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Abstract

L2L is a database consisting of lists of differentially expressed genes compiled from published
mammalian microarray studies, along with an easy-to-use application for mining the database with
the user's own microarray data. As illustrated by re-analysis of a recent study of diabetic
nephropathy, L2L identifies novel biological patterns in microarray data, providing insights into the
underlying nature of biological processes and disease. L2L is available online at the authors' website

[http://depts.washington.edu/I2I/].

Rationale

In only a few years since their development, high-throughput,
whole-genome DNA microarrays have become an invaluable
tool throughout biology. The appeal of microarrays seems
most irresistible when the biological problem is most intrac-
table; microarrays have become perhaps the most popular
contemporary tool for hypothesis generation. Yet interpret-
ing the mountain of data produced by a microarray experi-
ment can be a frustrating chore. The most common outcome
of such an experiment is a list of genes, or many such lists:
genes that are induced or repressed under one condition or
another, at one time point or another, in one cluster or
another. The daunting task is to extract some meaning from
these lists, either by identifying 'critical genes' which might
single-handedly produce a biological effect, or by finding pat-
terns in the list that point to an underlying biological process.
The latter universally involves annotating each gene on the
list and looking for groups of genes that share a particular
characteristic. Until recently, this was done entirely by hand.
Each gene was assigned, after a laborious literature search, to
an arbitrary functional category like 'DNA repair' or 'metabo-
lism'. A hypothesis might be based on which arbitrary catego-

ries appeared most often. Like any non-systematic approach,
this one is vulnerable to our very human knack of seeing
whatever pattern we wish in a noisy field. The Gene Ontology
(GO) consortium [1] has brought systematic order to the field
of gene annotation by pre-categorizing genes by biological
process, molecular function, and cell component - thus elim-
inating the pattern-creating risk of post hoc annotation. A
number of software tools now exist to automate the process of
annotating a list of genes with GO categories. Several of these,
including EASE [2], GOMiner [3], Onto-Express [4] and
GO::TermFinder [5], also calculate the over-abundance of
each category in the list, along with its statistical significance.
However, even after functional annotation of the list of genes,
uncertainty remains as to whether the results advance under-
standing of the biology at work in the system, and, if the sys-
tem is a complex disease, whether the results help explain
why the gene expression changes occurred. An alternative
approach to interpreting gene expression data is to compare
it with other related (or potentially related) gene expression
data. The motivation is that microarray experiments exhibit-
ing common changes in gene expression are likely to share
one or more underlying molecular mechanisms.
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L2L and the L2L microarray database. (a) The centerpiece of L2L is the
L2L Microarray Database, a collection of published microarray data in the
form of lists of genes that are up- or downregulated in some condition.
The L2L Microarray Analysis Tool (MAT) is a program that compares
those lists with a user's microarray data, and reports statistically significant
overlaps. The analysis tool includes a web browser interface, but the L2L
application itself can be downloaded and run directly from the command
line for batch or customized analyses. Three additional sets of lists, based
on the three organizing principles of Gene Ontology, can also be used with
the analysis tool. (b) The L2L Microarray Database contains over 350 lists
compiled from over 100 selected microarray publications. A wide variety
of topics are represented, from chromatin modifications and DNA damage
to the immune response and adipocyte differentiation.

Furthermore, in some experiments, the underlying cause of
the gene expression changes is well-defined: a specific gene
deletion, for example, or treatment with a single receptor lig-
and. In such cases, the ability to connect the user's experi-
ment with gene expression changes caused by a well-defined
perturbation may lead immediately to a hypothesis regarding
the underlying mechanism in the system under study.

L2Lis a database and associated software tool (Figure 1a) that
systematically compares the user's own list of differentially
expressed genes with a database of lists of differentially
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expressed genes that were derived from published microarray
data, with the goal of finding common expression patterns
that can help generate new hypotheses. The L2L Microarray
Database was culled from 111 selected publications, and con-
tains 357 lists of genes that were found to be either upregu-
lated or downregulated under a particular experimental
condition. The conditions represented in the database range
from normal ageing to space flight, and from interferon treat-
ment to histone deacetylase inhibition (Figure 1b). The L2L
Microarray Analysis Tool compares each list in the database
with a list of genes supplied by the user, and reports the sta-
tistical significance of any overlap between them. It also
annotates each gene on the user's list with all the lists in the
database on which it is found. The results are presented as a
set of hyperlinked HTML documents, which can be conven-
iently explored by surfing from list to list and gene to gene.
L2L is available as an easy-to-use online tool [6], and as a
downloadable, command-line application released under the
GNU General Public License.

L2L Microarray Database

The need for a standardized format for presenting and storing
microarray data from disparate platforms has been recog-
nized for several years. A consortium of researchers [7] has
detailed a standardized format for presenting microarray
data (MAIME) [8] as well as a markup language in which to
encode those now-standardized data (MAGE-ML) [9]. The
data can be deposited in any of a number of large public
repositories, including CIBEX, ArrayExpress, Oncomine and
the NIH's Gene Expression Omnibus (GEO) [10-13]. All of
these include web-accessible data-mining tools for browsing
experiments and searching for the expression results associ-
ated with a particular gene. The sheer volume of deposited
data is staggering, and represents a gold mine for bioinforma-
ticians. Yet it all remains remarkably inaccessible to lay biol-
ogists. Although we can search GEO, for example, for
microarray-identified genes one-by-one, there is no simple
way to compare our data en masse with any other data in the
repository, much less against all the data in the repository.
Furthermore, repositories can make it difficult to extract the
original results from the mass of deposited data; an interested
user is often required to essentially re-analyze the data, with
little knowledge of the original data analysis protocol or, in
some cases, without access to all of the relevant data (for
instance, GEO submissions do not usually include Affymetrix
test-statistic data, a qualitative 'change call' which can be
more accurate than the quantitative fold-change for detecting
differential expression [14]).

The L2L Microarray Database collects an interesting subset of
this public data in its most essential and accessible form -
simple, well-annotated lists of genes, using a universal iden-
tifier, which were found to be either upregulated or downreg-
ulated under a particular condition. It is not intended to be an
alternative to the public repositories, but an accessible and

Genome Biology 2005, 6:R81



http://genomebiology.com/2005/6/9/R81

utilitarian supplement. The database can be easily applied to
the global analysis of any gene expression experiment, pro-
ducing insights that go well beyond gene-by-gene annotation.
The development of L2L was inspired by our efforts to extract
meaning from our own microarray analysis of the progeroid
Cockayne syndrome (Newman JC, Bailey AD, Weiner AM,
unpublished data), so the publications included in the data-
base initially reflected topics thought to be related to this dis-
ease - ageing, cancer and DNA damage. Since then, the scope
of the publications we included has expanded considerably to
include chromatin structure, immune and inflammatory
mediators, the hypoxic response, adipogenesis, growth fac-
tors, cell cycle regulators, and others. In spite of the parochial
origins of the database, the wide range of topics now covered
will make L2L of general interest to any investigator using
microarrays to study human (and more generally, mamma-
lian) biology. We demonstrate the breadth of L2L's utility
below, by re-analyzing a published microarray dataset from a
study of diabetic nephropathy - a subject completely unre-
lated to our original interests. Newman JC, Bailey AD, Weiner
AM: manuscript in preparation.

A good list is hard to find

We faced two major challenges in the creation of L2L, one
philosophical and one practical. The philosophical problem,
which has prevented any significant effort in this direction to
date, is that no two microarray experiments are ever perfectly
comparable. There is an almost infinite combinatorial com-
plexity of organism, tissue type or cell line, RNA isolation
technique, microarray platform, scanning instrument, exper-
imental design, and data analysis technique - even if the ques-
tion being asked is identical. To make a tool like L2L even
possible, it is essential to exclude any incomparable informa-
tion from each experiment, and convert the remainder to a
common language that can be shared by all included experi-
ments. We therefore removed all references to platform-spe-
cific probe identifiers, primarily because these would limit
L2L to comparing experiments performed on identical plat-
forms, but also because many manuscripts do not report
probe IDs. Instead, we converted the probe IDs to the HUGO-
approved symbols [15] of the genes they each represent,
according the manufacturer's annotations, and ignored those
that have no gene association because these cannot be reliably
compared across platforms. We also excluded the reported
magnitude of expression changes, because fold-changes are
often not comparable across platforms [16]. Furthermore,
fold-change can be a misleading indicator of the significance
of expression changes, especially for platforms like Affyme-
trix GeneChips that use an independent, and more robust,
change call calculation [14]. Finally, ignoring fold-changes
vastly simplifies the computational task of comparing hun-
dreds or thousands of lists.

The practical challenge was the extraction of published data
and conversion to HUGO gene symbols. This was by far the
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most time-consuming of the tasks required to create L2L,
despite the liberal use of automated tools. The first hurdle was
the difficulty of extracting data from published papers in a
usable form. Many tables of genes are published as graphical
figures rather than textual tables. Supplemental data is often
in the form of HTML tables, rather than text files. In both
cases, the data are easy to view, but difficult to extract for
other uses. More willful is the use of digital-rights manage-
ment by certain journals to frustrate copying of any informa-
tion from the electronic (PDF) version of the paper. In all of
these situations, laborious manual transcription was
required, instead of simple keystrokes to cut-and-paste the
data. Repositories like GEO are only a partial solution to this
presentation problem; the repositories contain all the raw
data, but often lack information about the data analysis used
to define a robust change, as well as the actual lists of robustly
changed genes.

The second hurdle was actually identifying the genes on pub-
lished lists. Many publications do not provide an unambigu-
ous reference for each gene - only a common name and/or
description. Those that do provide unambiguous references
do so in a variety of forms - a HUGO name, LocusLink ID,
GenBank accession, or (rarely) commercial probe ID. Online
tools exist to interconvert many of these [17,18] and were
used whenever possible to convert each list to HUGO names.
Ambiguous references were hand-converted by finding the
proper match in LocusLink or EntrezGene. Some lists in the
L2L Microarray Database are derived from mouse experi-
ments; these were first converted to standard mouse gene
names, then mapped to the corresponding HUGO gene name
using the HomoloGene database [19] with an ad hoc tool. Any
genes without HomoloGene entries were matched by hand in
EntrezGene to the proper human homolog. Any gene refer-
ence, mouse or human, which could not be unambiguously
mapped to a HUGO name was ignored. Duplicates within a
list were also ignored. The fraction of the original data that
could eventually be mapped to a HUGO name varied with the
quality of the gene reference, the proportion of expressed
sequence tags (ESTs), and whether mouse-human conversion
was required. Most datasets with unambiguous human refer-
ences have greater than 90% of non-EST, non-duplicate gene
references represented in the L2L list of HUGO names.
Mouse-human conversion reduced this proportion somewhat
(largely due to immunity-related genes), as did descriptive
gene references (due to ambiguity). Each list in the database
is annotated with a meaningful short name, a longer descrip-
tion, the platform used to generate the list (for example,
Affymetrix Ug5Av2), one or more keywords, and the PubMed
ID of the source publication.

More than just microarray data

In addition to the L2L Microarray Database, L2L includes a
set of lists for each of the three organizing principles of Gene
Ontology - biological process, molecular function and cell
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component. These lists were compiled from the July 2004 GO
association tables, which include associations between UNI-
PROT names and GO terms. UNIPROT's flat-files associate
many human UNIPROT entries with a HUGO alias; an ad hoc
tool was used to extract these relationships and convert the
UNIPROT GO term assignments to unique HUGO GO term
assignments. Another ad hoc tool then created a list for each
GO term that contained every HUGO name associated with
either that term or any of its descendants. Any lists with fewer
than five genes were discarded because comparison to such a
small list is unlikely to be informative. In all, there remained
2,169 GO-derived lists with a total of about 240,000 annota-
tions, divided among the three organizing principles. A more
detailed description of how the GO lists were compiled, along
with downloadable versions of the ad hoc tools, is available on
the L2L website [6].

Finally, L2L is not limited to using the four included sets of
lists: L2L. Microarray Database, GO: Biological Process, GO:
Molecular Function, and GO: Cell Component. The modular
nature of the tool means that new sets of lists can be created
from any source of gene annotations. Some examples include
protein-protein interaction databases like DIP, BRITE or
BIND [20-22]; pathway annotations from KEGG, BioCarta or
GenMAPP [23,24]; experimental gene expression modules
[25]; or the associations of gene names with literature key-
words that can be compiled using tools like PubGene and
TXTGate [26,27]. Any source of gene annotation that can be
represented as a set of lists, each specifying a group of genes
that share some characteristic, can be easily used with L2L.
We hope that the simple and open file formats will encourage
others to contribute their own sets of lists to augment L2L or
to create similar platform-independent resources.

Although we designed L2L for the lay biologist, we hope that
the L2L Microarray Database will prove to be a valuable
resource for the bioinformatician as well. For example, many
investigators are interested in mapping networks of gene
coexpression relationships with the goal of inferring previ-
ously unknown functional relationships, or even physical
interactions, from shared expression profiles [28-30]. The
L2L database is a significant source of primary data for such
coexpression analyses. It currently contains 28,026 data
points derived from microarray experiments, each of which
represents a significant gene expression change. These data
points encompass 10,151 gene names - a substantial fraction
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of the 33,000 HUGO names that had been assigned at the
time of writing - and 6,009 of these genes occur at least twice
in the database. Among these genes, there are 258,461 unique
positive coexpression relationships (a pair of genes found
together on different lists) that are found on at least two, and
in some cases as many as 16, different lists. There are 20,338
negative coexpression relationships (pairs of genes that are
inversely regulated, that is, one appearing on the 'up' and the
other on the 'down' list for the same condition) that are found
in at least two, and as many as ten, different conditions. We
believe the L2L database's catalog of co-expression relation-
ships is one of the largest yet available for human genes, and
is based on more robust expression changes and a broader set
of experimental conditions than other, albeit more sophisti-
cated, efforts [31].

L2L microarray analysis tool

Compiling the L2L Microarray Database took a large invest-
ment of effort that we are eager to share with the community.
The open file format of the L2L lists can be easily adapted for
use in existing list-comparison tools, like EASE [2] and Ven-
nMapper [32]. We saw a need, however, for a similar general-
purpose tool that was as straight-forward to use as, for exam-
ple, PubMed Entrez, and which could be optimized for pre-
senting the unique sort of relationship data contained in the
database. Therefore, we created the L2L Microarray Analysis
Tool - simple to use for the lay biologist, while powerful and
customizable for the technically inclined. Upon entering the
L2L website [6], the user follows four steps - step 1: enters a
name for the analysis, step 2: uploads a data file, step 3:
selects the microarray platform from a menu, and step 4:
chooses which set of lists will be used to analyze the data (the
database or one of the GO sets) (Figure 2a). After L2L has fin-
ished comparing the user's data with all the selected lists, it
creates a set of easy-to-navigate HTML pages to visualize the
results. These are of three types: the Results Summary page,
Listmatch pages and Probematch pages. The Results Sum-
mary (Figure 2b) displays all of the lists that have a statisti-
cally significant overlap with the user's data, along with all
relevant statistics. Each list has a unique Listmatch page (Fig-
ure 2¢), which displays all the probes in the data that matched
that list, along with a variety of annotations for each probe.
Similarly, each probe in the data has a Probematch page (Fig-
ure 2d), which displays all the lists on which that probe was

Figure 2 (see following page)

L2L uses a simple web-based interface, and generates easy-to-navigate, annotated HTML pages as output. (a) The L2L web interface. (b) The Results
summary page displays each list from the database that significantly matched the data, along with links to list annotations and Listmatch pages. (c) An
example Listmatch page, which displays all of the probes on a list that match the data, with a variety of annotations and links to Probematch pages. (d)
Probematch pages show all of the lists on which a probe is found, with links back to their Listmatch pages. Arrows indicate sample navigation paths

between the output pages.
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found. The pages are interconnected by hyperlinks, making it
easy to surf, for example, from the Results Summary to a list,
to a gene found on that list, to a different list on which that
gene is found. Lists and genes are described briefly on each
page, but are also hyperlinked to external annotations: for the
database lists, this is usually the PubMed abstract of the
source publication; for GO categories it is the AmiGO browser
page [33] for that category; for genes it is the GeneCards [34]
and EntrezGene [35] entries. From the Results Summary
page, all of the output files can be downloaded by the user,
and viewed later with any web browser.

The analytic engine of L2L is the L2L application, written in
Perl (Figure 3). This program receives user input from the
web interface and performs the actual data processing tasks,
along with the creation of the output HTML pages. The pro-
gram requires three inputs: the data to be analyzed, in the
form of a list of microarray probe identifiers; a translator
library that pairs each probe on the microarray with its corre-
sponding HUGO gene name; and a folder of lists with which
the data will be compared. As described above, these lists are
in the form of HUGO gene names. The program works
sequentially through all the lists, first using the translator to
map each gene name in the list to all the probes on the micro-
array that represent that gene (Figure 3a). Each of these
translated probe IDs is then queried against the data. Thus, a
given gene on a list may be represented by several microarray
probes, or none at all. This name-to-probe translation - the
reverse of the process by which the database lists were origi-
nally generated - allows L2L to retain the greatest possible
amount of the user's data, by performing comparisons based
on the probe IDs of the user's microarray, rather than the
gene names those probes represent. The loss of this probe ID
information from the database lists was an unfortunate
necessity, since relatively few studies from which the data-
base was compiled even reported probe IDs. The retention of
probe IDs from the user's data allows some expression of the
subtleties that multiple probes per gene can afford. If only one
splice form of a gene is upregulated in the user's data, only
that one probe will be scored as a match to a database list the
gene is on; all other probes for that gene will be queried and
counted as non-matches. The program records the number of
probes derived from the list that match the data, the total
number of probes on the microarray that represent the gene
names on the list, and the fraction of probes on the microar-
ray that are found in the data (Figure 3b). From these three
numbers, the program first calculates the number of expected
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matches for that list, then the relative enrichment of actual
matches, and finally a p value for the significance of the over-
lap. The p value represents the cumulative probability of find-
ing at least as many matches between the data and the list,
given the fraction of all microarray probes that are found in
the data, as calculated with a cumulative binomial distribu-
tion (see below for a more detailed discussion of the statistics
of L2L). The results are logged and written to a raw output
file. In addition, for each list, the program records the IDs of
all the probes from the data that matched that list. Similarly,
for each probe in the data, the program records the names of
all the lists on which it was found. All of this information is
then used to create the output HTML pages (Figure 3c).

The modular design of L2L means that there are a variety of
ways to interact with the L2L application, depending on the
user's needs. The simplest is through the web interface. In
addition to the four-step form described above, there is a
'More Options' page that allows the user to upload a custom
translator library for microarray platforms that are not on the
menu. Thus, while L2L is intended primarily for use with
whole-genome expression microarrays, it can be used with
data from any genomic or proteomic analysis. Alternatively,
the L2L application itself can be downloaded and run from
the command line on any computer with Perl and a UNIX-like
command shell. This is ideal for users who want to use a cus-
tom set of lists or who need to rapidly process many different
data files in a batch mode. L2L includes a basic textual inter-
face that prompts the user for the location of the three neces-
sary inputs: data file, translator library and set of lists. A
batch mode bypasses the interface and allows the processing
of any number of data files, each from a different microarray
platform, against any or all sets of lists with a single com-
mand. Users are also free to download the entire L2L website
and run it on their own web server.

LaLis remarkably fast because all of the potentially billions of
search-for-match operations are implemented as hash-table
lookups in Perl. Since relatively few data are stored in mem-
ory at any one time, performance is processor-bound on mod-
ern machines, and scales linearly only with the combined size
of the lists - not with the size of the data file. A comparison of
virtually any size data file to all 357 lists in the database, along
with the creation of all output files, takes only about 15 sec-
onds on a 1.4 GHz PowerPC. All files associated with L2L,
including data, translator library and list, are in a simple tab-
delimited, flat-file format. A detailed description of each file

Figure 3 (see following page)

The L2L application sequentially compares each list in the database with the input data, and records the overlap between the two lists of genes. (a) Each
list in the database is a list of HUGO symbols. These are first translated to the corresponding microarray probes that represent those genes. Depending
on the microarray, some genes on a list are represented by multiple probes and some by none at all. (b) The program finds the intersection between the
translated list of probes from the database and the user's list of probes. The results are logged and written to a raw output file. The program then

proceeds to the next list in the database. (c) Once all lists in the database have been compared with the user's data, the program creates a set of HTML

pages to browse the output.
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(a)

Translate gene names
to appropriate probes

ifn_alpha_up
35818_at
669_s_at
1700_at
36825_at
38432_at...
(111 probes total)

(b)

ACCUMULATING
RAW OUTPUT
(TEXT)

Identify
common probes

Intersection of YOUR DATA
with list from database

464_at
36472_at
32814_at
40153_at
40418_at...

(28 probes total)

Write results
to output

ifn_beta_up

ifn_alpha_up
CYCS
IRF1
BBC3
TRIM22
G1P2...
(74 gene
names total)

L2L MICROARRAY
DATABASE

Identify
intersection of
YOUR DATA with
next list from
database

ACCUMULATING
OUTPUT LOG

The list...

BROWSABLE
OUTPUT
(HTML)

The list ifn_alpha_up has 74
unique genes which correspond to
111 probes on the U95Av2 array.

28 of 111 match YOUR DATA, for a
p-value of 2.6e-14.

The list...

Figure 3 (see legend on previous page)
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type is available on the L2L website [6]; users can create their
own files from any text editor.

L2L in the real world: diabetic nephropathy

The ultimate test of a utility like L2L is whether it can produce
novel biological insights from real-world microarray data.
With this objective in mind, we downloaded several publicly
available datasets and analyzed their lists of gene expression
changes with L2L (the sample datasets and all results are
available at the L2L website [6]). Diabetic nephropathy (DN)
is one of the most common, and most devastating, complica-
tions of type 2 diabetes mellitus (T2DM) but its molecular eti-
ology remains poorly understood. To generate new
hypotheses, Baelde and colleagues examined gene expression
patterns in human kidney glomeruli isolated either from nor-
mal kidneys or from kidneys afflicted with DN [36]. Several
hundred genes were found to be significantly changed in DN,
and these were then classified according to GO category using
MAPPFinder [37]. The primary hypothesis that ultimately
emerged from the experiment, however, relied entirely on an
analysis of 'critical genes' - a handful of genes with biological
functions that seemed likely to be relevant. Specifically,
dysregulation of several tissue repair genes and repression of
the growth factor VEGF led the authors to suggest diminished
repair capacity in capillary endothelium as a possible etiology
for DN. They also suggested, based on MAPPfinder's list of
overabundant GO categories, that DN kidneys suffer from
reduced nucleotide metabolism and disturbed cytoskeleton
formation.

Analysis of the same data with L2L not only quickly con-
firmed some of the authors' conclusions (Figure 4a), but also
detected the fingerprints of the underlying disease process
(Figure 4b). Using L2L with Gene Ontology lists, we con-
firmed the finding of disturbed cytoskeletal formation within
moments. We also found that genes repressed in DN are
enriched for genes that function in apoptotic pathways
involving JAK-STAT, IxK-NFxB and caspases, as well as IGF-
binding proteins. Although the latter evidence for a reduced
insulin-like growth factor response appears to support the
authors' central hypothesis, comparison of the DN data with
the L2L Microarray Database produced contrary evidence.
We found a correlation between genes upregulated in DN and
the response to serum, EGF and VEGF. The observation that
glomerular cells express higher levels of growth factor target
genes in DN than in normal kidneys suggests that DN kidneys
may be coping adequately with lower VEGF expression. The
molecular etiology of DN may, therefore, lie elsewhere.

Three novel themes emerged from the comparison with the
L2L Microarray Database of genes downregulated in DN.
Firstly, many of these genes are induced by interferon - nine
lists related to interferon and the viral response overlap very
significantly with the list of genes repressed by DN (p values
from 2e-4 to 2e-14). Perhaps related to this, genes downregu-
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lated in DN also significantly overlap with genes induced by
tumor necrosis factor (TNF)a (p = 5e-5). Secondly, hypoxia-
induced genes are repressed in DN - five lists have p values
from 8e-3 to 8e-6. Thirdly, and most surprisingly, five lists of
genes upregulated in adipocyte differentiation and function
overlap with genes repressed by DN (p values from 2e-3 to 2e-
7), whereas two lists of genes downregulated during adi-
pocyte differentiation correlate with genes upregulated in DN
(p = 0.002 and 0.0008).

The relationship between genes repressed in DN and genes
induced by interferon (IFN) illustrates an important caveat
regarding tissue-based microarray experiments: the com-
plexity of the tissue itself makes it difficult to determine
whether the results reflect changes in expression within
glomerular cells, a different degree of leukocyte contamina-
tion, or even changing gene expression within those leuko-
cytes. The latter two scenarios are consistent with previous
findings of dysfunctional cell-mediated immunity in diabetes
[38-41]. The association of genes repressed by DN with those
induced by TNFo may be interpreted in this context as well,
because at least one study suggested poor response to TNFo
as one reason for the immune deficiency in T2DM [39]. Since
no cytokines appear on the list of differentially expressed
genes, these data suggest - supposing the gene expression
changes reflect contaminating leukocytes - that a poor tran-
scriptional response of leukocytes to cytokines may cause the
immune deficiency in T2DM.

The most widely accepted theory of pancreatic B-islet cell dys-
function in T2DM is that a variety of inflammatory signals
from diet, adipocytes and the immune system combine to
trigger apoptosis in those cells [42,43]. Two of the most
important signals are thought to be TNFo from adipocytes
and IFNy from leukocytes. It is intriguing, therefore, that
while the L2L analysis found downregulation of IFNy- and
TNFo-induced genes in DN, the GO:Biological Process analy-
sis specifically identified the downstream apoptotic effectors
of these two cytokines (JAK/STAT for IFNy, IkK/NF«B for
TNFa) as also downregulated in DN. So rather than being an
artifact of leukocyte contamination, these results could reflect
reduced sensitivity to the blood-borne inflammatory signals
that, in sensitive pancreatic islets, trigger B-islet cell apopto-
sis - the hallmark of the underlying disease.

The second theme - a poor hypoxic response - suggests a tran-
scriptional defect more specific to glomerular cells. At first
glance, the direction of this correlation is surprising: DN kid-
neys should already be under hypoxic stress if poor angiogen-
esis and endothelial dysfunction are partially responsible for
DN. However, this effect is apparently swamped by the
ischemia experienced by all kidneys following extraction,
before RNA is harvested. Although all kidneys were handled
identically, hypoxia-response genes were more strongly
induced in the normal controls. This could suggest that DN

Genome Biology 2005, 6:R81
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] NF-kappaB cascade Up  L2LMDB adip_vs_preadip_dn 7.5 2.0e-3
Down GO:Biol JAK-STAT cascade 4.3 1.9e-4

Figure 4

L2L analysis of gene expression changes in diabetic nephropathy (DN). (a) Three major conclusions of Baelde et al. [36] revisited. L2L finds support for
cytoskeletal dysfunction, but no evidence of reduced nucleotide metabolism. Evidence for the central thesis, reduced tissue repair capacity, is mixed. L2L
found reduced expression of IGF-binding proteins, suggesting a defect in response to these growth factors. However, L2L also found a correlation
between genes repressed by the serum-response and genes downregulated in DN, as well as a correlation between genes upregulated in DN and genes
induced by EGF and VEGF - despite reduced expression of VEGF itself in DN kidneys. (b) Three new biological themes in DN found by L2L. 1. Interferon,
TNFo, and their associated apoptotic pathways are all downregulated in DN. 2. The hypoxia response is impaired in DN. 3. Pathways associated with
adipogenesis and adipocyte function are downregulated in DN. Complete results, along with descriptions and annotations for all lists, can be found on the
L2L website [6]. Red or green denote reduced or increased expression, respectively, in DN or in the condition represented by a list.
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glomeruli are already stressed, and unable to respond fully to
further stress. The result could be a downward spiral of
increasing damage and reduced function.

Adipogenesis, the third theme, also seems puzzling at first.
Why would adipocyte differentiation genes be differentially
regulated in kidney glomeruli? Another hallmark of diabetes
is deranged adipocyte function - adipocytes are insulin-resist-
ant, have diminished capacity to store fat, and secrete exces-
sive amounts of inflammatory cytokines and free fatty acids
[44]. Such dysfunctional adipocytes may be primarily respon-
sible for creating the chronic inflammatory state that brings
about overt disease [45]. Adipocytes are also one of the pri-
mary targets of the most widely used class of antidiabetic
drugs. Thiazolidinediones (TZDs) are agonists of PPARY, a
transcription factor required for early adipocyte differentia-
tion. TZDs can help restore normal adipocyte function in dia-
betics [46]. The dysregulation of adipocyte differentiation
genes, therefore, may be another fingerprint of the underly-
ing disease, indicating either the dysfunction of contaminat-
ing adipocytes in the glomeruli preparations, or a surprising
sensitivity of glomerular cells to the same dyslipidemic sig-
nals that perturb adipocyte function in diabetics. Interest-
ingly, a microarray analysis of a mouse model of DN,
contemporary with this human study, found deregulation of a
number of lipid homeostasis genes [47].

Taken together, the L2L results demonstrate the importance
of considering T2DM and its complications as part of a single,
integrated disease process. The fingerprints of the underlying
disease - inflammatory factors and adipocyte dysfunction -
are readily detectable in kidney glomeruli, and suggest that
the same factors that cause B-islet cell and adipocyte dysfunc-
tion are responsible for glomerular dysfunction as well. In
fact, PPARY is expressed in rodent glomeruli [48,49] and
treatment with a TZD enhances renal function in both rats
and humans [50-52]. It would be interesting to determine
which dyslipidemic signals affect DN glomeruli; how those
signals are transduced in glomerular cells; and whether the
result is abnormal intracellular lipid accumulation [47], or
direct inhibition of glomerular function by activation of spe-
cific intracellular signaling pathways [50] - either of which
might prevent glomerular cells from responding to normal
growth and stress signals.
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L2L and the genomics of ageing

Deregulation of gene expression is now thought to underlie
many of the effects of ageing in a variety of organisms, includ-
ing humans. There is a well-defined link between human age-
ing and disruption of normal DNA methylation patterns [53-
55]. A 'unified theory of ageing' has even been proposed,
which asserts that 'the progressive and patterned alteration of
chromosome structure is the primary cause of ageing' [56].
Other investigators have suggested that such transcriptional
deregulation is a programmed response to stresses that
increase with age [57], the stochastic result of failed genome
maintenance [58], or the specific result of the disruption of
some critical (but unknown) cellular function [59,60].

We analyzed two recent gene expression studies of the ageing
human brain, to see if there were common patterns in the
transcriptional deregulation. Lu and colleagues [61] found
significant gene expression changes in the frontal cortex of
individuals from 26 to 106 years of age. Genes involved in
synaptic plasticity, vesicular transport and mitochondrial
function were downregulated, while stress-response, antioxi-
dant and DNA repair genes were upregulated. They found
increased DNA damage at the promoters of downregulated
genes, leading them to suggest that 'DNA damage may reduce
the expression of selectively vulnerable genes involved in
learning, memory and neuronal survival, initiating a pro-
gramme of brain ageing that starts early in adult life'. Blalock
and colleagues [62] correlated hippocampal gene expression
with histological and clinical markers of Alzheimer's disease
(AD). They found a large number of genes whose expression
changes correlate with either or both incipient and overt dis-
ease, and suggest that the pathogenesis of AD is 'genomically
orchestrated'. EASE analysis [2] showed that growth, differ-
entiation and tumor suppressor pathways are upregulated
early in the disease process, while protein-processing path-
ways are downregulated.

Using Gene Ontology lists, L2L quickly replicated the EASE
results of Blalock et al. (the complete analysis is available on
the LaL website [6]). Using the L2L. Microarray Database,
L2L also revealed a novel link between AD and the hypoxia
response. Genes upregulated with overt AD overlapped sig-
nificantly with two lists of genes upregulated in myocardium
during heart failure (p values 2e-5 and 8e-10) and three lists
of genes specifically induced by hypoxic stress (p values
0.002 to 0.005). Moreover, genes downregulated with overt
AD overlapped with two lists of genes downregulated in heart
failure (p values 0.004 and 5e-5).

Figure 5 (see following page)

L2L analysis of gene expression changes in two studies of the ageing human brain. Lists of differentially expressed genes from Lu et al. (ageing_brain) [61]
and Blalock et al. (alzheimers_disease and alzheimers_incipient) [62] were compared with all ageing-related lists in the L2L Microarray Database, including
each other (all data are available on the L2L website [6]). Numbers represent binomial p values for significance of overlap. Green denotes overlap between
lists of genes upregulated with ageing; red denotes overlap between lists of genes downregulated with ageing; black denotes overlap between lists of

contrary directions; yellow denotes self-self comparisons.
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Figure 5 (see legend on previous page)
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Most intriguing, though, was that analysis of these two data-
sets with the L2L Microarray Database showed a surprisingly
consistent overlap in gene expression with each other and
with a variety of other ageing-related studies, suggesting that
models of mammalian ageing exhibit a common transcrip-
tional pattern (Figure 5). The database currently contains a
total of 39 ageing-related lists, including the six lists derived
from these two studies. Querying those six lists produced 29
instances of significant overlap (p < 0.01) with other ageing-
related lists (encompassing 17 of the 39). Furthermore, 24 of
the 29 overlaps were in the expected direction (up-up or
down-down). In particular, the degree of overlap between
these two datasets was dramatic. When the dataset of Lu et al.
was compared with the database, genes upregulated in the
ageing human brain overlapped very significantly with genes
upregulated in incipient (p = 1e-11) and overt (p = 3e-11) AD.
Conversely, genes downregulated in the ageing human brain
overlapped genes downregulated in incipient (p = 7e-6) and
overt (p = 1e-23) AD. Querying the database with the data of
Blalock et al. produced similar results (p values ranging from
5e-5 to 8e-27), as well as demonstrating the enormous over-
lap between the incipient AD and overt AD datasets (p values
from 2e-89 to 2e-211). Other significant overlaps were found
with the progeroid Werner syndrome [60], caloric restriction
in mice [63] and rhesus monkeys [64], ageing monkey muscle
[64] and ageing mouse brain [65,66].

Although patterns of related gene expression changes were
easily found in a variety of ageing models, we could not clearly
define a set of age-regulated genes. A small group of genes
was commonly regulated in the two human studies we exam-
ined, but none was also consistently regulated in studies of
mouse or monkey models, or even in human studies of other
tissue types. Indeed, when only those genes that are com-
monly regulated in human brain were queried against the L2L
Microarray Database, no significant overlaps were found
except with the studies from which they were derived. Taken
together, these data suggest that while transcriptional dereg-
ulation is a fundamental feature of cellular ageing pheno-
types, the detailed transcriptional profiles are tissue-specific
and perhaps, to some degree, stochastic. Thus, ageing-related
gene expression changes in different tissues and models are
sufficiently similar to suggest a common underlying mecha-
nism, perhaps DNA damage to sensitive promoters [61] or
failure to maintain chromatin structure [67]; however, differ-
ences between the profiles suggest that the specific genes
deregulated in each situation must be drawn from a larger
pool of genes exhibiting varying degrees of vulnerability to
deregulation. This illustrates both the danger of relying too
heavily on a 'critical genes' approach to explain ageing pheno-
types, as well as the hope that there may well be a common
underlying mechanism of transcriptional dysregulation wait-
ing to be elucidated.

Newman and Weiner
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Reliability of L2L results

The question remains as to whether the results of an L2L
analysis can be trusted. These concerns fall into two major
categories, which might be described as qualitative and quan-
titative. The qualitative concern is whether the lists of differ-
entially expressed genes in the database are trustworthy, and
if comparison to a user's data can be meaningful. The quanti-
tative concern is whether the statistics we use to judge the
significance of the overlaps between a user's data and lists
from the database provide a useful metric of biological
meaning.

Could a small amount of poorly analyzed or biased data in the
LaL database poison the well for all who drink? Much like the
scientific process as a whole, L2L takes a distributed-compe-
tence approach, augmented by independent replication and
careful statistical analysis, to mitigate this concern. Our
working assumption is that investigators themselves are best
qualified to judge the quality of their own data, and that pub-
lished lists usually include only those genes for which a
change call can be assigned with a reasonable probability. We
augment this assumption by including in the database,
whenever possible, microarray datasets generated by inde-
pendent groups that have addressed the same or a closely
related question. Given the noise inherent in any microarray
experiment, a user can feel much more secure interpreting
results which reflect overlap with several related database
lists from different sources, rather than idiosyncratic overlap
with just one list. Finally, L2L calculates a p value for each
comparison that provides a quantitative assessment of the
significance of an overlap. If an experiment is contaminated
with random data due to experimental error or systematic
bias, the likelihood of the L2L list derived from that experi-
ment overlapping significantly with any other experimental
data would be purely stochastic - unless both experiments
suffer from a common systematic bias. For example, we per-
formed a 10,891-trial simulation with randomized data to
help validate our sample analysis of diabetic nephropathy.
The odds of achieving a p value below 0.05 with random data
was no greater than 0.05 for any list in the database, and as
low as 0.001 (see supplemental data on the L2L website [6]).
In the absence of common systematic bias, therefore, random
data are very unlikely to produce spuriously significant L2L
results.

There are two major potential sources of systematic bias:
genes that are considered a priori to be 'interesting' or
'critical’ based on previous data or theory, and platform-spe-
cific bias. Certain often-studied, well-understood genes - the
very kind that lend themselves to 'critical gene' hypotheses -
are represented on virtually all microarray platforms, and
thus could be more likely to be found in random data acquired
with any platform. Certain genes may also be more likely to be
flagged as differentially expressed on a particular type of chip,
perhaps because the chip is more sensitive to small variations
at particular expression levels or because of probe-specific

Genome Biology 2005, 6:R81
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Sample data subjected to p value adjustment by Bonferroni correction or random-data simulation

Actual diabetic nephropathy (downregulated) data

Random-data simulation (10,891 trials)

Name of L2L database list Total Expected Actual Binomial p Hypergeometric Poissonp Bonferroni-  Median p value (list-  p value (all FDR of
U95Av2  matches  matches value p value value adjusted  binomial p  specific) of lists) of actual
probes on binomial p value actual actual binomial p
list value binomial p  binomial p value
value value
ifn_beta_up 135 5.83 31 1.9E-14 4.3E-14 6.7E-12 0.53 <9.2E-05 <2.6E-07 <9.2E-06
ifn_alpha_up 11 4.79 28 2.7E-14 1.4E-14 6.1E-14 9.5E-12 0.52 <9.2E-05 <2.6E-07 <9.2E-06
ifn_all_up 73 3.15 19 2.0E-10 1.4E-10 1.9E-10 7.0E-08 0.61 <9.2E-05 <2.6E-07 <9.2E-06
nf90_up 59 2.55 17 3.1E-10 2.3E-10 2.9E-10 1.1E-07 0.73 <9.2E-05 <2.6E-07 <9.2E-06
ifnalpha_both_up 36 1.55 13 1.6E-09 1.3E-09 1.3E-09 5.9E-07 0.80 <9.2E-05 <2.6E-07  <9.2E-06
adip_diff_cluster2 43 1.86 12 1.8E-07 1.5E-07 9.0E-08 6.6E-05 0.56 <9.2E-05 <2.6E-07 <9.2E-06
emt_up 104 4.49 18 5.1E-07 3.4E-07 2.9E-07 1.8E-04 0.66 <9.2E-05 <2.6E-07 <9.2E-06
hpv3l_dn 69 2.98 14 1.3E-06 9.6E-07 6.2E-07 4.6E-04 0.58 <9.2E-05 2.6E-07 9.2E-06
ifnalpha_either_up 83 3.58 15 2.5E-06 1.8E-06 1.2E-06 9.0E-04 0.70 <9.2E-05 1.3E-06 4.2E-05
adip_vs_fibro_up 55 2.38 12 3.2E-06 2.5E-06 1.4E-06 1.2E-03 0.69 <9.2E-05 1.5E-06 4.6E-05
hypoxia_normal_up 243 10.49 27 8.3E-06 5.5E-06 3.0E-03 0.60 9.2E-05 3.9E-06 9.8E-05
hypoxia_reg 60 2.59 12 8.5E-06 6.5E-06 3.5E-06 3.0E-03 0.74 <9.2E-05 4.4E-06 9.8E-05
tnfalpha_adip_up 17 0.73 6 5.3E-05 4.8E-05 1.2E-05 0.019 0.53 <9.2E-05 2.2E-05 3.4E-04
cmv_up 88 3.80 13 1.0E-04 7.4E-05 4.5E-05 0.037 0.53 <9.2E-05 3.8E-05 5.1E-04
vhl_normal_up 230 9.93 23 1.8E-04 1.1E-04 0.066 0.53 1.8E-04 6.9E-05 7.9E-04
dsrna_up 48 2.07 9 1.9E-04 1.5E-04 6.2E-05 0.068 0.62 2.8E-04 7.4E-05 8.2E-04
tnfalpha_tgz_adip_up 23 0.99 6 3.5E-04 3.0E-04 8.0E-05 0.12 0.64 5.5E-04 1.5E-04 1.4E-03
tgz_adip_up 26 1.12 6 7.1E-04 6.1E-04 1.7E-04 0.25 0.68 5.5E-04 2.9E-04 2.4E-03
hifl _targets 60 2.59 9 1.0E-03 7.9E-04 3.7E-04 0.37 0.74 6.4E-04 4.5E-04 3.6E-03
adip_vs_preadip_up 53 2.29 8 1.9E-03 1.4E-03 6.2E-04 0.67 0.67 1.7E-03 9.3E-04 6.2E-03
serum_fibroblast_core_dn 148 6.39 14 5.1E-03 2.5E-03 | 0.62 4.2E-03 2.4E-03 0.013
hypoxia_fibro_up 29 1.25 5 7.5E-03 6.1E-03 1.9E-03 | 0.72 7.3E-03 3.5E-03 0.018

n/a, calculation too complex to perform precisely.

effects. If any systematic bias exists, it could only represent a
higher likelihood of a random change in signal for that gene
or probe - the chip does not know whether the control or
experimental RNA is washed onto it, or with which dye color.
So proper experimental design and data analysis should elim-
inate these false-positives before a user turns to L2L. The
same applies to the published data from which the L2L lists
are derived. If any false-positive genes do persist on database
lists, the fact that L2L separately analyzes 'up' and 'down' lists
mitigates their impact, because they will be randomly distrib-
uted between the two lists. These separate lists also provide
great potential assurance for the user, if the up' and 'down’
lists in the user's data both correlate significantly and respec-
tively with the 'up' and 'down' lists (or vice versa) for a partic-
ular condition in the database (see Figure 4b, diabetic
nephropathy and adipogenesis). The inclusion of data from
independent groups can provide further assurance, because
the same set of randomly changing genes is unlikely to be
found in independent datasets from different platforms. Still,
both sources of systematic bias can be directly addressed in a
future release of L2L by more sophisticated statistical analy-
sis algorithms. Each list in the database is annotated with the

platform that produced it, so the frequency of occurrence of
genes among lists from a given platform (platform-specific
bias) as well as the overall occurrence of genes in the database
(bias toward 'interesting genes') could be used to weight the
contribution of each gene match to the overall significance of
the overlap between two lists.

Statistical considerations

If we accept in principle that measuring the overlap between
a user's list and the various lists in the L2L database can pro-
duce biological insights, we still must resolve how to quantify
that overlap with a meaningful statistic that provides at least
a relative gauge of which overlaps deserve the most attention.
Three major considerations are the choice of statistic, the
multiple-hypothesis problem, and the issue of p value
inflation. We performed a variety of analyses on our sample
dataset of genes downregulated in diabetic nephropathy in
order to determine how well the relatively simple binomial
distribution calculation performs under real-world circum-
stances. The results for a selection of 22 lists, those upon
which we based our conclusions about diabetic nephropathy,
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are presented in Table 1. Complete results for all lists, and
more detailed information about how these analyses were
performed, are available on the L2L website [6].

The essential task for a statistical test in over-abundance
analysis is to quantify how surprised we should be to see a
particular degree of overlap or, conversely, how likely it is that
the overlap occurred by chance. If the likelihood of success in
atrial is p , and we perform n trials, what are the odds that we
will see m or more successes? In the case of L2L, n is the
number of probes that map to a list in the database, and p is
the likelihood that any one of them will be found in the data
by chance - the proportion of probes in the user's data out of
all the probes on the microarray. A 'trial' tests whether one of
the n probes derived from a database list is found in the user's
data; success is a match. The binomial distribution permits
the exact calculation of the odds of achieving a particular
number of matches out of n trials. The cumulative probability
of achieving m or more matches is found as follows:

m-1 n nex
Ppinom =1- Z (xJpx(l_p)
xX=0

L2L uses the Double Precision Cumulative Distribution Func-
tion Library (DCDFLIB) [68], implemented in the Math::CDF
Perl module [69], to compute binomial probabilities. The
binomial distribution performs trials with replacement - the
odds of scoring a success remain constant for all trials. In
reality, a probe can only be selected once, so the hypergeo-
metric distribution, which calculates probabilities without
replacement, is more accurate. However, it is more difficult to
calculate than the binomial distribution, and in any event
approaches the binomial distribution at large values of n and
m, where replacement has little impact on the odds of the next
trial. Alternatively, the Poisson distribution is easier to calcu-
late than the binomial distribution, and approaches it where
values of n are large and p small (as in most L2L analyses)
[70]. In our sample dataset of genes upregulated in diabetic
nephropathy, the p values calculated from the hypergeomet-
ric distribution or Poisson distribution closely followed those
calculated from the binomial distribution (Table 1; compare
columns 5, 6 and 7). We therefore chose to use the binomial
distribution as a reasonable compromise between accuracy
and computational requirements.

The multiple-hypothesis problem is that when testing a large
number of hypotheses simultaneously - here, that each of the
hundreds of lists in the L2L database might overlap signifi-
cantly with the user's data - the odds of producing a low p
value by chance become substantial [71]. For example, with
357 lists in the L2L database, we might expect purely random
data to produce about 18 'significant’ overlaps with p values
<0.05 (357 * 0.05). There are two common approaches that
either reduce the odds of seeing any such false-positive p val-
ues, or mitigate their effect. The former approach is to control
the family-wise error rate, usually by applying some adjust-
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ment to the calculated p values. This adjustment can be the
same for all p values (termed 'single-step’) or can vary as we
evaluate each p value in order ('step-down' or 'step-up'). The
single-step Bonferroni is the most common adjustment, and
is simply the multiplication of the p value by the number of
hypotheses (p * n, n being 357 in this case). We found the
Bonferroni adjustment to be excessively conservative, based
on the simulation-adjusted p values and false discovery rate
(see below, and Table 1). The single-step Sidak, which uses
the adjustment (1 - (1 - p )*n ), produced near-identical
results to the Bonferroni for low p values. Since n has a large
initial value, step-down procedures for these two adjustments
- where n is decremented by 1 as we adjust each p value in
ascending order - did not produce substantially different
adjusted p values.

An attractive alternative to simple adjustments based on the
number of hypotheses is to perform simulations with random
data, and adjust p values based on their frequency of occur-
rence among the random results. We therefore undertook a
10,891-trial simulation using datasets of the same size as our
diabetic nephropathy sample (513 probes), drawn randomly
from all the probes on the UgsAv2 microarray (10,877
probes). We used true random numbers from Random.org
[72] for all simulations. As expected, the median binomial p
value calculated from these random data was not significant
for any list (Table 1, column 9). We compared each p value
from the actual sample data to the simulation-generated p
values for that specific list, and for all lists together. In both
cases, the frequency of occurrence of a p value equal to or less
than the actual p value (that is, the simulation-adjusted p
value) was generally lower than the actual p value (Table 1).
This shows that, at least for the diabetic nephropathy dataset
on the UgsAv2 platform, a simple calculation of p values
based on the binomial distribution gives a good approxima-
tion of the actual likelihood of seeing an overlap by chance.
The capability to perform a simulation analysis will be
included in a future release of the downloadable L2L applica-
tion. However, the utility of a simulation analysis is propor-
tional to the number of trials run, because an adjusted p value
cannot be lower than (1/number of trials). Each 'trial' is a full-
fledged L2L analysis, so a 10,000-trial simulation takes four
orders of magnitude longer to run than a single analysis, not
considering the time required to create random datasets. The
computational requirements are therefore daunting, and pre-
clude it from being practical in a web-based tool.

All such p value adjustments, however they are made, aim to
reduce the chances of seeing any false positives. They can
therefore be too conservative if, as in most biological ques-
tions, permitting a few false-positives is a reasonable trade-
off for seeing more true data. The false-discovery rate (FDR)
is an increasingly popular approach to the multiple-hypothe-
sis problem that mitigates the effect of false-positives by esti-
mating how many there are at a given level of significance,
rather than trying to eradicate them [73]. It can therefore be
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Table 2

Sample data subjected to permutation analysis or comparison by gene symbol instead of probe ID

10% Data permutation (10,891 trials) Comparison by gene symbol

Name of L2L database list Binomial p Median p value (list- p value (all FDR of actual ~ Total gene Expected Actual Binomial p

value (actual)  permutation specific) of lists) of actual binomial p  symbols on list matches matches value

binomial p  actual binomial binomial p value
value p value value

ifn_beta_up 1.9E-14 4.7E-12 0.10 3.2E-03 0.58 93 4.46 25 1.3E-12
ifn_alpha_up 2.7E-14 1.4E-12 0.11 3.5E-03 0.31 71 341 22 I.2E-12
ifn_all_up 2.0E-10 1.1E-08 0.20 0.011 0.80 48 2.30 14 3.5E-08
nf90_up 3.1E-10 2.7E-09 0.21 0.012 0.70 37 1.78 11 8.3E-07
ifnalpha_both_up 1.6E-09 2.0E-08 0.28 0.014 0.70 21 1.01 8 3.3E-06
adip_diff_cluster2 1.8E-07 1.5E-06 0.32 0.019 0.86 30 1.44 9 7.7E-06
emt_up 5.1E-07 2.4E-06 0.25 0.021 0.84 68 3.26 11 3.8E-04
hpv3l_dn 1.3E-06 7.2E-06 0.30 0.022 0.79 49 235 9 4.8E-04
ifnalpha_either_up 2.5E-06 1.2E-05 0.30 0.025 0.83 50 2.40 9 5.6E-04
adip_vs_fibro_up 3.2E-06 2.0E-05 0.34 0.027 0.79 35 1.68 4 0.085
hypoxia_normal_up 8.3E-06 6.3E-05 0.24 0.030 0.77 168 8.06 23 6.5E-06
hypoxia_reg 8.5E-06 4.7E-05 0.35 0.031 0.74 39 1.87 9 7.7E-05
tnfalpha_adip_up 5.3E-05 5.3E-05 0.54 0.048 0.75 8 0.38 | 0.33
cmv_up 1.0E-04 4.1E-04 0.37 0.056 0.74 59 2.83 I 1.0E-04
vhl_normal_up 1.8E-04 4.6E-04 0.31 0.065 0.78 155 7.44 19 1.8E-04
dsrna_up 1.9E-04 9.7E-04 0.45 0.068 0.75 33 1.58 8 1.3E-04
tnfalpha_tgz_adip_up 3.5E-04 3.5E-04 0.54 0.079 0.78 I 0.53 | 0.42
tgz_adip_up 7.1E-04 7.1E-04 0.55 0.093 0.77 14 0.67 | 0.50
hifl _targets 1.0E-03 4.2E-03 0.46 0.10 0.80 34 1.63 6 5.2E-03
adip_vs_preadip_up 1.9E-03 7.6E-03 0.49 0.12 0.80 35 1.68 3 0.24
serum_fibroblast_core_dn 5.1E-03 0.012 0.42 0.16 0.87 114 5.47 9 0.098
hypoxia_fibro_up 7.5E-03 7.5E-03 0.62 0.17 0.86 22 1.06 3 0.086

substantially more powerful than controlling the family-wise
error rate. We used our random-data simulation to calculate
the FDR at all levels of significance by dividing the average
number of random occurrences of a p value less than or equal
to a given number by the number of occurrences in the actual
data of a p value less than or equal to that number. Column 12
of Table 1 shows that if we use the least significant binomial p
value of our 22 sample lists (0.0075) as a cutoff, only 2% of
the lists with equal or lower p values are expected to be false
positives. Overall, a binomial p value of 0.05 corresponded to
an FDR of about 10%, and 0.01 to 2.5%. The capability to cal-
culate FDR from simulation data will be included in a future
version of the downloadable L2L application, but these sam-
ple data suggest that the simple and economical binomial cal-
culation of L2L, with a rough p value threshold of 0.05-0.01,
strikes a reasonable balance between stringency and power.

Finally, we must address the issue of p value inflation: the
generation of p values that, while genuinely statistically sig-
nificant, are devoid of biological meaning. One way this can
occur is through the statistics of small numbers - the
anthropic principle of over-representation analysis. When
only very few genes in the universe being tested possess a

given characteristic, even one occurring in the data may be
calculated as highly significant. Unlike a Fisher's exact test,
the binomial distribution makes no explicit accommodation
for small numbers. However, in creating L2L we assumed
that comparisons with very short database lists would not be
meaningful, and excluded lists (including those generated
from GO annotations) with fewer than five genes. For a mod-
erately sized dataset like our sample (513 genes), two out of
five probes must match the data for a significant p value
(0.01) to be generated. For much smaller datasets, only a sin-
gle matching probe could produce a significant p value (for 50
genes, 0.02). However, the goal of L2Lis to tease out complex
patterns of gene expression that might be produced by a kalei-
doscope of pathways. There is simply too small a signal
among a few dozen genes to identify meaningful patterns,
unless the investigator is certain that only a single pathway is
at work - in which case L2L is unlikely to be helpful anyway.
We therefore intend L2L to be used with relatively large data-
base lists and relatively larger datasets, and in such circum-
stances the dangers of small numbers should be minor. We
quantitatively tested the robustness of L2L's results by per-
forming a 10,891-trial permutation simulation. In each trial,
52 probes from the sample data (10%) were thrown out and
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replaced with 52 different probes drawn randomly from the
universe of the U95Av2 microarray. We found that the
median p values generated by the permutations were only
slightly reduced from the actual values. In no case was the
actual p value a significant outlier among the permuted data:
all had list-specific p values of >0.05, most with FDRs of 70-
80% (Table 2).

The second potential source of p value inflation arises from
the universal nature of the database. The common language,
HUGO symbols, must be translated to platform-specific
probe identifiers for the user's microarray. If only a handful of
genes in a database list are represented on the microarray,
and one of those genes happens to be represented by several
probes, all of which are differentially expressed in the user's
experiment, the list will generate a highly significant p value
on the questionably narrow basis of that single gene. A user
can see on a Listmatch page exactly which genes or probes
created a small but significant overlap, and judge if it appears
to be an artifact of translation. Users should be particularly
wary of genes used as hybridization controls. We re-analyzed
our diabetic nephropathy sample data without probe transla-
tion, using only gene symbols (Table 2). Several of the 22
sample lists dropped out of statistical significance; most of
these were due to STAT1, an Affymetrix hybridization control,
being represented by six probes in the data. Users may wish
to remove control probes from their data before analyzing it
with L2L. A future release of L2L will incorporate a directed-
permutation algorithm into the statistical analysis to ensure
that a reported p value is not overly reliant on a single gene.

L2L is a unique microarray analysis tool

The idea of finding the overlap between two lists of differen-
tially expressed genes, like the idea of a central repository of
microarray data, dates to the earliest microarray experi-
ments. One of its earliest expressions was through Venn dia-
grams that compare differentially expressed genes within a
single series of experiments. Global clustering of microarrays
is a more sophisticated, and more popular, example of this
sort of comparative analysis [74], and has proven its worth for
class discovery - for example, defining new, and potentially
biologically relevant, subspecies of tumors [75,76]; and for
class prediction - for example, predicting the behavior and
susceptibility to therapy of a tumor by comparison to tumors
with known outcomes [77,78]. However, the simpler pair-
wise approach of L2L has the advantages of extending well
across different platforms and not requiring access to raw
data - only to lists of differentially expressed genes. It is well
suited, therefore, to its task of finding common patterns
between diverse gene expression studies, and enabling bio-
logical inferences to be drawn from the commonalities it
finds.

VennMapper, created by Smid et al. , is one recent attempt in
this direction [32]. It is a software tool that identifies overlaps
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in lists of differentially expressed genes (defined by an arbi-
trary fold-change cutoff) from user-supplied heterologous
datasets, and calculates the statistical significance of the
results using a z-value derived from a normal binomial distri-
bution. The statistical approach is similar to that used by a
variety of data mining tools that examine a list of genes for
over-representation of GO categories, like GOMiner, EASE,
Onto-Express and GO::TermFinder [2-5]. VennMapper and
EASE, like the L2L Microarray Analysis Tool, are really gen-
eral-purpose tools for comparing any given list of genes with
any other list of genes. The authors of both tools suggest
extending their use to comparing a user's data with
‘previously published gene lists' [2], or 'comparing microar-
ray data studying apoptosis, hypoxia, etc. with microarray
data focusing on clinical backgrounds, like cancer, (viral)
infections or neurological disease' [32]. L2L was conceived
and developed independently of either of these tools, but fills
the need that their authors, and others, have identified. More-
over, it does so in a way that is at once flexible, powerful, and
extensible, yet simple enough to be accessible to every user of
microarrays.

Acknowledgements

We are indebted to Roger Bumgarner of the University of Washington
Center for Expression Arrays for generous support, suggestions and cri-
tiques throughout. We are also grateful for the support of Peter Rabinovich
and the Nathan Shock Center of Excellence for the Basic Biology of Aging,
at the University of Washington. This work was supported by the NIGMS
Medical Scientist Training Program, a fellowship from the Cora May Poncin
Foundation (J.C.N), and by NIH GM41624 (A.M.W.).

References

. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry |M,
Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology:
tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 2000, 25:25-29.

2. Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA: Iden-
tifying biological themes within lists of genes with EASE.
Genome Biol 2003, 4:R70.

3.  ZeebergBR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Nar-
asimhan S, Kane DWV, Reinhold WC, Lababidi S, et al.: GoMiner: a
resource for biological interpretation of genomic and pro-
teomic data. Genome Biol 2003, 4:R28.

4. Khatri P, Draghici S, Ostermeier GC, Krawetz SA: Profiling gene
expression using onto-express. Genomics 2002, 79:266-270.

5. Boyle El, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G:

GO:: TermFinder - open source software for accessing Gene

Ontology information and finding significantly enriched

Gene Ontology terms associated with a list of genes. Bioinfor-

matics 2004, 20:3710-3715.

L2L Microarray Analysis Tool [http://depts.washington.edu/I2l/]

Microarray Gene Expression Data Society - MGED Society

[http://www.mged.org]

8. Brazma A, Hingamp P, Quackenbush ], Sherlock G, Spellman P,
Stoeckert C, Aach |, Ansorge W, Ball CA, Causton HC, et al.: Mini-
mum information about a microarray experiment (MIAME)-
toward standards for microarray data. Nat Genet 2001,
29:365-371.

9.  Spellman PT, Miller M, Stewart ], Troup C, Sarkans U, Chervitz S,
Bernhart D, Sherlock G, Ball C, Lepage M, et al.: Design and imple-
mentation of microarray gene expression markup language
(MAGE-ML). Genome Biol 2002, 3:RESEARCH0046.

10. Ikeo K, Ishi-iJ, Tamura T, Gojobori T, Tateno Y: CIBEX: center for
information biology gene expression database. C R Biol 2003,
326:1079-1082.

No

Genome Biology 2005, 6:R81


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14519205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14519205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11829497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11829497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://depts.washington.edu/l2l/
http://www.mged.org
http://www.mged.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744116

http://genomebiology.com/2005/6/9/R81

18.
19.

20.

21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31

32.

33.
34.
35.

36.

37.

38.

Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo ], Abeyguna-
wardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, et al.:
ArrayExpress - a public repository for microarray gene
expression data at the EBI. Nucleic Acids Res 2003, 31:68-71.
Rhodes DR, Yu ], Shanker K, Deshpande N, Varambally R, Ghosh D,
Barrette T, Pandey A, Chinnaiyan AM: ONCOMINE: a cancer
microarray database and integrated data-mining platform.
Neoplasia 2004, 6:1-6.

Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus:
NCBI gene expression and hybridization array data
repository. Nucleic Acids Res 2002, 30:207-210.

Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP:
Summaries of Affymetrix GeneChip probe level data. Nucleic
Acids Res 2003, 31:el5.

Wain HM, Lush M), Ducluzeau F, Khodiyar VK, Povey S: Genew: the
Human Gene Nomenclature Database, 2004 updates. Nucleic
Acids Res 2004, 32(Database issue):D255-D257.

Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lem-
picki RA, Raaka BM, Cam MC: Evaluation of gene expression
measurements from commercial microarray platforms.
Nucleic Acids Res 2003, 31:5676-5684.

The Cancer Genome Anatomy Project Batch Gene Finder
[http://cgap.nci.nih.gov/Genes/BatchGeneFinder]

MatchMiner [http://discover.nci.nih.gov/matchminer/index.jsp]
NCBI HomoloGene [http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi’lDB=homologene]

Xenarios |, Salwinski L, Duan X], Higney P, Kim SM, Eisenberg D: DIP,
the Database of Interacting Proteins: a research tool for
studying cellular networks of protein interactions. Nucleic
Acids Res 2002, 30:303-305.

KEGG BRITE Database [http://www.genome.jp/brite/]

Bader GD, Betel D, Hogue CW: BIND: the Biomolecular Inter-
action Network Database. Nucleic Acids Res 2003, 3 1:248-250.
The Cancer Genome Anatomy Project - Pathways [http:/
cgap.nci.nih.gov/Pathways]

Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR:
GenMAPP, a new tool for viewing and analyzing microarray
data on biological pathways. Nat Genet 2002, 31:19-20.

Segal E, Friedman N, Koller D, Regev A: A module map showing
conditional activity of expression modules in cancer. Nat
Genet 2004, 36:1090-1098.

Jenssen TK, Laegreid A, Komorowski |, Hovig E: A literature net-
work of human genes for high-throughput analysis of gene
expression. Nat Genet 2001, 28:21-28.

Glenisson P, Coessens B, Van Vooren S, Mathys |, Moreau Y, De
Moor B: TXTGate: profiling gene groups with text-based
information. Genome Biol 2004, 5:R43.

Ge H, Liu Z, Church GM, Vidal M: Correlation between tran-
scriptome and interactome mapping data from Saccharo-
myces cerevisiae. Nat Genet 2001, 29:482-486.

Jansen R, Greenbaum D, Gerstein M: Relating whole-genome
expression data with protein-protein interactions. Genome
Res 2002, 12:37-46.

Kemmeren P, van Berkum NL, Vilo |, Bijma T, Donders R, Brazma A,
Holstege FC: Protein interaction verification and functional
annotation by integrated analysis of genome-scale data. Mol
Cell 2002, 9:1133-1143.

Lee HK, Hsu AK, Sajdak J, Qin }, Pavlidis P: Coexpression analysis
of human genes across many microarray data sets. Genome
Res 2004, 14:1085-1094.

Smid M, Dorssers LC, Jenster G: Venn Mapping: clustering of
heterologous microarray data based on the number of co-
occurring differentially expressed genes. Bioinformatics 2003,
19:2065-2071.

AmiGO [http://www.godatabase.org]

GeneCards [http://bioinfo.weizmann.ac.il/cards/index.shtml]
Entrez Gene [http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?’DB=gene]

Baelde HJ, Eikmans M, Doran PP, Lappin DW, de Heer E, Bruijn JA:
Gene expression profiling in glomeruli from human kidneys
with diabetic nephropathy. Am | Kidney Dis 2004, 43:636-650.
Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC,
Conklin BR: MAPPFinder: using Gene Ontology and Gen-
MAPP to create a global gene-expression profile from
microarray data. Genome Biol 2003, 4:R7.

Kukreja A, Cost G, Marker |, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz
M, Exley M, Wilson B, et al.: Multiple immuno-regulatory defects
in type-1 diabetes. | Clin Invest 2002, 109:131-140.

Genome Biology 2005,

39.

40.

41.

42.

43.
44,

45.
46.
47.

48.

49.

50.

51,

52.

53.
54.

55.
56.
57.

58.

59.
60.

6l.

62.

Volume 6, Issue 9, Article R8I Newman and Weiner

Chang FY, Shaio MF: Decreased cell-mediated immunity in
patients with non-insulin-dependent diabetes mellitus. Diabe-
tes Res Clin Pract 1995, 28:137-146.

Eibl N, Spatz M, Fischer GF, Mayr WR, Samstag A, Wolf HM, Schern-
thaner G, Eibl MM: Impaired primary immune response in
type-1 diabetes: results from a controlled vaccination study.
Clin Immunol 2002, 103:249-259.

Attallah AM, Abdelghaffar H, Fawzy A, Alghraoui F, Alijani MR, Mah-
moud LA, Ghoneim MA, Helfrich GB: Cell-mediated immunity
and biological response modifiers in insulin-dependent
diabetes mellitus complicated by end-stage renal disease. Int
Arch Allergy Appl Immunol 1987, 83:278-283.

Donath MY, Storling J, Maedler K, Mandrup-Poulsen T: Inflamma-
tory mediators and islet beta-cell failure: a link between type
I and type 2 diabetes. | Mol Med 2003, 81:455-470.

Rhodes CJ: Type 2 diabetes-a matter of beta-cell life and
death? Science 2005, 307:380-384.

Bays H, Mandarino L, DeFronzo RA: Role of the adipocyte, free
fatty acids, and ectopic fat in pathogenesis of type 2 diabetes
mellitus: peroxisomal proliferator-activated receptor ago-
nists provide a rational therapeutic approach. | Clin Endocrinol
Metab 2004, 89:463-478.

Lazar MA: How obesity causes diabetes: not a tall tale. Science
2005, 307:373-375.

Evans RM, Barish GD, Wang YX: PPARs and the complex jour-
ney to obesity. Nat Med 2004, 10:355-361.

Mishra R, Emancipator SN, Miller C, Kern T, Simonson MS: Adipose
differentiation-related protein and regulators of lipid home-
ostasis identified by gene expression profiling in the murine
db/db diabetic kidney. Am | Physiol Renal Physiol 2004,
286:F913-F921.

Asano T, Wakisaka M, Yoshinari M, lino K, Sonoki K, Iwase M,
Fujishima M: Peroxisome proliferator-activated receptor
gammal (PPARgammal) expresses in rat mesangial cells
and PPARgamma agonists modulate its differentiation. Bio-
chim Biophys Acta 2000, 1497:148-154.

Guan Y, Zhang Y, Schneider A, Davis L, Breyer RM, Breyer MD: Per-
oxisome proliferator-activated receptor-gamma activity is
associated with renal microvasculature. Am | Physiol Renal
Physiol 2001, 281:F1036-F1046.

Isshiki K, Haneda M, Koya D, Maeda S, Sugimoto T, Kikkawa R: Thi-
azolidinedione compounds ameliorate glomerular dysfunc-
tion independent of their insulin-sensitizing action in
diabetic rats. Diabetes 2000, 49:1022-1032.

Imano E, Kanda T, Nakatani Y, Nishida T, Arai K, Motomura M, Kaji-
moto Y, Yamasaki Y, Hori M: Effect of troglitazone on micro-
albuminuria in patients with incipient diabetic nephropathy.
Diabetes Care 1998, 21:2135-2139.

Bakris G, Viberti G, Weston WM, Heise M, Porter LE, Freed MI: Ros-
iglitazone reduces urinary albumin excretion in type Il
diabetes. | Hum Hypertens 2003, 17:7-12.

Issa JP: Epigenetic variation and human disease. | Nutr 2002,
132(8 Suppl):23885-2392S.

Imai S, Kitano H: Heterochromatin islands and their dynamic
reorganization: a hypothesis for three distinctive features of
cellular aging. Exp Gerontol 1998, 33:555-570.

Richardson B: Impact of aging on DNA methylation. Ageing Res
Rev 2003, 2:245-261.

Jameson CW: Towards a unified and interdiciplinary model of
ageing. Med Hypotheses 2004, 63:83-86.

Roy AK, Oh T, Rivera O, Mubiru J, Song CS, Chatterjee B: Impacts
of transcriptional regulation on aging and senescence. Ageing
Res Rev 2002, 1:367-380.

Hasty P, Campisi ], Hoeijmakers J, van Steeg H, Vijg J: Aging and
genome maintenance: lessons from the mouse? Science 2003,
299:1355-1359.

Vijg J, Calder RB: Transcripts of aging.
20:221-224.

Kyng KJ, May A, Kolvraa S, Bohr VA: Gene expression profiling in
Werner syndrome closely resembles that of normal aging.
Proc Natl Acad Sci USA 2003, 100:12259-12264.

Lu T, Pan Y, Kao SY, Li C, Kohane |, Chan J, Yankner BA: Gene reg-
ulation and DNA damage in the ageing human brain. Nature
2004, 429:883-891.

Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR,
Landfield PW: Incipient Alzheimer's disease: microarray cor-
relation analyses reveal major transcriptional and tumor
suppressor responses. Proc Natl Acad Sci USA 2004,

Trends Genet 2004,

Genome Biology 2005, 6:R81

-
o
®
e
I
o
o
-
I
4
0
8
8
[o]
>



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500831
http://cgap.nci.nih.gov/Genes/BatchGeneFinder
http://cgap.nci.nih.gov/Genes/BatchGeneFinder
http://discover.nci.nih.gov/matchminer/index.jsp
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=homologene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=homologene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.genome.jp/brite/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519993
http://cgap.nci.nih.gov/Pathways
http://cgap.nci.nih.gov/Pathways
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11326270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11326270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11326270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15186494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15186494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12049748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12049748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594711
http://www.godatabase.org
http://bioinfo.weizmann.ac.il/cards/index.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15042541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15042541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15042541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7587921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7587921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12173299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12173299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3110074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3110074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3110074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12879149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12879149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12879149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15662003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15662003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15662001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15057233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15057233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10838168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10838168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10838168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11704554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11704554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11704554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9839106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9839106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12571611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12571611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12571611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12163698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9789733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9789733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9789733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12726774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12067592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12067592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14527998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14527998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15190254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15190254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769913

R81.18 Genome Biology 2005, Volume 6, Issue 9, Article R8I Newman and Weiner

63.

64.

65.

66.

67.

68.
69.
70.

71.

72.

73.

74.

75.

76.

77.

78.

101:2173-2178.

Lee CK, Klopp RG, Weindruch R, Prolla TA: Gene expression pro-
file of aging and its retardation by caloric restriction. Science
1999, 285:1390-1393.

Kayo T, Allison DB, Weindruch R, Prolla TA: Influences of aging
and caloric restriction on the transcriptional profile of skele-
tal muscle from rhesus monkeys. Proc Natl Acad Sci USA 2001,
98:5093-5098.

Jiang CH, Tsien JZ, Schultz PG, Hu Y: The effects of aging on gene
expression in the hypothalamus and cortex of mice. Proc Natl
Acad Sci USA 2001, 98:1930-1934.

Lee CK, Weindruch R, Prolla TA: Gene-expression profile of the
ageing brain in mice. Nat Genet 2000, 25:294-297.
Bandyopadhyay D, Medrano EE: The emerging role of epigenet-
ics in cellular and organismal aging. Exp Gerontol 2003,
38:1299-1307.

DCDFLIB [http://odin.mdacc.tmc.edu/anonftp/#DCDFLIB]
CPAN - Math-CDF [http://search.cpan.org/dist/Math-CDF/]
Ewens W], Grant GR: Statistical Methods in Bioinformatics: An
Introduction 2nd edition. New York: Springer Science+Business Media;
2005.

Dudoit S, Shaffer JP, Boldrick JC: Multiple hypothesis testing in
microarray experiments. Stat Sci 2003, 18:71-103.
Random.org [http://www.random.org]

Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing. | R Statist
Soc B 1995, 57:289-300.

Quackenbush |: Computational analysis of microarray data.
Nat Rev Genet 2001, 2:418-427.

van't Veer L), Dai H, van de Vijver M), He YD, Hart AA, Mao M,
Peterse HL, van der Kooy K, Marton M|, Witteveen AT, et al.: Gene
expression profiling predicts clinical outcome of breast
cancer. Nature 2002, 415:530-536.

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A,
Boldrick JC, Sabet H, Tran T, Yu X, et al.: Distinct types of diffuse
large B-cell lymphoma identified by gene expression
profiling. Nature 2000, 403:503-511.

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie
T, Eisen MB, van de Rijn M, Jeffrey SS, et al.: Gene expression pat-
terns of breast carcinomas distinguish tumor subclasses with
clinical implications. Proc Natl Acad Sci USA 2001, 98:10869-10874.
Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC,
Gaasenbeek M, Angelo M, Reich M, Pinkus GS, et al.: Diffuse large
B-cell lymphoma outcome prediction by gene-expression
profiling and supervised machine learning. Nat Med 2002,
8:68-74.

Genome Biology 2005, 6:R81

http://genomebiology.com/2005/6/9/R81


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10464095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10464095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11172053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11172053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14698809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14698809
http://odin.mdacc.tmc.edu/anonftp/#DCDFLIB
http://search.cpan.org/dist/Math-CDF/
http://www.random.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786909

	Abstract
	Rationale
	L2L Microarray Database
	A good list is hard to find
	More than just microarray data
	L2L microarray analysis tool
	L2L in the real world: diabetic nephropathy
	L2L and the genomics of ageing
	Reliability of L2L results
	Statistical considerations
	L2L is a unique microarray analysis tool
	Acknowledgements
	References

