Est_map (mapping protein or mRNA/

EST, correspondingly, to a genome with exon-intron gene

structure reconstruction) is available at [23]. Finding

promoter sequences and transcription start sites by Fprom

can be executed at [24]. Pseudogene finding software (PSF)

is available as a part of Windows-based Molquest package

[25] that includes more than a hundred sophisticated

sequence analysis programs, including several pipelines and

complex visualization components for computational work

with biomedical data.
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