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Abstract

Separation of cell types and developmental stages in the Arabidopsis root and subsequent
expression profiling have yielded a valuable dataset that can be used to select candidate genes for
detailed study and to start probing the complexities of gene regulation in plant development.
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Tracking developmental changes in gene
expression 
The availability of genome-wide expression analysis tools

allows one to investigate the details of transcriptional regula-

tion during development. Clustering methods can be used to

group genes whose expression varies in a similar way in

response to developmental changes. Such clustering methods

can reveal two major trends. First, they can reveal groups of

genes that are co-regulated, and therefore suggest which

genes function together during a given developmental

process. Second, clustering methods can reveal which condi-

tions resemble each other, pointing out similarities - or dis-

similarities - in developmental states that might not be

obvious otherwise. Two major developmental parameters for

analysis by gene-expression profiling are progression in time

(‘developmental stage’) and tissue, region or cell-type speci-

ficity. Previous studies of gene expression during the devel-

opment of multicellular organisms have mostly emphasized

either the developmental stage or the cell-type aspect. For

example, clusters of genes co-expressed during the entire life

cycle have been defined in Caenorhabditis elegans [1], and

changes at the transition from cell proliferation to cell differ-

entiation have been described for the Drosophila eye [2].

Another C. elegans study emphasized cell-type-specific

gene-expression programs [3]. Both temporal and spatial

aspects of gene expression have been analyzed by transcript

profiling of the slime mold Dictyostelium discoideum, an

organism in which cell aggregation leads to a multicellular

structure with two different mature cell types [4]. Recently,

Birnbaum et al. [5] have conducted a global gene-expression

analysis of a more complex mix of cell types at three devel-

opmental stages in the small weed Arabidopsis, and have

generated a digital reconstruction of gene expression in the

root - a ‘digital in situ hybridization’.

Higher plants, like animals, develop from a single cell, but the

majority of the plant body derives from the post-embryonic

activity of clusters of stem cells and their mitotically active

daughters, the meristems. After dividing, meristematic cells

displace daughter cells that subsequently differentiate at a dis-

tance from the mitotic cell pool. This is a particularly regular

process in the Arabidopsis root (Figure 1a) [6], and because of

this regularity cells of different developmental stages occupy

defined regions of cell division, cell expansion and cell differ-

entiation. In the radial dimension, the root meristem extends

concentrically arranged tissues that represent the root-specific

versions of the main plant tissues: epidermal, ground (endo-

dermal and cortical) and vascular tissue. Over the years, a

number of genes have been identified that are important for

pattern formation, cell cycle and cell growth, and hormone

signaling; and these genes are beginning to provide an under-

standing of the developmental processes that occur in the root

meristem [7]. But much more information is needed if we are

to identify the details of the regulatory network(s) that deter-

mines cell identity, directional cell division, polar expansion

and growth parameters. Obviously, detailed knowledge of the

transcript localization for (nearly) all genes in an organ is an

important step towards achieving this goal. 



Separation of cell types and developmental
stages 
Several approaches have been designed for obtaining RNA

from specific stages or cell types. Stage-specific promoters can

be fused to the green fluorescent protein (GFP), and cell popu-

lations can be purified by fluorescence-activated cell sorting

(FACS) of trypsin-dissociated cells [2]. Alternatively, cell-type-

specific expression of epitope-tagged RNA-binding proteins

can be used to enrich mRNA [3]. Laser-assisted microdissec-

tion of specific cells is also possible [8,9]. RNA from specific

developmental stages or tissue regions obtained in these ways

can be analyzed by microarray technology or serial analysis of

gene expression (SAGE). The recent study from the Benfey

group [5] used oligonucleotide chips to analyze gene expres-

sion in Arabidopsis roots; they first dissected out the major

tissues by enzymatically dissociating cells (protoplasting) and

doing FACS analysis of transgenic lines expressing GFP under

region- or cell-type-specific promoters (Figure 1b). It may

perhaps seem tricky to enzymatically digest cell walls and then

sort protoplasts, asking them to maintain cell-fate- or region-

specific expression patterns for 1.5 hours. After all, plant

biologists are used to the flexibility of cell-fate determination

in the plant kingdom, with the - somewhat overstated - text-

book dogma that plant cells are totipotent and maintain

their identity only in the context of the organism. Yet, amaz-

ingly, this approach proved successful. Only a minor set of

genes appeared to be induced by protoplasting and sorting,

and these were removed from the analysis. 

Hence, Birnbaum et al. [5] were able to isolate RNA from

GFP-expressing, sorted vascular, ground-tissue and epider-

mal cells (see Figure 1b,c) and hybridize it to the Affymetrix

ATH1 GeneChip, which has probes for approximately 22,000

Arabidopsis genes, covering about 90% of the genome. In a

separate experiment, manual dissection of three develop-

mental zones allowed the authors to determine the relative

level of expression of each gene in zones roughly representing

three different stages: cell proliferation, cell expansion and

cell differentiation (Figure 1c). For every gene, this percent-

age was then superimposed on the expression values per

tissue or cell type. Validation experiments using both previ-

ously documented and new genes confirmed that this method

gives reliable expression data for the majority of genes. 

While the starting dataset is already impressive, the method

used lends itself to future improvements that will further

enhance the resolution. First, by means of bootstrapping, the

promoters of candidate cell- or region-specific genes that

emerge from the first analysis can now be used to refine the

set of GFP lines that are used for cell sorting. In the future it

is likely to be possible to sort all the different root cell types

separately. Second, the stage-specific and the tissue-specific
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Figure 1
Dissection of gene-expression domains in the Arabidopsis root. (a) Schematic overview of the root. DIV, cell division zone; EXP, zone of rapid cell
expansion; DIFF, zone of cell differentiation. (b) Tissue and cell types as sorted by fluorescence-activated cell sorting (FACS) in the study by Birnbaum et
al. [5]. V, (pro-)vascular cells; E, endodermis; E/C, endodermis and cortex; Ep, epidermis; LR, lateral root cap. (c) Manually dissected regions, also used in
[5]. (d) Gene-expression patterns that are distributed in a graded manner through the developmental stages become discrete in (e) the ‘digital in situ’
representation. (f) The expression pattern of genes expressed in distinct zones that differ per tissue type becomes averaged in (g) the digital version
throughout the tissues and stages. 

V  E  E/C Ep LR
Cell sorting

1

2

3

Manual dissection Real                Digital Real              Digital

DIV

Root cap

EXP

DIFF

(a) (b) (c) (d) (e) (f) (g)



gene-profiling data are currently combined by calculation,

which works best if genes have sharp expression transitions

and the same distribution over the three developmental

stages in every cell type, which will not be the case for all

genes. For example, a gene with a graded transcript distribu-

tion, or a gene whose stage-dependent transcription differs

from one tissue to another, will not be recognized as such in

the current dataset (Figure 1d-g). In the future this limitation

can be overcome by sorting cell types from separately dis-

sected stages. Another option is to combine stage- and cell-

type-specific markers, and to sort cells that possess both.

Using expression maps to generate hypotheses 
The current dataset of gene expression in the root [5] provides

a rich resource for those interested in plant development. Cell-

type-specific expression of each researcher’s favorite gene in

the root suggests a starting point for searching for mutant

phenotypes of interest, and the ease with which cellular details

of phenotypes can be visualized in the root can facilitate

detailed analysis of genes that may first be identified from

studies in other organs. For those interested in root develop-

ment itself, functional redundancy can now be overcome more

easily by selecting homologs of genes that have overlapping

expression profiles. Potential targets for known transcription

factors can be pre-selected or validated because they should be

co-expressed in at least a subset of the cell types that express

the transcription factor of interest. The mRNA enrichment

obtained by sorting can be exploited to enhance the sensitivity

of detecting transcriptional differences in mutants, after gene

induction experiments or after drug treatments. Map-based

cloning of genes can be accelerated because expression pat-

terns matching with region-specific root phenotypes can be

selected when mapping intervals are still large. The excellent

Arabidopsis resources for the recovery of insertion mutants

[10], and mutants induced by ethylmethane sulfonate (EMS)

through the TILLING procedure [11] provide useful and rapid

follow-up resources for such a candidate-gene approach. In all

these, and probably more, applications, the dataset is used as a

starting point for further analysis.

A major question that remains to be answered is the extent

to which complex gene-expression maps reveal underlying

regulatory features. Many computational tools can be used

to cluster gene-expression data into meaningful groups, and

the tool chosen largely determines what information is high-

lighted from the dataset [12]. In the Drosophila eye, hierar-

chical clustering using expression data and gene function as

input revealed a cluster with cell-cycle and cell-growth regu-

lators enriched in proliferating cells, a signaling and adhe-

sion cluster in early-stage differentiating cells, and a cluster

enriched in transcription factors in the mixed population of

photoreceptor and cone cells [2]. In the slime mold, aggrega-

tion of single-celled amoebae leads to a dramatic morpho-

logical change, giving rise to a multicellular organism with

two mature cell types. In this case, a striking amount of gene

regulation could be observed by fitting all differentially

expressed genes to a hypothetical gene-induction curve; and

the similarities between expression profiles for all genes in

each developmental stage revealed that the transition from

unicellular to multicellular stages was accompanied by a

dramatic change in gene-expression programs involving

changes in around 25% of all transcripts. Purification of cell

types and their precursors, subsequent microarray analysis

and fitting the data to functions that represent particular

kinds of cell-type enrichment, revealed the existence of clear

cell-type-specific clusters [4]. 

Birnbaum et al. [5] used binary coding, principal component

analysis and k-means clustering to find dominant expression

patterns among the 5,712 differentially expressed genes

(defined as having more than a four-fold difference between

any two conditions) in roots (Figure 2a). These clusters show

up on a visual representation of all expression data. The

largest cluster comprised around 30% of these genes and

showed upregulation in the proliferation stage in all cell

types. This cluster contained a majority of genes involved in

the cell cycle and nuclear organization - reminiscent of the

proliferation-associated gene cluster in fly eyes. Also appar-

ent from the clustering was that a large class of genes

(approximately 10%) is specifically upregulated in differenti-

ated vascular tissue, consistent with the presence of several

very different cell types within this tissue. When the gene

content was analyzed, several functional categories - those

involved in hormonal signaling pathways, for example -

appeared over-represented in some clusters compared to

others [5]. Although this statistical over-representation

might indicate a higher importance of certain hormone path-

ways in specific regions, it is as yet unclear whether statisti-

cal significance implies biological significance.

The major clusters found by Birnbaum et al. [5] reveal some

other trends in root development that raise interesting ques-

tions. For example, consistent with the presence of mature

layers of lateral root cap surrounding the meristem at close

proximity to the tip, it is not surprising that genes enriched

in the lateral root cap appear in the proliferation stage.

Interestingly however, vascular and ground-tissue cells

appear to achieve their tissue-specific expression patterns at

a larger distance from the apex than the epidermal cells do.

It is not clear why genes enriched in epidermal cells would

be switched on at closer proximity to the stem cells than

genes enriched in vascular cells, while overt differentiation

characteristics in both tissues appear at roughly similar dis-

tances from the apex. A simple explanation may be that early

cell-type-specific genes in the vasculature may be diluted

beyond detection because, in contrast to the epidermis and

endodermis, the vascular tissue is a mixture of cell types.

A rich resource like the root expression map opens up

numerous possibilities for data analysis. For example,

‘similarity’ calculations like those used in Dictyostelium [4]
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reveal expression profiles of vascular and ground-tissue cells

to be much more similar to each other than to the outer epi-

dermal and lateral root cap cells (Figure 2b,c). Selection and

sorting for cell-type-specific expression, on the other hand,

provides an estimate for the critical differences between cell

types (Figure 2d). By viewing the data in these and other

ways, different aspects of the dataset are highlighted, each

providing useful new insights.

With the first version of the root digital in situ hybridization

map at hand, more regularities within the datasets can be

explored. Candidate tissue- or stage-specific transcription

factors can be analyzed for direct or indirect roles in the expres-

sion of their co-regulated genes, which might explain at least

part of the data as resulting from the activity of a transcription-

factor network. How easy this is will depend on how many

layers of regulation at the post-transcriptional level are respon-

sible for the ultimate distribution of mRNAs in the root, and

how many of the transcriptional differences are pre-established

by factors no longer expressed at the post-embryonic stage.

It is to be expected that, as new tissue- or stage-specific

datasets are provided from other regions of Arabidopsis

(see, for example, [13-15]), the root data can be inspected

using many additional filters. For example, truly root-spe-

cific genes can be separated from those that are expressed in

other organs, creating interesting new groups such as root

proliferation-stage genes that are also expressed in the shoot

apical meristem. While much work remains to be done to

refine the root expression map and to integrate it with other

expression data, the initial work presented by Birnbaum et

al. [5] opens the doors to these possibilities and others yet to

be foreseen. 
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