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Arabidopsis putative seven transmembrane proteins<p>A combination of multiple protein classification methods is described and used to identify a minimum set of 54 candidate seven trans-membrane receptors in <it>Arabidopsis thaliana</it>.</p>

Abstract

To identify divergent seven-transmembrane receptor (7TMR) candidates from the Arabidopsis
thaliana genome, multiple protein classification methods were combined, including both alignment-
based and alignment-free classifiers. This resolved problems in optimally training individual
classifiers using limited and divergent samples, and increased stringency for candidate proteins. We
identified 394 proteins as 7TMR candidates and highlighted 54 with corresponding expression
patterns for further investigation.

Background
Seven-transmembrane (7TM)-region containing proteins
constitute the largest receptor superfamily in vertebrates and
other metazoans. These cell-surface receptors are activated
by a diverse array of ligands, and are involved in various sig-
naling processes, such as cell proliferation, neurotransmis-
sion, metabolism, smell, taste, and vision. They are the
central players in eukaryotic signal transduction. They are
commonly referred to as G protein-coupled receptors
(GPCRs) because most transduce extracellular signals into
cellular physiological responses through the activation of het-
erotrimeric guanine nucleotide binding proteins (G proteins)
[1]. However, an increasing number of alternative 'G protein-
independent' signaling mechanisms have been associated
with groups of these 7TM proteins [2-5]. Thus, for precision
and clarity, we refer to these proteins simply as 7TM receptors
(7TMRs), and candidate proteins in organisms greatly diver-
gent to humans are designated here as 7TM putative recep-
tors (7TMpRs).

The human genome encodes approximately 800 or more
7TMRs, both with and without known cognate ligands (the
latter are so-called orphan GPCRs); they thus constitute >1%
of the gene complement [6,7]. More than 1,000 genes or 5%
of the Caenorhabditis elegans genome are predicted to
encode 7TMRs; the majority of them appear to be chemore-
ceptors [8]. Approximately 300 7TMR-encoding genes
(about 1% to 2% of the genome) have been recognized in the
Drosophila melanogaster genome [6,7]. Compared to such
large numbers of 7TMRs found in animal genomes, very few
7TMpRs have been reported in plants and fungi. Only 22 Ara-
bidopsis 7TMpRs have been described so far. Fifteen of them
constitute the 'mildew resistance locus O' (MLO) family,
whose direct interaction with the G-protein α subunit (Gα)
has not been shown [9,10]. While another 7TMpR, GCR1 [11],
directly interacts with the plant Gα subunit GPA1 [12], it has
been shown that GCR1 can act independently of the heterot-
rimeric G-protein complex as well [2]. Hsieh and Goodman
[13] recently reported five expressed proteins predicted to

Published: 25 October 2006

Genome Biology 2006, 7:R96 (doi:10.1186/gb-2006-7-10-r96)

Received: 28 June 2006
Revised: 24 August 2006
Accepted: 25 October 2006

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2006/7/10/R96
Genome Biology 2006, 7:R96

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17064408
http://genomebiology.com/2006/7/10/R96
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


R96.2 Genome Biology 2006,     Volume 7, Issue 10, Article R96       Moriyama et al. http://genomebiology.com/2006/7/10/R96
have 7TM regions (heptahelical transmembrane proteins
(HHPs) 1 to 5) but these, like the other 16, do not have candi-
date ligands. Finally, an unusual Regulator of G Signaling
(RGS) protein (designated AtRGS1) has been predicted to
have 7TM regions [14]. RGS proteins function as a GTPase
activating protein (GAP) to de-sensitize signaling by de-acti-
vating the Gα subunits of the heterotrimeric complex.
Because Arabidopsis seedlings lacking AtRGS1 have reduced
sensitivity to D-glucose [2,14,15], the possibility exists that
AtRGS1 is a novel D-glucose receptor having an agonist-regu-
lated GAP function. Although we designate them 7TMpRs
here, it should be noted that neither a ligand nor a full signal-
ing cascade has been demonstrated yet for any of these plant
proteins, and only for a barley MLO protein has the 7TM
topology been experimentally confirmed [9].

None of the reported Arabidopsis 7TMpR proteins share sub-
stantial sequence similarity with known metazoan GPCRs
constituting six different subfamilies. It appears that plant
7TMpRs dramatically diverged from known metazoan GPCRs
over the 1.6 billion years since the plant and metazoan line-
ages bifurcated. It should be noted that Arabidopsis GCR1
shares weak but significant similarity with the cyclic AMP
receptor, CAR1, found in the slime mold [2,11,16]. There is
also very weak similarity to the Class B Secretin family
GPCRs. However, other than GCR1, currently used search
methods have not robustly identified plant 7TMpR proteins
as candidate GPCRs. This great sequence divergence high-
lights the need for new approaches to identify divergent
7TMR candidates in non-metazoan genomes.

The human genome contains 16 Gα, 5 Gβ, and 12 Gγ genes. In
stark contrast, both fungi and plants have much simpler G-
protein coupled signaling systems. For example, the Arabi-
dopsis genome contains one canonical Gα, one Gβ, and two
Gγ genes [17]. Similarly, a small number of G-proteins are
found in fungi; there are two Gα, one Gβ, and one Gγ in Sac-
charomyces cerevisiae [18-20] while Neurospora crassa and
some fungi have more genes encoding each subunit [21-23].
Therefore, it may be reasonable to assume that plants and
fungi have fewer GPCRs than human, and while approxi-
mately 200 Arabidopsis proteins were predicted to have 7TM
regions, sequence divergence precludes unequivocal assign-
ment of any as an orphan GPCR [24,25]. However, at least 61
7TMpRs have been recently predicted from the plant patho-
genic fungus Magnaporthe grisea genome [26], raising the
possibility that more divergent groups of 7TMpR proteins
likely remain undiscovered in non-metazoan taxa.

In this report, we describe our comprehensive computational
strategy for identifying 7TMpR candidates from the entire
protein sequence set predicted from the A. thaliana genome,
and compile their tissue-specific expression and co-expres-
sion patterns with G-proteins. To take advantage of different
approaches, we combined multiple protein classification
methods, including more specific (conservative) alignment-

based classifiers and more sensitive alignment-free classifi-
ers, to predict candidate 7TMpRs in divergent genomes more
effectively.

Results and discussion
Identifying 7TMpR candidates using various protein 
classification methods
Among many protein classification methods commonly used,
the current state-of-the-art and most used is the profile hid-
den Markov models (profile HMMs) [27]. It is used to con-
struct protein family databases such as Pfam [28,29], SMART
[30,31], and Superfamily [32]. However, profile HMMs and
other currently used classification methods such as PROSITE
[33,34] and PRINTS [35,36] share an important weakness.
These methods rely on multiple alignments for generating
their models (patterns, profile HMMs, and so on). Generating
robust multiple alignments is difficult or impossible when
extremely diverged sequences are included in the analysis;
7TMRs are one such protein family whose sequence similari-
ties between subgroups can be lower than 25%. Furthermore,
alignments are generated only from known related proteins
(positive samples), and, therefore, no information from neg-
ative samples (unrelated protein sequences) is directly incor-
porated in the model building process. Identifiable 'hits' are,
therefore, constrained by initial sampling bias, which
becomes reinforced when models are iteratively rebuilt from
accumulated sequences. Consequently, the predictive power,
especially the sensitivity, of these classifiers decreases when
they are applied against extremely diverged protein families.

To overcome this disadvantage and to increase sensitivities
against such non-alignable similarities, several 'alignment-
free' methods have been proposed recently. These methods
quantify various properties of amino acid sequences and con-
vert them into a descriptor array. Once multiple sequences
with different lengths are transformed into a uniform matrix,
various multivariate analysis methods can be applied. Kim et
al. [37] and Moriyama and Kim [38] used parametric and
non-parametric discriminant function analysis methods.
Karchin et al. [39] incorporated profile HMMs with support
vector machines (SVMs) using the Fisher kernel (SVM-
Fisher) so that negative sample information can be taken into
account when training the classifier. SVMs can be applied
with completely 'alignment-free' sequence descriptors, for
example, amino acid and dipeptide compositions. Such align-
ment-free classifiers are shown to outperform profile HMMs
as well as Karchin et al.'s SVM-Fisher [40,41] (PK Strope and
EN Moriyama, submitted). Another multivariate method,
partial least squares (PLS) regression, was used by Lapinsh et
al. [42] with physico-chemical properties of amino acids. We
recently re-evaluated the descriptors used with PLS and opti-
mized them to discriminate 7TMRs from other proteins [43].

We applied these methods against the entire predicted pro-
tein sequence set derived from the A. thaliana genome. As
Genome Biology 2006, 7:R96
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shown in Table 1, among the 28,952 protein sequences, the
Sequence Alignment and Modeling system (SAM), a profile
HMM method, predicted only 16 (excluding one alternatively
spliced gene sequence) as 7TMpR candidates. Fifteen of them
are identified as MLO or similar to MLO and one as GCR1 in
The Arabidopsis Information Resource (TAIR) [44,45]. It
clearly shows that SAM is highly specific (discriminating)
with no false positive, assuming that current annotations are
correct. SAM failed to identify only one known MLO (MLO4:
At1g11000). This protein, as well as AtRGS1 and five recently
predicted 7TM proteins (HHP1-5), were among the 16 previ-
ously predicted Arabidopsis 7TMpRs not included in the ran-
domly sampled 500 7TMR training sequences (see Materials
and methods). Thus, we concluded that the predictive power
of SAM alone is insufficient to identify highly diverged and
potentially novel 7TMpR sequences.

The results obtained by SAM were compared with those
obtained by alignment-free methods. As shown in Table 1,
alignment-free methods (LDA, QDA, LOG, KNN, SVM with
amino acid composition (SVM-AA), SVM with dipeptide
composition (SVM-di), and PLS with amino acid properties
(PLS-ACC)) predicted 2,000 to 3,400 proteins as 7TMpR
candidates, which is about 10% of the entire predicted Arabi-
dopsis proteome and about 30% to 50% of all possible trans-
membrane proteins (6,475 proteins) [24,25]. These
alignment-free methods clearly call many false positives, and
need further optimization to improve their discrimination
power.

One advantage of alignment-free methods to be noted is their
sensitivity against short or partial sequences [37,38]. Many of
the 28,952 protein sequences used in this study are based
only on ab initio gene prediction results, and hence are likely
to contain various types of errors. If only a part of a 7TMR
protein is predicted correctly, alignment-free methods could
have a better chance to identify it.

Table 1 lists Arabidopsis proteins that were predicted to have
five to ten transmembrane regions and bins them by the
number of transmembrane regions. HMMTOP 2.0 [46,47]
predicted 201 proteins as having 7TM regions. This number is
close to a previous prediction (184 proteins) [24,25]. We
should note, however, that no single method predicts 7TM
regions from all known 7TMRs exactly (see Materials and
methods). As mentioned above, it is also possible that some
deduced Arabidopsis proteins we analyzed do not contain the
entire correct coding region. There were 952 Arabidopsis
proteins predicted to have five to nine TM regions. Based on
the distribution of predicted TM numbers obtained from the
entire GPCRDB entries, this range (5 to 9 TM regions) could
cover almost all of the 7TMR candidates (99.1%; see Figure 1
and Materials and methods). The 22 previously predicted
Arabidopsis 7TMpRs were predicted to have seven to ten TM
regions (Figure 1). If we extend the range to 5 to 10 TM

regions, the number of Arabidopsis 7TMpR candidates
becomes 1,179 proteins.

Choosing 7TMpR candidates by combining prediction 
results
Among the ten alignment-free classifiers, LOG misclassified
seven previously predicted Arabidopsis 7TMpRs. KNN with
K set at 5, 10, and 15 missed one, while KNN with K set at 20
classified them all correctly (see Materials and methods on
KNN). To reduce the number of false positives (non-7TMRs
predicted as 7TMRs) as well as false negatives (7TMRs pre-
dicted as non-7TMRs) and to obtain a set of 7TMpR candi-
dates with higher confidence, we examined combinations of
the prediction results by the remaining six alignment-free
methods (LDA, QDA, KNN with K = 20, SVM-AA, SVM-di,
and PLS-ACC). There were 652 proteins predicted as 7TMpR
candidates by all six methods (by choosing the strict intersec-
tion). Using the number of predicted TM regions to be 5 to 10,
394 (342 after removing duplicated entries due to alternative
splicing) proteins were identified as 7TMR candidates. These
Arabidopsis proteins are listed in Additional data file 1. Of the
22 previously predicted 7TMpRs, 20 were found in this list.
Although HHP4 and HHP5 were not included in this list, both
were identified by two of the alignment-free methods: KNN
and SVM-AA. Note that RGS1 and five HHP (as well as nine
MLO and GCR1) sequences were excluded from the training
set, and these six were not identified as candidate 7TMpRs by
SAM.

Table 1

Numbers of 7TMpR candidates identified by various methods 
from the A. thaliana genome

Methods Number of 7TMpR candidates*

HMMTOP

7TMs† 236 (201)

6-8 TM† 633 (545)

5-9 TMs† 1,091 (957)

5-10 TMs† 1,343 (1,179)

SAM 16 (15)

LDA 3,211 (2,935)

QDA 2,006 (1,820)

LOG 2,626 (2,394)

KNN (K = 5) 3,125 (2,839)

KNN (K = 10) 3,202 (2,906)

KNN (K = 15) 3,298 (3,004)

KNN (K = 20) 3,347 (3,043)

SVM-AA 2,263 (2,043)

SVM-di 2,004 (1,807)

PLS-ACC 2,671 (2,466)

*The numbers in parentheses show 7TMpR candidates after removing 
proteins derived from alternative splicing. †The numbers of TM regions 
predicted by HMMTOP.
Genome Biology 2006, 7:R96
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A further restriction to protein topology of exactly 7TM
regions and an amino-terminus located extracellularly
reduced the candidate number to 64 (54 excluding duplica-
tions due to alternative splicing). This set included nine of the
22 previously predicted 7TMpRs. These 54 7TMpR candi-
dates are the first targets for our further analysis and are sum-
marized in Table 2 (also listed in Additional data file 2).
Eighteen are described as simply 'expressed proteins' in the
TAIR database (except for AT3G26090, which encodes
RGS1). Interestingly, one of them (AT5G27210) is known to
have weak similarity to a mouse orphan 7TMR. While others
are known to belong to certain protein families (for example,
MtN3 family), in many cases, their molecular functions have
not been identified, and further investigation on these
7TMpR candidates is warranted.

The 54 proteins were grouped into families based on similar-
ities to known protein sequences. Eight of the 54 7TMpR can-
didates, including GCR1 and RGS1, are encoded by single
copy genes. In addition to the seven MLO proteins identified,
there are eight MtN3 family members, two proteins of an
unnamed family consisting of six expressed proteins, as well
as multiple (two to three) members from smaller gene fami-
lies (five or less). All members of the TOM3 family and the
Perl1-like family, as well as the majority of the GNS/SUR4
family and an unnamed family consisting of five expressed
proteins (expressed protein family 2) were included in the

list. The identification of multiple members from these gene
families using our alignment-free methods supported the
consistency of this approach. However, for most of these fam-
ilies, not all members were found. Additionally, eight single
representatives of small protein families consisting of two to
five members and four single representatives of large protein
families were found in the list. Some of these proteins, espe-
cially those from large protein families, may represent false
positives as 7TMpR candidates. This 7TMR mining method
can be refined, for example, by re-training models as well as
using more flexible hierarchical classification.

The five predicted heptahelical proteins (HHP1-5) reported
by Hsieh and Goodman [13] were identified by sequence sim-
ilarity to human adiponectin receptors (AdipoRs) and mem-
brane progestin receptors (mPRs) that share little sequence
similarity to known GPCRs. HHP1-3 were identified in our
initial list of 394 but were culled from the final list of 54 Ara-
bidopsis 7TMpR candidates. This is because HMMTOP pre-
dicted HHP1, HHP2, HHP4, and HHP5 to have seven TM
regions and intracellular amino termini, in contrast to known
GPCRs. This unusual structural topology was also found in
AdipoRs [13,48]. HHP3 had eight predicted TM regions. Of
the 15 MLO proteins, 8 were also predicted to have 8 to 10 TM
regions by HMMTOP (Figure 1). Recently, Benton et al. [49]
experimentally showed that Drosophila odorant receptors,
another extremely diverged 7TMR family, have intracellular
amino termini. Among our 394 candidate list, 23 proteins
were predicted to have seven TM regions and intracellular
amino termini (Additional data file 1). Therefore, we consider
these 54 as a minimum working set of 7TMpR candidates,
and many of the other proteins included in the list of 394
should be examined in the second stage.

Expression patterns of genes encoding the 7TMpR 
candidates and G-protein subunits
We utilized the Meta-Analyzer server of the Genevestigator
web site to study spatial expression patterns of Arabidopsis
genes encoding the 7TMpR candidates and G-protein subu-
nits. Note that the expression of MLO genes were not
included in this analysis since we reported them recently
[50]. As is shown in Figure 2, expression patterns of analyzed
7TMpR candidates can be divided into two major groups;
about half of them show distinct tissue specificity, whereas
the other half either exhibit less distinct expression patterns
or display ubiquitous expression. All genes encoding G-pro-
tein subunits fall into the latter major group. Ubiquitous
expression of genes encoding G-protein subunits allows over-
lap with genes in both groups, and makes, in principle, co-
functioning of G-proteins with these 7TMpR candidates spa-
tially and temporally possible. All eight genes encoding the
MtN3 family proteins appear to have distinct tissue specific
expression. Among them, At3g48740 and At4g25010 have
the highest sequence similarities to At5g23660 and
At5g50800, respectively. Both pairs of genes share similar or
overlapping expression patterns, suggesting relatedness/

Distribution of transmembrane numbers predicted by HMMTOP (black bars) and TMHMM (gray bars) from the 500 7TMR sample sequencesFigure 1
Distribution of transmembrane numbers predicted by HMMTOP (black 
bars) and TMHMM (gray bars) from the 500 7TMR sample sequences. 
Proportions (%) of the proteins predicted to have six to eight and five to 
nine TM regions by HMMTOP are shown at the top. The percentages 
shown in parentheses were obtained from the entire 7,674 7TMR dataset 
in GPCRDB. The numbers shown on the top of black bars are the number 
of previously predicted 22 Arabidopsis 7TMpR proteins.
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similarity of their functions. Confirming the actual functions
of the 7TMpR candidates as GPCRs requires further extensive
testing. A possible involvement of these candidate proteins in
'G protein-independent' signaling mechanisms also needs to
be explored.

Conclusion
We show that the profile HMM protein classification method,
currently one of the most used, is overly specific (conserva-
tive) when applied to extremely diverged 7TMpR proteins.
Our premise is that there are more 7TMpRs yet to be identi-
fied in the A. thaliana and other genomes divergent to
humans. The limitations were that the lack of available sam-
ples limits the effectiveness of profile HMM methods, and
while alignment-free methods are more sensitive, they have
high rates for false positives. The candidate 7TMpR proteins
provided in this study, for example, can be included to expand
the training set and re-iteration using refined training sets
can be done to reduce false positive rates. However, this is
possible only after these new candidates are confirmed as true
positives experimentally.

The strategy we described here overcomes the 'chicken-or-
egg' problem; predictions by multiple protein classification
methods and the number of predicted transmembrane
regions were used to identify a more likely reduced set of
7TMR candidates. By setting up various methods as hierar-
chical multiple filters, one can prioritize target protein sets for
further experimental confirmation of their functions.

Materials and methods
Arabidopsis protein data
We downloaded 28,952 protein sequences from TIGR (Ara-
bidopsis thaliana database release 5, dated 10 June 2004)
[51]. Among the 28,952 proteins, 2,760 are derived from
alternative splicing.

Training data preparation for protein classification
Positive training samples (known 7TMR sequences) were
obtained from GPCRDB (Information System for G Protein-
Coupled Receptors, Release 9.0, last updated on 28 June 28
2005) [6,7]. In the GPCRDB, 2,030 7TMRs (originally col-
lected from the Swiss-Prot protein database) were grouped
into six major classes (classes A to E plus the Frizzled/
Smoothened family) and six putative families (ocular albi-
nism proteins, insect odorant receptors, plant MLO recep-
tors, nematode chemoreceptors, vomeronasal receptors, and
taste receptors). Five hundred 7TMR sequences were ran-
domly sampled and used as the positive samples. Note that
'putative/unclassified' (orphan) 7TMRs and bacteriorho-
dopsins were not included in this dataset. These 500 7TMRs
included six of the15 known Arabidopsis MLO proteins.
Among the 22 currently known Arabidopsis 7TMpRs, in
addition to the nine MLO proteins, GCR1 as well as six
recently identified Arabidopsis 7TMpRs (AtRGS1 and HHP1-
5; GPCRDB does not list these proteins) were not included in
the random 500 7TMR samples. Note that the 15 Arabidopsis
7TMpRs not included in the training set can be used to assess
the classifier performance as test cases.

For negative samples, 500 non-7TMR sequences longer than
100 amino acids were randomly sampled from the Swiss-Prot

Table 2

Summary of the 54 7TMpR candidates identified in this study1

Groups* TAIR locus IDs

Multiple members from gene families

Nodulin MtN3 family proteins (8/17) At1g21460, At3g16690, At3g28007, At3g48740, At4g25010, At5g13170, At5g23660, At5g50800

MLO proteins (7/15) At1g11000 (MLO4), At1g26700 (MLO14), At1g42560 (MLO9), At2g33670 (MLO5), At2g44110 
(MLO15), At4g24250 (MLO13), At5g53760 (MLO11)

Expressed protein family 1 (2/6) At1g77220, At4g21570

GNS1/SUR4 membrane family proteins (3/4) At1g75000, At3g06470, At4g36830

Perl1-like family protein (2/2) At1g16560, At5g62130

TOM3 family proteins (3/3) At1g14530, At2g02180, At4g21790

Expressed protein family 2 (3/5) At1g10660, At2g47115, At5g62960

Expressed protein family 3 (2/4) At3g09570, At5g42090

Expressed protein family 4 (2/5) At1g49470, At5g19870

Expressed protein family 5 (2/5) At3g63310, At4g02690

Single copy genes (8) At1g48270 (GCR1), At1g57680, At2g41610, At2g31440, At3g04970, At3g26090 (RGS1), 
At3g59090, At4g20310

Single member from small gene families (8) At2g01070, At3g19260, At2g35710, At2g16970, At1g15620, At1g63110, At4g36850, At5g27210

Single member from big gene families (4) At1g71960, At3g01550, At5g23990, At5g37310

*The number of candidates identified in this study belonging to each group is shown in parentheses (the number of all proteins in each group is given 
after '/'). More detailed information is given in Additional data file 2.
Genome Biology 2006, 7:R96
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Figure 2 (see legend on next page)
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section of the UniProt Knowledgebase [52,53]. The average
length of the 500 non-7TMR sequences was 401 amino acids
(with a maximum length of 2,512 amino acids). Positive and
negative samples were combined to create a training dataset.
Note that only positive samples were used to train the profile
HMM classifier, SAM (see below).

Protein classification methods used
One alignment-based method (profile HMM) and four types
of alignment-free multivariate methods were included in our
analysis.

Profile hidden Markov models
Profile HMMs are full probabilistic representations of
sequence profiles [27]. Sample sequences need to be aligna-
ble, and thus only positive samples can be used for training.
Two programs in SAM (version 3.4) [54,55] were used: build-
model to build profile HMMs with the nine-component
Dirichlet mixture priors [56], and hmmscore to calculate
scores and e-values. The 'calibration' option (for more accu-
rate e-value calculation) and the fully local scoring option (-
sw 2) were used. The e-value threshold was set at 0.01 for
choosing 7TMR candidates.

Discriminant function analysis
Moriyama and Kim [38] described the three parametric (lin-
ear, quadratic, logistic) and nonparametric K-nearest neigh-
bor methods that were shown to perform better than the
profile HMM method. Therefore, we included these four
alignment-free methods (LDA, QDA, LOG, and KNN) in our
analysis. For KNN, K was set at 5, 10, 15, or 20, where K is the
number of neighbors. The four variables used (amino acid
index and three periodicity statistics) were described in Kim
et al. [37]. S-PLUS statistical package (Insightful Corpora-
tion, Seattle, WA, USA, version 6.1.2 for Linux) with the
MASS module [57] was used for the classifier development.

Support vector machines with amino acid composition
SVMs are learning machines that make binary classifications
based on a hyperplane separating a remapped instance space
[58]. A kernel function can be chosen so that the remapped
instances on a multidimensional feature space are linearly
separable. The radial basis kernel, exp(-γ||x - y||2), was used
in this study. The parameter γ was set to 102 based on the

median of Euclidean distances between positive examples
and the nearest negative example as described in Jaakkola et
al. [59]. Simple 19 amino acid frequencies (the 20th amino
acid frequency can be explained completely by the other 19) of
each protein sequence were used as an input vector for SVMs.
Programs svm_learn and svm_classify of the SVMlight pack-
age version 5.0 [60] were used for training and classification,
respectively, by SVM. The default value of the regulatory
parameter C (0.5006) was used with svm-learn. Our compar-
ative analysis showed that SVM-AA performs better than pro-
file HMMs when they are applied to remote similarity
identification, the same problem we deal with in this study
(PK Strope and EN Moriyama, submitted).

Support vector machines with dipeptide composition
We also included an SVM classifier with dipeptide composi-
tion [40,41]. The SVMlight package version 5.0 [60] was used
for training and classification as before. The regulatory
parameter C = 1 and the radial basis kernel function parame-
ter γ = 90 were chosen by the grid analysis using 5-fold cross-
validation.

Partial least squares with amino acid properties
PLS regression is a projection method that takes into account
correlations between independent and dependent variables
[61]. We used the pls.pcr package, an R implementation
developed by Wehrens and Mevik [62,63], with the SIMPLS
method, four latent variables, and cross-validation options.
Each amino acid in the protein sequences was first converted
to a set of 5 principal component scores developed from 12
physico-chemical properties. The auto/cross covariance
(ACC) method developed by Wold et al. [64] was then applied
to each of the converted sequences. ACC describes the aver-
age correlations between two residues a certain lag (amino
acids) apart. The lag size of 30 was chosen for optimal classi-
fication performance. We found that the performance of PLS-
ACC is robust even when only a small number of positive sam-
ples (5 or 10) are available for training. In contrast, the per-
formance of profile HMMs suffered extremely when positive
sample size was small. The 12 physico-chemical properties
used and more details on the use of PLS in protein classifica-
tion are described elsewhere [43]. The cutoff value of 0.4999
was used for choosing 7TMR candidates in this study, which
was determined as the average of the minimum error points

Expression patterns of Arabidopsis genes encoding 7TMpR candidates and G-protein subunits among tissuesFigure 2 (see previous page)
Expression patterns of Arabidopsis genes encoding 7TMpR candidates and G-protein subunits among tissues. The figure was modified from an output of the 
Meta-Analyzer of Genevestigator (last updated in November 2005), which illustrates expression levels of each gene in different organs. Relative expression 
levels of a gene in different organs/tissues are given as heat maps in blue-scale coding that reflects absolute signal values, where darker colors represent 
stronger expression. All gene-level profiles are normalized for coloring such that, for each gene, the highest signal intensity obtains a value 100% (shown in 
the darkest blue and marked with an asterisk) and absence of signal obtains a value 0% (shown in white). All GeneChip data was processed using 
Affymetrix MAS5.0. Special precaution is required for gene expression in certain cell types (for example, pollen), since difference in normalization may 
achieve different results. Probe-sets of five 7TMpR candidates (At1g15620. At1g75000, At4g21570, At4g36850, and At5g23990) were not present in the 
22K chip, and, therefore, their tissue-specific expression could not be assessed. For At2g35710, two probe-sets (265797_ata and 265841_atb) were 
designed on the chip. Gene names for those belonging to the MtN3 family are shown in boldface and marked with an asterisk. Genes encoding G-protein 
subunits (AGB1, GPA1, AGG1, and AGG2) as well as two reported 7TMpRs (RGS1 and GCR1) are labeled accordingly in boldface.
Genome Biology 2006, 7:R96
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[39] obtained from 500 replications of 10-fold cross-valida-
tion analysis using the training dataset.

Transmembrane region prediction
HMMTOP 2.0 [46,47] and TMHMM (originally as in [65] but
implemented as S-TMHMM by [66]) were used for predicting
transmembrane regions. Figure 1 shows the numbers of TM
regions predicted by the two methods for the 500 7TMR
sequences used for classifier training. HMMTOP predicted
7TM regions from 433 7TMRs (86.6%), while only 165 7TMRs
(33%) were predicted to have 7TM regions by TMHMM.
HMMTOP predicted 97% or more of 7TMRs to have 6 to 8 TM
regions, and with 5 to 9 TM regions more than 99% of 7TMRs
were included. Using TMHMM, in order to include 97% of
7TMRs, the range of predicted TM numbers needs to be
between 4 and 10. Therefore, we decided to use HMMTOP in
our further analysis. With HMMTOP using the range of five to
nine TM regions, we should be able to cover almost all possi-
ble 7TM proteins.

Grouping of the candidate proteins
The candidate proteins were grouped based on the e-values
obtained by BLASTP protein similarity search [67,68] against
the Arabidopsis protein database using the default parameter
set (for example, BLOSUM62) at the TAIR web site [45]. The
e-value threshold of 10-20 was used to identify protein families
similar to the candidate proteins.

Expression patterns of genes encoding 7TMR 
candidates and G-protein subunits
Expression patterns of genes encoding 7TMpR candidates
and G-protein subunits among tissues was studied by using
the Meta-Analyzer server of the Genevestigator web site (last
updated in November 2005) [69,70]. All data were generated
using the 22K Affymetrix ATH1 Arabidopsis Genome array.
Gene expression profiles based on microarray data were clus-
tered according to similarity in expression patterns. Hierar-
chical clustering results were generated by default settings
using pairwise Euclidean distances and the average linkage
method.

Additional data files
The following additional data files are available with the
online version of this paper. Additional data file 1 is the list of
the 394 Arabidopsis thaliana 7TMpR candidates. Additional
data file 2 lists the 54 7TMpR candidates identified in this
study. These 7TMpR candidates were grouped based on their
similarities with known protein families. HTML versions of
the candidate lists with TAIR links and other supplementary
data are available at [71].
Additional data file 1The 394 A. thaliana 7TMpR candidatesThe 394 A. thaliana 7TMpR candidates.Click here for fileAdditional data file 2The 54 7TMpR candidates identified in this studyThese 7TMpR candidates were grouped based on their similarities with known protein families. HTML versions of the candidate lists with TAIR links and other supplementary data are available at [72].Click here for file
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