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The regulatory content of intergenic DNA shapes genome architectureChromosomal evolution is thought to occur through a random process of breakage and rearrangement that leads to karyotype differences and disruption of gene order. With the availability of both the human and mouse genomic sequences, detailed analysis of the sequence properties underlying these breakpoints is now possible.

Abstract

Background: Factors affecting the organization and spacing of functionally unrelated genes in
metazoan genomes are not well understood. Because of the vast size of a typical metazoan genome
compared to known regulatory and protein-coding regions, functional DNA is generally considered
to have a negligible impact on gene spacing and genome organization. In particular, it has been
impossible to estimate the global impact, if any, of regulatory elements on genome architecture.

Results: To investigate this, we examined the relationship between regulatory complexity and
gene spacing in Caenorhabditis elegans and Drosophila melanogaster. We found that gene density
directly reflects local regulatory complexity, such that the amount of noncoding DNA between a
gene and its nearest neighbors correlates positively with that gene's regulatory complexity. Genes
with complex functions are flanked by significantly more noncoding DNA than genes with simple
or housekeeping functions. Genes of low regulatory complexity are associated with approximately
the same amount of noncoding DNA in D. melanogaster and C. elegans, while loci of high regulatory
complexity are significantly larger in the more complex animal. Complex genes in C. elegans have
larger 5' than 3' noncoding intervals, whereas those in D. melanogaster have roughly equivalent 5'
and 3' noncoding intervals.

Conclusions: Intergenic distance, and hence genome architecture, is highly nonrandom. Rather, it
is shaped by regulatory information contained in noncoding DNA. Our findings suggest that in
compact genomes, the species-specific loss of nonfunctional DNA reveals a landscape of regulatory
information by leaving a profile of functional DNA in its wake.

Background
Many basic issues regarding the organization of regulatory
DNA remain unresolved. We do not know the portion of any
genome comprising regulatory DNA. We do not understand
the factors that govern the size, distance and orientation of

regulatory elements relative to coding regions. Nor do we
usually know the identity of the many transcription factors
that bind any given element. For these reasons, it has been
difficult to assess the impact of regulatory DNA on metazoan
genome architecture.
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Nevertheless, it is clear that metazoan genomes are not com-
pletely random assortments of genic and non-genic sequence.
Genomes possess higher-order physical organization, includ-
ing structural motifs such as centromeres and telomeres, rea-
sonably distinct domains of heterochromatin and
euchromatin [1], and less well-defined regions with biased
base composition, such as isochores [2]. Various functional
states have been correlated with these organizational group-
ings. GC-rich isochores, for instance, are relatively gene dense
[3], and genes within these isochores tend to be more highly
transcribed [4] than genes in less GC-rich regions of the
genome.

Metazoan genomes also contain physical clusters of co-regu-
lated genes. Highly conserved, tightly regulated clusters
include the Hox genes, which specify anterior-posterior pat-
tern in all bilaterians [5]. Other clusters that are more loosely
arranged include human housekeeping genes [6-9], testis-
specific genes in Drosophila melanogaster [10], and muscle-
specific genes in Caenorhabditis elegans [11]. These observa-
tions suggest that the typical metazoan genome has more
fine-scale architecture than is readily apparent. However, the
vast majority of metazoan genes are not located in any known
cluster and so it remains unclear whether or how these genes
are organized. Furthermore, the majority of coexpressed clus-
ters identified in D. melanogaster do not share common
functional annotations, suggesting that the apparent coex-
pression of physically clustered genes may be the result of
increased local accessibility of promoters in opened chroma-
tin, rather than explicit regulatory similarity [12].

Despite sharing structural and organizational features, meta-
zoan genomes vary in total size (C value) across several orders
of magnitude [13]. Several explanations for this variation
have been proposed. Noncoding, repetitive DNA elements,
such as transposons, satellites and simple sequence repeats,
can account for some fraction of genome size difference
[14,15]. An extension of this model suggests that genome size
is determined by the balance between insertions, such as rare
bouts of invasion by self-replicating elements, and deletions
of nonfunctional DNA from the genome [16-18]. Such muta-
tional models of genome size can be contrasted to adaptive
models, which suggest that selective constraints act on overall
genome size, largely independent of any specific informa-
tional content of the DNA. For example, genome size and cell
size are significantly correlated [19]. This correlation may
influence the developmental rate and developmental com-
plexity of an organism and thereby exert selective pressure on
overall genome size [20].

While both mutational and adaptive models contribute to our
understanding of metazoan genome size, neither addresses
an important aspect of DNA function - the regulation of gene
expression - and its possible effect on genome size and archi-
tecture. The effect of regulatory DNA on genome architecture
has been ignored largely because of the difficulty of

identifying regulatory elements and the general assumption
that most intergenic DNA is nonfunctional. However, in line-
ages that have experienced high rates of DNA loss it is possi-
ble that the spatial requirements of regulatory DNA could
shape intergenic distance and hence genome architecture.
Here we examine how regulatory DNA influences gene distri-
bution in two distantly related animals, D. melanogaster and
C. elegans. We compare the regulatory complexity of a large
sample of the genes from each animal with the spacing of
these genes within each genome. We find a positive correla-
tion between the inferred regulatory complexity of a gene and
the distance from that gene to its nearest neighbor. We also
find that while genes with common housekeeping functions
occupy approximately the same amount of space in both D.
melanogaster and C. elegans, genes that play a central role in
development and pattern formation occupy significantly
more space in D. melanogaster. Finally, it appears that C. ele-
gans partitions its regulatory information upstream of the
promoter, whereas no strong bias is apparent in D. mela-
nogaster. We suggest that the interplay between the relatively
high rate of nonfunctional DNA loss and selective pressure to
maintain minimal spatial requirements for essential genetic
regulatory information shapes genome architecture in these
taxa.

Results
Genomes contain relatively few genes with highly 
complex expression patterns
Because we cannot directly measure regulatory complexity,
we developed surrogate measurements for the regulatory
complexity associated with individual genes. In many cases,
complex expression patterns are composed of separable tis-
sue-specific or spatially specific subpatterns, each of which is
driven by a discrete cis-regulatory element (see for example
[21-23]. Thus, genes expressed in a greater number of tissues
and spatial domains tend to require a greater number of reg-
ulatory elements to drive this expression (see for example
[24-28]). Accordingly, we use the complexity of a gene's
expression pattern as a surrogate for its regulatory
complexity.

In this study we measured complexity of expression pattern
in two ways. First, we surveyed the curated literature-based
resources of FlyBase and WormBase and generated an
expression complexity index from each. FlyBase and Worm-
Base contain information on expression pattern and mutant
phenotype for every gene that has been studied in each ani-
mal. Our FlyBase index (FBx) counts domains of gene expres-
sion and tissues affected in mutant larvae, adults and
embryos. FlyBase contains information on 1,879 of the 13,370
predicted genes in the euchromatic portion of the D. mela-
nogaster genome, from which we generated FBx values.
WormBase contains expression pattern entries for 1,125
genes of the 19,614 predicted genes in the C. elegans genome,
from which we generated WormBase (WBx) values. Our
Genome Biology 2004, 5:R25
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second measure for complexity of expression pattern was
obtained from the Berkeley Drosophila Genome Project
(BDGP) in situ hybridization (ISH) project [29]. Using a ran-
dom, nonredundant set of expressed sequence tags as probes,
this project is systematically surveying gene expression dur-
ing D. melanogaster embryogenesis. Annotation of the 1,728
genes surveyed (as of October 2003) was used to generate our
BDGP index values (BDGPx).

These indices survey the complexity of gene expression pat-
terns in approximately 14% (FBx) and approximately 13%
(BDGPx) of D. melanogaster genes (3,156 unique genes,
~24% of the total predicted gene set), and approximately 6%
of C. elegans genes (WBx). All three distributions contain
many genes that have a low expression complexity value and
far fewer genes that have a high expression complexity value
(Figure 1). This result indicates that most of the genes in these
genomes are deployed in a small number of tissues, whereas
a small set of genes is used repeatedly in specific tissues at
specific times. Therefore, most genes in these animals are
likely to require a small number of cis-regulatory elements,
whereas a much smaller group is likely to require large arrays
of regulatory elements.

Regulatory complexity and gene spacing
To accommodate a large number of separate regulatory ele-
ments, organisms could employ two basic approaches. They
could increase the density of regulatory elements - that is,
increase the informational content, but maintain overall size
of a regulatory region (as in viruses). Alternatively, they could
add elements by expanding the physical size of a regulatory
region - that is, maintain the density of information, and
increase the space occupied by that regulatory information. If
a regulatory element requires a minimal threshold of physical
space, then genes with a complex expression pattern that
require more regulatory elements will also require more
physical space in the genome to contain those elements.
Therefore, we determined whether there is a correlation
between regulatory complexity (as estimated by our expres-
sion complexity indices) and the amount of noncoding DNA
flanking each gene.

We determined intergenic distance for all genes in the
euchromatic portions of the D. melanogaster and C. elegans
genomes (intergenic distance is defined as the sum of
upstream and downstream distance to the nearest neighbor-
ing genes; see Materials and methods for details) and com-
pared this distance to each gene's expression index value. For
each of the three expression indices we divided index values
into bins containing roughly 10% of the genes in each sample
and plotted the mean intergenic distance for each bin (divi-
sion of the data into precise 10% bins was constrained by inte-
gral data values; see Materials and methods for details). We
found that intergenic distance is positively correlated with
expression diversity (FBx, Pearson r = 0.23, least-squares lin-
ear regression r2 = 0.05, p < 0.0001; BDGPx, r = 0.13, r2 =

0.02, p < 0.0001; WBx, r = 0.19, r2 = 0.04, p < 0.0001). More
intergenic DNA flanks bins of genes inferred to have greater
regulatory complexity than bins inferred to have low regula-
tory complexity (Tukey-Kramer HSD, α < 0.05; see Figure 2
and Materials and methods). This is true in both D. mela-
nogaster and C. elegans, regardless of the index used to esti-
mate regulatory complexity (literature-derived or in-situ
derived).

Measurement of intergenic distance does not account for the
possibility of regulatory information contained within the
boundaries of a gene itself (for example, 5' and 3' untrans-
lated regions and introns). However, transcriptional regula-
tory elements do occur in these regions (see for example
[30,31]). In addition, regulatory elements can lie within or
beyond adjacent genes (see for example [32]). Therefore, we
established an alternative means of measuring the footprint
of a gene that would take these scenarios into account. We
generated sliding windows spanning many genes along each
D. melanogaster chromosome and graphed the size of each
window (in base pairs) relative to position on the chromo-
some. Of the window sizes tested (ranging from 5 to 50
genes), an 11-gene window was judged to provide the best res-
olution of peaks from background variation (Figure 3 and
data not shown). This window measures the size of the imme-
diate neighborhood of the central gene in an 11-gene interval
(1 central gene and 5 genes on either side), providing a
broader view of the arrangement of nearby genes and poten-
tial regulatory regions. Each chromosome contains regions of
high gene density, where 11 genes are tightly packed with little
intervening DNA, and peaks of low gene density, where 11
genes and their associated intergenic DNA are widely spaced
(for a typical example see Figure 3). Low gene density indi-
cates that one or more genes within a window have a large
amount of associated noncoding DNA. By our model, peaks of
low gene density, which contain more intergenic DNA, should
be more likely to contain genes of high regulatory complexity.
To test this prediction on the X chromosome, we identified all
genes within peaks greater than a visually selected cutoff of
250 kb. We then assessed the expression complexity of genes
in these large windows using our expression indices.
Although most genes in the D. melanogaster genome are
unknown with respect to expression pattern and as a result do
not have index values, peaks greater than 250 kb in size con-
tain significantly more genes of high expression complexity
than the average 11-gene window on the X chromosome (Fig-
ure 3; Welch ANOVA, p < 0.008; Wilcoxon two-sample test,
p < 0.03). Thus, we observe a significant correlation between
gene spacing and regulatory complexity using three inde-
pendent measures of expression complexity, two independ-
ent measures of locus size, and in two very different animals.

Functional classification and gene spacing
Much study of the evolution of development has focused on a
relatively small subset of genes that govern multiple develop-
mental processes [33-35]. These genes typically encode
Genome Biology 2004, 5:R25
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transcription factors and signaling molecules, rather than
metabolic enzymes or structural components of the cell. The
repeated utilization of genes in these developmentally impor-
tant classes predicts that these genes should require greater
numbers of regulatory elements and larger stretches of inter-

genic DNA than genes with primarily housekeeping
functions.

To test this prediction we used functional categories based on
Gene Ontology (GO) [36] and additional literature-derived

Genes of low regulatory complexity are common and genes of high regulatory complexity are rare in D. melanogaster and C. elegansFigure 1
Genes of low regulatory complexity are common and genes of high regulatory complexity are rare in D. melanogaster and C. elegans. Distribution of genes 
with respect to complexity of expression in (a) FlyBase index (FBx), (b) BDGP in situ hybridization index (BDGPx), and (c) WormBase index (WBx). In all 
three cases, the distributions are heavily weighted toward genes expressed in a small number of locations and show relatively few genes deployed in a large 
number of tissues.
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functional groupings to investigate the correlation between
gene spacing and functional classification. Because GO anno-
tations for D. melanogaster and C. elegans use different cat-
egorizations, they are not directly comparable. Therefore, we
selected GO categories of interest from D. melanogaster and
used BLAST to determine the best match for each fly protein
in the C. elegans proteome. The GO categories used were:
pattern specification (GO:0007389), embryonic develop-
ment (GO:0009790), specific RNA polymerase II transcrip-
tion factors (GO:0003704), receptor activity (GO:0004872),
cell differentiation (GO:0030154), metabolism
(GO:0008152), structural constituents of the ribosome
(GO:0003735), and general RNA polymerase II transcription
factors (GO:0016251). Some genes (for example, caudal,
Notch, twist, and others) are members of more than one
selected GO category; however, we accounted for this in our
analysis (see below and Materials and methods). In addition
to the GO categories, we generated a list of housekeeping
genes (HK set) by combining three lists of human housekeep-
ing genes [6-8] and using BLAST to identify the best single
match for these genes in the D. melanogaster and C. elegans
proteomes. Finally, we analyzed genes present in single copy
in C. elegans, D. melanogaster and the yeast Saccharomyces
cerevisiae, (CDY set) [37], which are likely to represent genes
with primarily housekeeping functions [38].

In both C. elegans and D. melanogaster, 'simple' gene groups
with primarily ubiquitous or 'housekeeping' functions (CDY,
general transcription factors, ribosomal constituents, metab-
olism and HK sets) are flanked by an average of 4-5 kb of
intergenic DNA. In contrast, 'complex' groups with more
diverse roles (embryonic development, pattern specification,
and specific TFs) average 8-11 kb of intergenic DNA in C. ele-
gans and 17-25 kb in D. melanogaster (Figure 4). Two
groups, receptor activity and cell differentiation genes, were
more variable between the two species, suggesting possible
differences in the biological roles of these groups in the two
organisms.

We next pooled all genes in the five simple groups and all
genes in the three complex groups to generate nonredundant
gene sets. For these sets, we assessed the contribution of 5'
and 3' noncoding regions to the total intergenic distance (Fig-
ure 5a). In both the C. elegans and D. melanogaster simple
gene sets, 5' and 3' noncoding regions each contribute
approximately 2 kb of DNA to the total intergenic distance.
For the complex gene sets, total intergenic DNA is partitioned
nearly equally between upstream and downstream sequences
in D. melanogaster, whereas upstream DNA is significantly
larger than downstream DNA in C. elegans (Figure 5a, Wil-
coxon two sample test, p < 0.0001). These results suggest that
C. elegans cis-regulatory elements largely occupy space
upstream of the regulated gene, consistent with analysis of
several C. elegans enhancers [39]. In contrast, D. mela-
nogaster appears equally likely to distribute regulatory infor-
mation upstream or downstream of the gene, consistent with

observations of extensive 3' regulatory regions in D. mela-
nogaster [40-42]. It is important to note that while the
amount of intergenic DNA flanking groups of simple genes is
not significantly different between animals (Figure 5a), genes
that have complex functions in D. melanogaster are flanked
by significantly more intergenic DNA than their C. elegans
counterparts (Tukey-Kramer HSD, α = 1e-4; Wilcoxon two
sample test, p < 0.001; see Materials and methods).

Approximately 15% of C. elegans genes are predicted to be
located in co-regulated operons [43]. Intergenic distance
between genes within operons is likely to underestimate the
size of DNA used to regulate these genes and this underesti-
mate could contribute to the observed difference in complex
gene spacing between C. elegans and D. melanogaster, which
does not organize genes into operons. We determined that
approximately 12% of genes in the complex groups and
approximately 37% of genes in the simple groups are pre-
dicted to be organized into operons in C. elegans (data not
shown). Removing these genes from their respective datasets
had no effect on the observed difference between D. mela-
nogaster and C. elegans gene groups (Tukey-Kramer HSD, α
= 1 × 10-4).

We were also concerned that general euchromatic genome
expansion in D. melanogaster or euchromatic genome com-
paction in C. elegans could account for the difference in
amount of intergenic DNA associated with complex genes. To
assess this possibility, we analyzed the distribution of inter-
genic DNA measurements for all genes in both animals (Fig-
ure 5b). The D. melanogaster genome, which has
approximately 55 Mb of intergenic DNA, has more genes with
large amounts of intergenic DNA than does the C. elegans
genome, which has approximately 47 Mb of intergenic DNA
(estimated using upstream and downstream intergenic dis-
tances as calculated in this study). However, this difference in
intergenic spacing is not uniformly distributed, as D. mela-
nogaster shows both more regions of dense gene spacing and
highly dispersed gene spacing than C. elegans, whose genes
are more evenly distributed (Figure 5b). Thus, the larger
intergenic regions seen in D. melanogaster genes of complex
function is not consistent with a general genome-wide expan-
sion in flies or compaction in worms.

Finally, we examined individual genes of complex function to
examine how the difference observed at the group level would
be reflected at the level of individual genes. From the CDY set
and KOG (euKaryotic clusters of Orthologous Genes [44]) we
identified orthologous pairs of genes or gene families in D.
melanogaster and C. elegans. We then selected genes known
or expected to be developmentally important in D. mela-
nogaster, and confirmed their orthologous relationships with
C. elegans genes using the KOGnitor comparison tool. These
candidate groups yielded 29 relatively clear single-copy
orthologs and many orthologous gene families. For a repre-
sentative group of 49 D. melanogaster genes and their C. elegans
Genome Biology 2004, 5:R25
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Figure 2 (see legend on next page)
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counterparts (including all 29 single-copy orthologs
identified and 5 gene families, Figure 6a), the mean inter-
genic interval is 27,928 bp in D. melanogaster and 7,670 bp
in C. elegans, thoroughly consistent with the trend observed
at the group level (Figure 4a). In addition, many of the D. mel-
anogaster genes are located in gene-sparse regions of the
genome and have larger introns (Figure 6b), suggesting that
they have even more space available for potential regulatory
elements than indicated by the larger flanking regions alone.

Discussion
We have examined the relationship between the regulatory
complexity of a gene and the spacing of that gene with respect
to its neighbors in D. melanogaster and C. elegans. We show
that in each animal developmentally important genes
expected to possess high levels of regulatory information
occupy more space in the genome than other gene classes.
This regulatory information may comprise enhancer ele-
ments with well-defined binding sites for transcription fac-
tors, insulator elements, which contribute to the precise
expression pattern of a gene by preventing cross-talk between
enhancers [45], and other known and unknown regulatory
motifs. In addition, developmentally important genes in D.
melanogaster have more space for regulatory information
than the corresponding C. elegans genes, and C. elegans
tends to apportion its noncoding DNA upstream of the gene
whereas D. melanogaster shows no significant bias. These
results show that regulatory information shapes genome
architecture and provide support at the genomic level for a
model in which the expansion of regulatory information facil-
itates increased morphological complexity in metazoa.

Reliability of expression indices
Because direct measurement of regulatory complexity for all
genes in the D. melanogaster and C. elegans genomes is not
possible, we used several surrogate measures of regulatory
complexity. These surrogates necessarily introduce uncer-
tainty into our assessment of regulatory complexity, and here
we attempt to assess the effect of these uncertainties on our
conclusions.

All three indices will tend to underestimate the true complex-
ity of a gene's full expression pattern simply because the
expression of very few genes has been surveyed in all tissues
throughout the life cycle of any animal. For instance, the
BDGPx only considers embryonic expression. Furthermore,
little information is available on environmentally responsive

gene expression, as most investigation has focused on devel-
opmental profiles of expression under standardized condi-
tions. However, the systematic underestimation of regulatory
complexity due to limited sampling across environmental
conditions or developmental stages applies to all genes, not
preferentially to genes expressed in either a simple or com-
plex pattern, and therefore should not significantly bias our
conclusions.

Our two literature-derived indices (FBx and WBx) suffer from
ascertainment bias. Genes involved in multiple developmen-
tal processes or genes that have large genomic footprints are
more readily identified in genetic screens and are more likely
to elicit sustained investigation. This situation has led to a rel-
ative over-representation of developmentally important
genes in the literature-based indices and a probable overesti-
mation of regulatory complexity for genes with very high FBx
or WBx values. By combining genes with the highest index
values into a single group, the binning of individual index val-
ues reduces the effect of overestimating regulatory complex-
ity. In addition, GO groups and the in situ hybridization index
(BDGPx) are immune to this sampling issue because they
consider either functional classification or a completely ran-
dom gene set, respectively, and each clearly shows the same
trend as the literature-derived indices.

Curation of the data in all three indices may also introduce
uncertainty into our results. For instance, the BDGP in situ
project annotates gene expression maintained over multiple
developmental stages in a single organ as multiple distinct
entries [29]. Similarly, housekeeping genes, whose expres-
sion may be driven by only one cis-regulatory element, are
found in many tissues, and so the BDGPx will tend to
overestimate the regulatory complexity of these genes. How-
ever, the BDGP project only annotates genes with some
degree of tissue specificity, omitting ubiquitously expressed
genes [29]. A simple gene whose regulatory complexity has
been overestimated would introduce a smaller value for inter-
genic distance into the high regulatory complexity group.
Therefore, overestimation of regulatory complexity for sim-
ple genes should dilute, rather than enhance, the positive cor-
relation between regulatory complexity and intergenic
distance. Manually collapsing tissue annotations across
developmental stages improved the correlation between
intergenic DNA size and the BDGPx (data not shown), but we
report the unmodified BDGP data here to avoid investigator-
derived bias in our estimates of regulatory complexity. More-
over, the GO-derived groups are not subject to the same

Intergenic DNA increases with regulatory complexity in D. melanogaster and C. elegansFigure 2 (see previous page)
Intergenic DNA increases with regulatory complexity in D. melanogaster and C. elegans. Expression indices were divided into bins, each containing 
approximately 10% of the entries in an index. Mean amount of intergenic DNA for each bin (± standard error) was plotted for all three expression indices 
(left): (a) FBx; (b) BDGPx; (c) WBx. The average amount of intergenic DNA flanking the genes in bins of greater regulatory complexity is significantly 
greater than that of bins of lower regulatory complexity in all three indices (Tukey-Kramer HSD, α = 0.05). In the nonparametric bivariate density plots of 
intergenic DNA versus index value (right), each contour represents a boundary including 10% of the data. The innermost red contour includes 10% of the 
data points and excludes the other 90%. The outermost purple contour includes 90% of the data points, whereas 10% fall outside this boundary.
Genome Biology 2004, 5:R25
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systematic biases as the other indices but show the same over-
all result.

While it is generally accepted that complex gene expression
requires complex regulatory control, we must consider the
degree to which expression complexity is a legitimate proxy
for regulatory complexity. The expression of particular genes
in distinct morphological fields, tissues and organs is

consistently controlled by physically and functionally discrete
cis-regulatory elements (reviewed in [33-35]). Conversely,
gene expression in populations of cells with shared identity is
often controlled by a single regulatory element (see for exam-
ple [46-48]). Thus, genes that have a complex expression pat-
tern tend to use a greater number of cis-regulatory elements
than genes expressed in a single tissue, location or cell type.
This trend clearly supports the use of expression complexity

Regions of low gene density contain significantly more genes of high regulatory complexityFigure 3
Regions of low gene density contain significantly more genes of high regulatory complexity. (a) Window size (in base pairs) of an 11-gene sliding window 
across the X chromosome versus position along the chromosome. The horizontal line at 250,000 bp indicates the cutoff above which a window was 
designated as low density. A total of 53 windows larger than 250,000 bp were identified on the X chromosome. These windows overlap to generate 14 
independent peaks, numbered 1 through 14. Normalized FBx and BDGPx scores for each gene were calculated by dividing the raw index score by the 
maximum score for that index. The normalized scores of all low-density windows were compared to the scores of all 11-gene windows on the 
chromosome. The expression complexity score for low gene density windows was significantly greater than the average score for all possible windows on 
the X chromosome (Welch ANOVA, p < 0.008; Wilcoxon two-sample test, p < 0.03). (b) The 11 genes flanking the highest point of each numbered peak 
on the X chromosome. Genes boxed in red fall in the top 20% of expression complexity by FBx or the top 24% by BDGPx. Genes in unshaded boxes have 
expression data available, but do not fall in the upper range of the FBx or BDGP indices. Genes that are shaded, which represent the majority of genes in 
these windows, have no expression data available. This panel indicates only genes in the highest central peak. However, all genes within windows 
exceeding 250,000 bp in size were used for the statistical analysis described above.
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as a surrogate for regulatory complexity. However, even
genes that have a simple expression pattern occasionally use
multiple cis-regulatory elements (see for example [49]), and
an apparently complex expression pattern will sometimes be
driven by a relatively simple control element (see for example
[50,51]). As a relative measure, therefore, complexity of
expression pattern should faithfully approximate regulatory
complexity for a group of genes, but will not reliably predict
the absolute number of cis-regulatory elements used by any
individual gene.

Regulatory DNA and genome architecture
The distribution of regulatory information among genes in
the genomes of D. melanogaster and C. elegans is not uni-
form. All three expression indices indicate that most genes
are expressed in simple or limited domains whereas relatively
few genes are expressed in a wide variety of specific tissues
(Figure 1). This observation is consistent with known princi-
ples of animal development. A relatively small set of genes,

primarily transcription factors and signaling molecules, play
a disproportionate role in the development of metazoans
(reviewed in [33-35]). These genes are used repeatedly during
development to generate the basic body plan and specify
organ identity. Once this morphological ground plan is estab-
lished, a larger suite of tissue-specific genes is deployed
during terminal differentiation. Accordingly, transcription
factors and signaling molecules consistently have high values
in our expression indices (Figure 4 and data not shown) while
genes of low regulatory complexity comprise the bulk of the
genome.

We show here how these relatively few genes of high regula-
tory complexity have accommodated their need for increased
amounts of regulatory information. An increase in regulatory
information will require either an increase in information
density or an increase in the space allocated to storing that
information. If the size of intergenic DNA in metazoan
genomes were essentially unconstrained, an increase in the

Functionally complex genes have more intergenic DNA than functionally simple genesFigure 4
Functionally complex genes have more intergenic DNA than functionally simple genes. A comparison of intergenic distances among genes of different GO 
groups. The mean and median amounts of flanking intergenic DNA are shown for various functional categories of genes in (a) D. melanogaster and (b) C. 
elegans (black points and bars indicate mean value ± standard error; red bars indicate median values, red boxes enclose 25th-75th percentiles). Genes with 
low regulatory complexity are represented by the CDY, general RNA polymerase II (PolII) transcription factors, ribosomal components, metabolism, and 
housekeeping gene sets. Genes of high regulatory complexity are represented by receptor activity, cell differentiation, genes involved in embryonic 
development, genes involved in pattern specification, and specific RNA PolII transcription factors. All sets of low regulatory complexity have significantly 
less flanking intergenic DNA than all sets of high regulatory complexity regardless of species (Tukey-Kramer HSD, α = 1 × 10-4).
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space devoted to information storage would escape notice in
the background fluctuation of intergenic distance and would
have no discernable effect on the distribution of genes within
the genome. DNA with little informational content would pre-
dominate, and even genes that require a large number of reg-
ulatory elements would have more than enough intergenic
DNA to accommodate those elements without apparent
expansion. If, however, functional regulatory DNA represents
a significant portion of the intergenic DNA in a genome, then
there should be a direct correlation between regulatory infor-
mation content and quantity of intergenic DNA [52]. That is,
genes with many regulatory elements will require more space,
and this space will have a significant impact on the local
arrangement of genes. Indeed, we find that genes predicted to
have more regulatory elements occupy significantly more
space than do their simple neighbors. The fact that we can see
this relationship suggests that the genomes of C. elegans and
D. melanogaster possess a high ratio of functional regulatory
DNA to nonfunctional noncoding DNA.

It is interesting to note that evidence suggesting regulatory
DNA in C. elegans is most often positioned upstream of a
gene's promoter [39] is strongly supported by our analysis of
the relative size of 5' and 3' noncoding intervals for the com-
plex gene sets. No such bias in the distribution of noncoding
DNA is apparent in D. melanogaster, suggesting that these
two animals may have different constraints on the location of
regulatory information relative to the promoter of a gene.

Evolution of genome architecture
How does this architecture arise? The net difference between
the rate of DNA deletion and insertion appears to determine
the direction of genome expansion or compaction in many
organisms [16,17]. Both the D. melanogaster and C. elegans
lineages have unusually high rates of DNA deletion, leading to
compact genomes [53-55]. For instance, the rate of DNA loss
is 40 times higher in the approximately 180 Mb D. mela-
nogaster genome than in the approximately 1,980 Mb
genome of Hawaiian crickets [17], and is 60 times faster in
Drosophila than in mammals [56]. When the DNA-deletion
rate is significantly greater than the rate of DNA insertion,
deletion will predominate in reducing genome size and
sculpting genome architecture. As deletions become more
and more likely to remove functional DNA, selection against
further deletion should tend to stabilize the minimum size of
intergenic regions, and the underlying architecture of the
genome will emerge.

Our work suggests that high rates of DNA loss may sculpt the
spacing of genes toward minimum functional requirements
for regulatory DNA. Such functional constraints in noncoding
DNA are known to affect distributions of insertions and/or
deletions (indels). For example, constraints imposed by
intronic splicing requirements influence the pattern of dele-
tion and insertion observed in D. melanogaster introns [57].
Comparison of noncoding regions of different Drosophila

Complex genes have more intergenic DNA in D. melanogaster than in C. elegansFigure 5
Complex genes have more intergenic DNA in D. melanogaster than in C. 
elegans. (a) Mean 5' flanking DNA (5'), 3' flanking DNA (3'), and total 
intergenic DNA (T; all ± standard error) is shown for nonredundant 
groups of simple genes (CDY, general RNA PolII transcription factors, 
ribosomal components, metabolism, and housekeeping) and complex 
genes (embryonic development, pattern specification, and specific RNA 
PolII transcription factors) in C. elegans (blue) and D. melanogaster (red). C. 
elegans complex genes have significantly more 5' flanking DNA than 3' 
flanking DNA (Wilcoxon two-sample test, p < 0.0001). The C. elegans 
complex group is flanked by significantly less DNA than the D. 
melanogaster complex group (Tukey-Kramer HSD, α = 1 × 10-4). (b) 
Distribution of intergenic DNA for all genes in C. elegans (blue) and D. 
melanogaster (red). In general, genes in C. elegans are more evenly spaced 
than in D. melanogaster. The largest class of genes in D. melanogaster has 
less than 1,000 bp of intergenic DNA separating neighboring genes, 
whereas the largest class in C. elegans has 1,000-2,000 bp. Thus, D. 
melanogaster does not have a euchromatic genome that is generally 
expanded with respect to C. elegans, even though it has many more genes 
with greater than 19,000 bp of flanking intergenic DNA.
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species indicates that conserved noncoding sequences are
often found in small blocks, with conserved spacing between
the blocks [58,59]. This suggests that spacing constraints also
act in intergenic regions, potentially to preserve spacing
between specific transcription factor binding sites or other
regulatory elements, or more generally to provide sufficient
physical space to insulate regulatory elements from one
another. In addition, interference selection, lowered recombi-
nation due to segregation of weakly selected mutations, was
suggested to account for a correlation between intergenic dis-
tance and coding region length [60]. A proposed alternative,
that longer genes are functionally more complex and there-
fore require larger noncoding regions [60], now finds support
in our observed correlation between intergenic distance and
regulatory complexity. Interference selection may itself con-
tribute to the evolution of complex regulatory regions: mini-
mum spacers, favored in the reduction of recombination
interference, may be required for recombination of complex
modular regulatory elements.

Other compact genomes, such as that of the teleost fish Fugu
rubripes, are also likely to be the product of greater rates of
DNA loss and are expected to show the relationship between
regulatory complexity and intergenic distance demonstrated
here. Even in the large human genome, there is evidence that
some regions have experienced compaction where gene den-
sity is increased. Dense gene clustering implies a relative lack
of local regulatory complexity and predicts that the clustered
genes should have relatively simple expression patterns. This
prediction is indeed supported by the presence of tissue-spe-
cific and housekeeping gene clusters and regions of high gene
density in the human genome [4,8,9,61]. Thus, the emergence
of some regions of high gene density and clusters may reflect
deletion acting to reveal local regulatory complexity, rather
than the organization of the genome into chromatin domains
or multigene transcriptional groups. In addition, the associa-
tion between gene spacing and regulatory complexity could
be exploited in the analysis of novel genes and genomes.
Based on our results, the relative regulatory complexity of a
'novel' gene might be inferred on the basis of the architecture
of its local genomic neighborhood.

Conclusions
Because of the vast size of animal genomes compared to the
small, relatively discrete functional elements within them,
regulatory DNA has been presumed to exert little, if any, glo-
bal effect on metazoan genome organization. Here we have
shown that spatial requirements for regulatory DNA shape
the density of genes in the genomes of D. melanogaster and
C. elegans. Further, we propose that small DNA deletions,
constrained by functional blocks of DNA, are the primary
mechanism for sculpting genome architecture. Repeated
bouts of insertion and deletion may actively shape gene distri-
bution - globally in organisms with compact genomes, and
locally in organisms with expanded genomes.

Materials and methods
Datasets
The D. melanogaster genome annotations version 3.1 [62]
were obtained from the BDGP. Only genes in the euchromatic
portion of the genome were used for analysis. C. elegans
genomic data were obtained from WormBase genome freeze
WS100 [63,64].

Expression data for D. melanogaster were obtained from two
independent sources. First, we determined the number of
'Expression and Phenotype' tags for all D. melanogaster
genes listed in FlyBase [65]. Second, we measured embryonic
expression complexity by counting the 'body parts' listed in
the BDGP in situ hybridization database [66] (accessed 10
October 2003). This project uses a controlled vocabulary to
annotate the expression of each gene during embryogenesis
[29]. C. elegans expression data was obtained through AQL
(Acedb Query Language) queries of WormBase for all genes
that possessed 'Expr_pattern' entries.

The housekeeping (HK) gene set was generated by combining
three lists of proposed human housekeeping genes [6-8]. This
nonredundant list was compared by BLAST [67] to the D.
melanogaster and C. elegans genomes. We retained only the
best hit in each genome that exceeded an E-value of 1 × 10-20.
The CDY (C. elegans, D. melanogaster, and yeast) dataset is
derived from single-copy genes shared by Saccharomyces,
Drosophila and Caenorhabditis [37]. We infer that these
genes will largely have shared basal functions and few cell-
type-specific functions [38]. Gene lists and sequences were
retrieved by EnsMart from the Ensembl Genome Browser
[68]. Because the C. elegans genome annotation employs dif-
ferent GO terms from that of Drosophila, we placed C. ele-
gans genes into corresponding GO categories by BLAST of
the D. melanogaster GO gene sets against the C. elegans pro-
teome.

Spacing analysis
We wrote several PERL programs (available upon request) to
parse C. elegans and D. melanogaster genomic data and cal-
culate intergenic distances. For most genes, we defined
upstream distance as the distance between the start of a
gene's first exon and the boundary of the closest upstream
neighboring exon (irrespective of DNA strand). We defined
downstream distance as the distance between the end of a
gene's last exon and the boundary of the closest downstream
neighboring exon. Total intergenic distance was defined as
the sum of the upstream and downstream distances. How-
ever, both genomes contained examples of genes with over-
lapping or interdigitated exons. In cases where exons
overlapped with one another, intergenic distance was defined
as zero. In cases where an exon was located within the intron
of another gene, the intergenic distance was calculated from
the boundary of the exon of interest to the nearest intron/
exon boundary.
Genome Biology 2004, 5:R25
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Figure 6 (see legend on next page)

Gene similarity
D. melongaster

gene name
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POU domain TF acj6 unc-86 4,504 9,891
EGFR ligand argos M6.4 20,161 9,102
FGFR ligand bnl let-756 12,571 11,712

Brain-specific homeobox bsh tab-1 8,366 3,918
C2HC Zn-finger CG12863 F33A8.4 8,712 597

Forkhead-like CG16899 fkh-7 2,175 13,910
NF-1-like CG2380 nfi-1 10,361 2,950
Bzip ATF6 CG3136 F45E6.2 38,725 4,158

Homeodomain TF cut ceh-44 32,002 3,988
dachshund dac dac-1 15,553 4,577

Dlx TF Dll ceh-43 29,081 3,717
Homeodomain TF Drop vab-15 61,855 10,752

E2F E2f efl-1 40,556 2,202
EGFR Egfr let-23 1,991 6,681

engrailed TF en ceh-16 52,975 4,941
ETS domain Ets98B F22A3.1 45,498 8,669

evenskipped TF eve vab-7 13,190 10,123
Forkhead TF fkh pha-4 39,809 14,062

FTZ-F1 ftz-F1 nhr-25 4,962 14,988
Hox co-factor hth unc-62 42,328 12,136

HLH TF nau hlh-1 1,119 3,210
Eph RTK Eph vab-1 5,481 9,588

numb numb num-1 29,405 4,387
Zn-finger TF ovo lin-48 55,041 6,395

TCF/LEF (HMG box) pan pop-1 9,678 3,965
Homeodomain TF PHDP ceh-17 3,416 1,840

Paired box Poxm pax-1 597 1,841
Homeodomain TF pros ceh-26 36,462 17,384
POU domain TF vvl/dfr ceh-6 144,371 9,799

Netrins NetB unc-6 14,019 6,535
 (secreted axon guidance) NetA 27,196

Roundabout lea sax-3 64,742 15,721
(Cell-surface axon guidance) robo3 49,947

robo 4,033
Wnt family wg mom-2 58,374 3,450

Wnt6 egl-20 57,125 4,910
Wnt10 lin-44 22,941 2,003
Wnt2 wnt-2 22,777 9,054
Wnt4 wnt-1 8,053 4,348
Wnt5 1,084

frizzled family fz2 cfz-2 90,015 23,428
fz4 mig-1 79,437 7,389
fz lin-17 36,548 6,320

fz3 mon-5 6,369 4,449
TGF-beta family dpp 2P528 35,684 14,355

myoglianin unc-129 6,864 13,829
mav dbl-1 5,951 10,549

Alp23B daf-7 5,857 5,573
gbb tig-2 516 1,733
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Data analysis and statistics
Data management and analysis were performed using a com-
bination of PERL programs, Microsoft Excel and JMP 3.0
(SAS Institute).

Composition of individual indices and bins. FlyBase index
(1,879 genes): Bin 1, genes with an index value of 1, corre-
sponding to 1 'Expression and Phenotype' entry in FlyBase, N
= 108 entries; Bin 2, two entries, N = 227; Bin 3, three entries,
N = 172; Bin 4, four to five entries, N = 184; Bin 5, six to eight,
N = 206; Bin 6, 9-13, N = 235; Bin 7, 14-18, N = 184; Bin 8, 19-
29, N = 187; Bin 9, 30-49, N = 193; Bin 10, 50-336, N = 183.

BDGP index (1,698 genes): Bin1, one body part listed, N =
163; Bin 2, two body parts, N = 184; Bin 3, three body parts,
N = 172; Bin 4, four body parts, N = 159; Bin 5, five body parts,
N = 145; Bin 6, six to seven body parts, N = 201; Bin 7, eight
to nine body parts, N = 180; Bin 8, 10-13, N = 144; Bin 9, 12-
14, N = 142; Bin 10, 15-42, N = 208.

WormBase index (1,130 genes): Bin 1, one 'Expr_pattern'
entry, N = 357; Bin 2, two entries, N = 192; Bin 3, three
entries, N = 116; Bin 4, four entiries, N = 123; Bin 5, five
entries, N = 98; Bin 6, six entries, N = 61; Bin 7, seven entries,
N = 52; Bin 8, eight entries, N = 39; Bin 9, 9-11, N = 43; Bin
10, 12-27, N = 49.

Comparison of all pairs of bins in each index was performed
using Tukey-Kramer HSD. As the size of intergenic DNA in
each bin approximates a log-normal distribution (Figure 4,
and data not shown) we compared both raw and log-trans-
formed measurements. In all cases bins of higher inferred
complexity tended to have higher average measures of inter-
genic DNA than bins of lower inferred complexity (Tukey-
Kramer HSD, α = 0.05).

Composition of functional groups: CDY, Ce N = 1,237, Dm N
= 1,250; general transcription factors, Ce N = 43, Dm N = 43;
HK, Ce N = 540, Dm N = 609; pattern specification, Ce N =
73, Dm N = 73; embryonic development, Ce N = 88, Dm N =
88; specific transcription factors, Ce N = 45, Dm N = 45;
metabolism, Ce N = 881, Dm N = 881; cell differentiation, Ce
N = 46, Dm N = 46; receptor activity, Ce N = 106, Dm N = 106;
ribosome constituents, Ce N = 93, Dm N = 93. The mean size
of the intergenic DNA associated with each group suggested

that the simple gene groups are not significantly different
between species, but that both simple groups are smaller than
both complex groups and that the C. elegans complex group
is smaller than the D. melanogaster complex group (Tukey-
Kramer HSD, α < 1e-4). This interpretation was confirmed by
independent inspection of the intergenic DNA size distribu-
tions for each group. Complex groups had many more genes
with large intergenic regions than simple groups did. Com-
parison between the C. elegans complex group and the D.
melanogaster complex group was complicated by the obser-
vation that the D. melanogaster group contained both more
genes with smaller than average intergenic regions and many
more genes with much larger than average intergenic meas-
ures. We divided both raw and log-transformed measures
from D. melanogaster and C. elegans into halves containing
the largest and smallest 50% of genes. The largest 50% of
complex genes in D. melanogaster is flanked by significantly
more DNA than the largest 50% of C. elegans complex genes
(Wilcoxon two-sample test, p < 0.001).

Additional data files
An Excel file containing the primary data used for the three
expression indices, the D. melanogaster X chromosome, and
the GO groups, is included (Additional data file 1).
Additional data file 1An Excel file containing the primary data used for the three expres-sion indices, the D. melanogaster X chromosome, and the GO groupsAn Excel file containing the primary data used for the three expres-sion indices, the D. melanogaster X chromosome, and the GO groupsClick here for additional data file
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representative gene sets in D. melanogaster (red) and C. elegans (blue). Orange boxes designate exons of the indicated genes. Gray boxes designate exons 
of neighboring genes. Note that genomic intervals are typically larger in D. melanogaster than in C. elegans, often owing to both larger flanking noncoding 
regions and larger introns. The total euchromatic genome of D. melanogaster is estimated at 117 Mb and the euchromatic genome of C. elegans is estimated 
at 100 Mb. The overall gene distribution within the genome is denser in flies than worms, suggesting that the larger regions of noncoding DNA associated 
with these representative complex genes are specifically allocated to these loci.
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