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Abstract  
 
Background 
 
In the analysis of microarray data one generally produces a vector of p-values that 
for each gene give the likelihood of obtaining equally strong evidence of change by 
pure chance. The distribution of these p-values is a mixture of two components 
corresponding to the changed genes and the unchanged ones. The basic question 
‘What proportion of genes is changed’ is a non-trivial one, with implications for the 
way that such experiments are analysed. An estimate not requiring any assumptions 
on the distributions is proposed and evaluated.  The approach relies on the concept 
of a moment generating function. 
 
Results 
 
A simulation model of real microarray data was used to assess the proposed method. 
The method fared very well, and gave evidence of low bias and very low variance.  
 
Conclusions 
 
The approach opens up a new possibility of sharpening the inference concerning 
microarray experiments, including more stable estimates of the false discovery rate. 
 
 
Background 
 
The microarray technology permits the simultaneous measurement of the 
transcription of thousands of genes. The analysis of such data has however turned 
out to be quite a challenge. In drug discovery one would like to know what genes are 
involved in certain pathological processes, or what genes are affected by the 
intervention of a particular compound.  A more basic question is ‘How many genes 
are affected or changed?’ It turns out that the answer to this basic question has a 
bearing on the other ones. 
 
In the two-component model for the distribution of the test statistic the mixing 
parameter p0, which represents the proportion unchanged genes, is not estimable 
without strong distributional assumptions, see Efron et al. [1]. In this model the 
probability density function (pdf) f t of a test statistic t may be written as the weighted 
sum of the null distribution pdf f0t and the alternative distribution pdf f1t 
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If, on the other hand, we know the value of p0 we can estimate f0t through a bootstrap 
procedure Efron et al. [1], and thus obtain also f1t. 
 
This mixing parameter has attracted a lot of interest lately. Indeed it is interesting for 
a number of applications. 
 
1) Knowing the proportion changed genes in a microarray experiment is of interest in 
its own right. It gives an important summary measure of the amount of changes 
studied. 
 



2) The use of the False Discovery Rate (FDR) in the inference has increased, and 
that quantity may be estimated as  

( ) ( ) ( )αα pPpDRF L /ˆˆ
0 ×=  

, where ‘^’ above a quantity means it is a parameter estimate, P(L) is the largest p-
value not exceeding α and p(α) is the proportion significant (the proportion of p-
values less than α), see also Storey (2001) [2]. 
 
A very similar concept is that of the qvalue, which according to Storey and Tibshirani 
(2003) [3] represents the expected proportion of false positives.  
 
3) Knowing p0 we may calculate the posterior probability of a gene being changed 
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see Efron et al. [1]. 
 
4) In the samroc methodology Broberg (2003) [4] one calculates estimates of the 
false positive and false negative rates as 
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and 
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where α is the significance level and p(α) is the proportion of genes judged 
significant. 
 
Furthermore, the criterion  
 

22 FNFPC +=  
 
is minimised by choosing an optimal pair of values of the tuning parameter S0 in the 
SAM statistic Tusher et al. (2001) [5] and the significance level α. The statistic is 
defined by 
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where diff is an effect estimate, e.g. a group mean difference, and S is a standard 
error. 
 
Earlier research providing estimates of p0 include Efron et al (2001) [1], Tusher et al 
(2001) [5], Storey (2001) [2], Allison et al (2002) [6], Storey and Tibshirani (2003) [3] 
and Pounds and Morris (2003) [7]. 
 
 
Methods 
 



Denote the pdf of p-values by f, the proportion unchanged by p0 and the distribution 
of the p-values corresponding the changed genes by f1.  Then the distribution of p-
values may be written as 
 

( ) ( ) ( )xfppxf 100 11 −+×=  
 
using the fact that p-values for the unchanged genes follow a uniform distribution. 
 
The present approach is based on the moment generating function (mgf), which is a 
transform of a random distribution, which yields a function R characteristic of the 
distribution, cf. Fourier or Laplace transforms, e.g. Feller (1971) [8]. In fact the mgf is 
a Laplace transform. Knowing the transform means knowing the distribution. It is 
defined as the expectation (or the true mean) of the antilog transform of s times a 
random variable X, i.e. the expectation of esX or in mathematical notation: 
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Transforming the above theoretical distribution yields the weighted sum of two 
transformed distributions: 
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Denoting the first transform by g(s) and the second by R1(s) we finally have  
 

( ) ( ) ( ) ( )sRpsgpsR 100 1−+= . 
 
Now, the idea is to estimate these mgf’s and to solve for p0. In the above equation 
R(s) and g(s) can be estimated based on an observed vector of p-values and 
calculated exactly, respectively, while p0 and R1(s) cannot be estimated 
independently. The estimable transform is, given the observed p-values p = p1,…,pn , 
estimated by  
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(From now on drop the index p.) 
 
Instead of a straightforward mean as above, a smoothed estimate of the density will 
be tried elsewhere. 
 
However, one can solve the above relation for p0 for any value of s.  
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Let us do so for sn > sn-1 , equate the two ratios defined by the right hand side in (1) 
and solve for R1(sn). This gives the recursion 
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If we can find a suitable start for this recursion we should be in a position to 
approximate the increasing function R1(s) for s = s1 < s2 < … < sm in (0, 1]. Now, note 
that 1 ≤  R(s), for any mgf, with close to equality for small values of s. Thus it makes 
sense to start the recursion with R1(s1) = (1 +  R(s1))/2. (In general, it will hold true 
that 1 < R1(sn) < R(sn) < g(sn), since f1 puts weight to the lower range of the p-values 
at the expense of the higher range, the uniform puts equal weight, and f being a 
mixture lies somewhere in between.) We calculate g, R and R1 for a series of values 
s in (0,1], e.g. for s in (0.01, 0.0101, 0.0102, …, 1). The output from one data set 
appears in Figure 1. From (1) we obtain a series of estimates of p0, and may take the 
mean as the final estimate. 
 
 
 
Results 
 
A simulation of data for 3000 genes was repeated 200 times for true p0 values 
ranging from 0.6 to 0.95 using the R script from Broberg (2003) [4]. The current 
method p0.mgf was compared to the estimate presented in Storey and Tibshirani 
(2003), denoted qva, and to the bootstrap method from Storey (2002), implemented 
in the R package SAG [9, 10, 11]. These methods are both based on a comparison 
of the empirical p-value distribution to that of the uniform. There will likely be fewer p-
values close to 1 in the empirical than in the null distribution, which is a uniform. The 
observed proportion of p-values exceeding some threshold value η over the 
expected proportion under the null hypothesis, 1 - η, will estimate p0. In fact, the ratio 
{1-Fe(η)}/{1-η}, Fe denoting the empirical distribution, will often be a good estimate of  
p0 for an astutely chosen threshold η. 
 
With the simulated data all methods perform rather well, see Table 1 and Figure 2. 
 
Choosing a statistical method generally involves a trade-off between bias and 
variation. The proposed method misses its target by on an average 1.6% 
(underestimates p0) , which is not as good as Storey’s bootstrap method but better 
than qvalue, but it provides estimates with close to half the mean squared error of the 
alternatives. So if robustness is an issue then p0.mgf seems like a good choice. 
Minor perturbations of the data will not affect the result.  
 
Discussion 
 
In Broberg (2002) [12] an attempt was made to use the mgf for finding differentially 
expressed genes, with varying results. The main problem there lay in the few 
replicates. In the current application there is ample data to accurately capture the 
mgf, providing the p-values were obtained in a reliable fashion, e.g. by a warranted 
normal approximation, a bootstrap or a permutation method. Pounds and Morris [7] 
mention a case when a two-way ANOVA F-distribution was used and the 
distributional assumptions were not met. The estimate of p0 gave an unrealistic 
answer. When permutation p-values were used instead their method gave a more 
realistic result. Similar caveats apply to any method based on p-values.  
 
The current method may be used to provide a good starting point for a method like 
the EM algorithm. That algorithm is crucially dependent on a good start of the 
iteration.  Such a combined algorithm remains to be explored. Another twist would be 
to take the estimate of R1, fit a spline curve, predict the value of R1(0), which ought to 



be unity.  Then, based on the difference R1(0) – 1, adjust the value of R1(s1) and 
reiterate (2). This will be tested elsewhere. 
 
A further development would be to use the current approach directly on the test 
statistic, e.g. a t-test statistic, and to obtain p-values by modelling the null distribution 
instead of the common bootstrap approach. This has been tried in another context 
[13] and seems very encouraging. 
 
The method is implemented in R and will appear in the package SAG v 1.2 [11]. 
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Figures 
 

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

s

V
al

ue
 o

f m
om

en
t g

en
er

at
in

g 
fu

nc
tio

n

g(s)
R(s)
R1(s)

 
Figure 1. Estimated moment generating functions (mgf’s). Given an observed vector 
of p-values it is possible to calculate mgf’s for the observed distribution f (R) and the 
unobserved distribution f1 (R1), and without any observations we can calculate the 
mgf for the uniform (g). 
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Figure 2. Boxplots of the simulation results. A simulation model of real-life microarray 
data was used to give data where the expected proportion of changed genes was set 
at 60, 70, 80, 90, 95 or 99%. The proposed method, denoted p0.mgf gave low bias 
and low variance over the whole range. 



Tables 
 
 
  qva storey p0.mgf 
mean -0.024 -0.0078 0.016 
Sd 0.044 0.045 0.024 
 
Table 1. Over-all results of simulations. The summary statistics of the difference 
between target value and its estimate show a rather good performance for all 
methods, with p0.mgf having the second smallest bias and the smallest variation.  
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