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Exploratory differential gene expression analysis in microarray experiments with no or limited replicationWe describe an exploratory, data-oriented approach for identifying candidates for differential gene expression in cDNA microarray exper-iments in terms of α-outliers and outlier regions, using simultaneous tolerance intervals relative to the line of equivalence (Cy5 = Cy3). We demonstrate the improved performance of our approach over existing single-slide methods using public datasets and simulation studies.

Abstract

We describe an exploratory, data-oriented approach for identifying candidates for differential gene
expression in cDNA microarray experiments in terms of α-outliers and outlier regions, using
simultaneous tolerance intervals relative to the line of equivalence (Cy5 = Cy3). We demonstrate
the improved performance of our approach over existing single-slide methods using public datasets
and simulation studies.

Background
Multiple studies validate the utility of cDNA microarrays for
comparing relative mRNA transcript levels between different
biological samples. Both the biological systems under study
and the technology itself contribute to the variability within
and between microarrays [1-11]. A fundamental question is
determining which of the potentially tens of thousands of
genes assayed have transcript levels that differ significantly in
the two samples. Experimental designs utilizing many levels
of replication improve the ability to identify differentially-
expressed genes [2-12]. However, the vast majority of studies
utilize no or limited replication due to practical considera-
tions of cost and feasibility. Thus, statistical techniques are
needed for cDNA microarray studies with constraints on rep-
lication. A common strategy is to equate differentially-
expressed genes with those genes having a ratio of hybridiza-
tion intensity values greater, or less, than some user-defined
threshold [13,14], such as two-fold change.

We describe a new approach for identifying differentially
expressed gene candidates in cDNA microarray experiments
without replication or with limited replication. We illustrate
its utility by applying it to published data and demonstrate its

advantages over current approaches. Microarray datasets are
comprised of pairs of processed fluorescent intensity values,
background corrected and normalized, for each of the N
genes on the microarray. We discuss a model for such data in
which the log2(Cy5) and log2(Cy3) values are linearly related
and are samples drawn from a bivariate normal population
'contaminated' with outliers (see detailed definitions of the
outlier-generating model in Methods) and possibly distorted
due to heteroscedasticity. In a contaminated bivariate normal
distribution, the main body of data is a sample from a bivari-
ate normal distribution and constitutes the regular observa-
tions. The dataset also contains non-regular observations,
'outliers' or 'contaminants', which represent systematic devi-
ations that, as we describe below, are candidates for differen-
tial expression. We check these underlying assumptions by
applying exploratory data analysis tools (scatter plots with
tolerance ellipses, Quantile-Quantile normal plots (QQNPs)
with simulation envelopes and boxplots for residuals) to sim-
ulated and empirical datasets.

We formulate our method in terms of an α-outlier-generating
model and outlier regions [15,16]. In a scatter plot of suitably
normalized log2(Cy5) versus log2(Cy3) intensity values the
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majority of data points lie in the vicinity of the line of equiva-
lence (Cy5 = Cy3). The line of equivalence can be estimated
using a robust linear regression estimator and normalizing
data by the regression fit making slope = 1 and intercept = 0.
We subtract the fit from data to compute residuals [log2(Cy5)
- log2(Cy3)] which represent the vertical distances from the
line of equivalence to the data points and are equivalent to the
log-transformed ratios log2(Cy5/Cy3). After these steps, we
apply robust scatter plot smoothers to quantify and take into
account the distortion of the data, if any, by heteroscedastic-
ity. Data points far from the line of equivalence, 'outliers', are
considered to be of greatest interest since they correspond to
genes having noticeably different hybridization intensity val-
ues. An outlier could represent one of five circumstances: a
gene with higher individual variability than the majority of
genes; an outlier by chance; a sporadic technical or biological
outlier; a systematic technical outlier (due to, for example,
heteroscedasticity); or a systematic biological outlier due to
differential expression. We assume that the further away
from the line of equivalence an outlier is located, the more
likely that it is genuinely 'up-' or 'down-regulated'. We com-
pare our approach with some existing single-slide methods
[13,14,17-20] and demonstrate that it works well in practice.

Results
We examined 10 published cDNA microarray experiments
that compared 6,295 transcript levels in wild-type Saccharo-
myces cerevisiae and single gene deletion mutants pertinent
to copper and iron metabolism [18]. The deleted genes were
mac1/YMR021C (experiment number 96), cin5/YOR028C
(26), cup5/YEL027W (36), fre6/YLL051C (64), sod1/
YJR104C (162), spf1/YEL031W (163), vma8/YEL051W
(189), yap1/YML007W (195), yer033c (214) and ymr031c
(250).

Exploratory data analysis supports model for cDNA 
microarray data
We used exploratory data analysis tools to assess the assump-
tions underlying our method. We assume that biological and
technical noise results in the majority of the measured
expression levels changing randomly, independently, non-
directionally and by a small amount. Thus, the log2(Cy3) and
log2(Cy5) variables in cDNA microarray data should be line-
arly related and come from a contaminated bivariate normal
distribution, possibly distorted due to heteroscedasticity.
Using each tool, we compared the observed mac1 data and
datasets simulated as samples from a bivariate normal distri-
bution with parameters corresponding to robust estimates of
the location and variance-covariance matrix. Figure 1 shows
concentration ellipses and QQNP for log2(Cy5/Cy3) values
for empirical and simulated datasets.

The log2(Cy5) versus log2(Cy3) scatter plots and concentra-
tion ellipses (Figure 1a,1b) provide a visual assessment of
bivariate normality. The distribution of the mac1 empirical

data is similar to the simulated ('ideal') bivariate normal pop-
ulation except for the presence of strong outliers. The mac1
data include significantly more unexpected events than might
be expected for a sample from a bivariate normal population.

The QQNP for residuals (log2(Cy5/Cy3)) compares the quan-
tiles of the empirical data with the quantiles of the standard
normal distribution (Figures 1c,d). The mac1 simulated data
points lie along a straight line (the line for the standard nor-
mal distribution) except for some heavy tails due to finite
sample size (Figure 1d). The empirical mac1 data points (Fig-
ure 1c) also conform to a normal distribution except for
longer tails (increased incidence of outliers and possible het-
eroscedasticity). Examination of the empirical data using
exploratory data analysis tools supports our premise that the
log-transformed channel intensities (log2(Cy3) and
log2(Cy5)) are linearly related and come from a contaminated
bivariate normal distribution possibly distorted with
heteroscedasticity.

The other nine datasets show a similar pattern (Figures
2,3,4,5,6,7,8,9,10). Figure 2 shows nine scatter plots with tol-
erance ellipses for the empirical log-transformed normalized
channel intensities. There are strong bivariate outliers and
differential gene expression candidates will be represented by
Y-outliers. A data point which is an X-outlier or Y-X-outlier
probably represents a technical gross error. Figure 3 repre-
sents scatter plots for simulated data produced using robust
estimates of location and scale parameters for the corre-
sponding empirical datasets. A 99.99% tolerance ellipse cov-
ers the simulated data points with no outliers. Figure 4
displays results after outlier removal from the empirical data
using a simple cut-off and ignoring heteroscedasticity, if any.
The majority of data points look like regular observations
sampled from a bivariate normal population.

Ordinary QQNP results represented in Figures 5,6,7 are a dif-
ferent view of the data shown in Figures 2,3,4, comparing
empirical, or simulated, quantiles with quantiles of the stand-
ard normal distribution. Outlying observations are all in the
heavy tails. Figure 6 demonstrates the absence of strong out-
liers in the simulated data but heavy tails still persist due to
finite sampling. Figure 7 shows that after the outlier removal,
the main body of data ('regular observations') may be reason-
ably approximated with a normal distribution. Simulation
envelopes for the QQNP support this conclusion, see text
below.

Figures 8,9,10 illustrate the use of simulation envelopes.
Clearly all simulated data points should be inside the enve-
lopes as shown in Figure 9. Figure 10 confirms our expecta-
tions that after outlier removal the main body of regular data
would be within the simulation envelopes. A hump-shaped
deviation from the envelope limits in almost all the examples
suggests a systematic technical error (the non-linear local
bias is very reproducible and may be seen in the majority of
Genome Biology 2004, 5:R18
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other scatter plots based on datasets from Hughes et al. [18]).
Such a local non-linearity could be removed by applying a
lowess-based normalization with appropriate smoothing
parameters. The source of the systematic deviation is not
known.

Detection of residual heteroscedasticity
In microarray data, the variance of residuals (log2(Cy5/Cy3))
is not a constant (homoscedasticity) but rather varies (heter-
oscedasticity) with intensity level (log2(Cy5Cy3)/2 or
log2(Cy3) or log2(Cy5)). The presence of residual hetero-
scedasticity argues strongly against arbitrary threshold meth-
ods to identify candidates for differential expression
[10,11,19,21-24]. Approaches for assessing the heterogeneity
of residual variance [10,11,25,26] include graphical, paramet-
ric and non-parametric methods. Here, we use non-paramet-
ric regression smoothing in 'absolute residuals versus
log2(Cy3)' scatter plots to quantify residual variance. We
compared S-plus/R supsmu (super smoother) and lowess

(robust locally weighted regression) with other methods
(scatter plots with tolerance ellipses, QQNPs with simulation
envelopes, boxplots for residuals) and found that our regres-
sion smoother approach for absolute residuals performs well.

We used these smoothing methods to assess heteroscedastic-
ity in the following way: grouping data into subsets of equal
size and then applying regression smoothers to the median
absolute residual in each group against median of log2(Cy3)
for that group [25]; same as this method but using boxplot for
each group. One benefit of the latter approach is the fact that
it can be used directly not only for residual diagnostics but
also to take into account heteroscedasticity and estimate the
number of candidates for differential gene expression. We
also used Spearman rank correlation coefficients of the abso-
lute residuals versus log2(Cy3) to check the smoothing-based
methods for consistency: positive values indicate increasing
residual variance, negative ones indicate decreasing variance
[25].

Visual tests of the underlying assumptionsFigure 1
Visual tests of the underlying assumptions. Five concentration ellipses for (a) the standardized mac1 dataset and (b) for a Monte Carlo simulated dataset 
with the same parameters of location and variance-covariance matrix (we used robust versions the location and scale estimators) as in mac1 data. The 
tolerance ellipses cover 90% (red), 95% (blue), 99% (green), 99.9% (orange) and 99.99% (light orange) portions of the standard normal distribution to assist 
in visually testing the assumption of contaminated bivariate normality. QQNP of residuals for (c) mac1 dataset and (d) for the corresponding Monte Carlo 
simulated dataset for comparison with (a) and (b). Outlying points are given in different colors in accordance with STIs in Figure 19b.

Log2(Cy3)

Lo
g 2

(C
y5

)

Log2(Cy3)

Lo
g 2

(C
y5

)

Quantiles of standard normal Quantiles of standard normal

R
es

id
ua

ls

R
es

id
ua

ls

−4

−2

4

2

0

−2

4

2

0

−4

−6
−6 −4 −2 0 2 4 −4 −2 0 2 4

−4 −2 0 2 4 −4 −2 0 2 4

−2

4

2

0

−0.4

−0.2

0.0

0.2

0.4

(a) (b)

(c) (d)
Genome Biology 2004, 5:R18



R18.4 Genome Biology 2004,     Volume 5, Issue 3, Article R18       Loguinov et al. http://genomebiology.com/2004/5/3/R18
We show an example of the results in Table 1 and Figures
11,12,13,14,15,16 for the cup5 dataset. Figure 11 demonstrates
the dependence between smoothed absolute residuals and
smoothing parameters for supsmu and lowess procedures. As
expected, supsmu procedure is more sensitive to prominent
outliers in low intensity regions because it uses an automati-
cally adjusted variable span. Prominent outliers in the low
intensity area are both Y- and X-outliers and should be dis-
carded. For the majority of cup5 data, supsmu and lowess
generate similar results. Figure 12 shows supsmu and lowess
smoothing for 20 median-based sequential intervals of equal
size and using different values of smoothing parameters at
'higher' resolution. Figure 13 does the same using cup5 data
in background. Figures 14 and 15 show boxplots for residuals
using 10 and 20 equal size sequential intervals, respectively.
They confirm the presence of heteroscedasticity as well. Box-
plots for residuals with 20 subgroups of equal size using
±3IQR-based upper and lower extremes give an estimate for
k = 75. This estimate is close to k = 61 identified by adjusted
supsmu-based 99.998% simultaneous tolerance intervals
(STIs) (Table 2). The difference in the estimates (14, or about
19%) can be explained by the fact that the ±3IQR rule gener-
ates about a 99.995% two-sided tolerance interval for a nor-
mally distributed population, while for a sample of finite size

the corresponding upper and lower tolerance limits are wider
(compare Equations 8 and 9) to cover 99.998% per residual
group. Figure 16 is a smoothed version of Figure 14 using
supsmu and lowess procedures for 3IQR-based extreme
limits.

Statistical significance of outliers: ordinary and 
smoothed STIs
Our method equates contaminants of bivariate normal distri-
butions (outliers) with candidates for differential expression.
The outlier identification method has been developed previ-
ously for other applications [16,27,28]. We employ an
approach based on the perspective of α-outliers and outlier
regions [15,16]. In this approach, a point above the line of
equivalence (that is, Cy3 = Cy5) is viewed as a candidate for
an up-regulated gene, one below the line as a down-regulated
gene and one in the vicinity of the line as an unchanged gene.
Intuitively, points further away from the line - stronger out-
liers - are most likely to represent differentially-expressed
genes. In other words, the probability that the observed dif-
ference in transcript level between the two samples might
have arisen by chance decreases. To quantify these qualitative
ideas, we applied statistical criteria to decide when points
might result from no actual difference in expression (for

Overlay of concentration ellipses for the bivariate standard normal on real dataFigure 2
Overlay of concentration ellipses for the bivariate standard normal on real data. Scatter plots of nine datasets from Hughes et al. [18] overlaid with 
concentration ellipses for the standard normal distribution (see Figure 1 for the portions captured). Channel intensity values were log(base 2)-
transformed, normalized and standardized.
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example, due to random fluctuations) versus those corre-
sponding to genuine differential expression. We used a
general α-outlier model for residuals (log-transformed nor-
malized ratios) to identify candidates for differential
expression.

In order to estimate the statistical significance of outliers, we
used simultaneous tolerance intervals (STIs) based on
Scheffé simultaneous confidence principles [29,30]. This
approach guarantees a desired confidence level across the
whole range of the predictor variable X = log2(Cy3), log2(Cy5)
or log2(Cy3Cy5)/2 and for all P = 100%q(the portion of the
normal distribution covered by a certain STI, see Methods).
We modified the approach using robust regression smoothers
(supsmu or lowess) to approximate an unknown relationship,
s2 = F(X), between residual variance and intensity. Five STIs
for the mac1 empirical and simulated datasets are shown
(Figure 17a,b). For ordinary STIs, random fluctuations are
seen to contribute to data points located away from the line of
equivalence. However, the empirical data contain more and
stronger outliers than the simulated data (Figure 17b). The
five ordinary STIs were constructed under the assumption

that the residual variance is constant (homoscedasticity)
across the entire range of values for the predictor variable. We
notice that for a large sample size (N = 6068, see Methods)
ordinary STIs appear as straight lines (for small and moder-
ate datasets they appear as hyperbolas; see Equations 2, 8,
and 9 in Methods). Figure 17c shows residuals (log2(Cy5/
Cy3)) as a function of X = log2(Cy3) for the empirical mac1
dataset. This plot and residual plots for other nine experi-
ments (Figure 18) reveal that residual variance is not a con-
stant (heteroscedasticity). Residual variance is commonly
high for small values of Xi; it decreases to a minimum and
may increase for large values of Xi, that is, the empirical
dependence appears hyperbolic. We account for the hetero-
scedasticity by the use of smoothed STIs (Figure 17d). Accord-
ingly, smoothed STIs appear as curves that are wider at low
and high Xi values. Therefore, for a given portion of the nor-
mal distribution covered by a certain STI, points with Xi val-
ues at either extreme are further away from the line of
equivalence.

For mac1, the width of the smoothed STIs is somewhat
greater at low intensities compared to those at high

Overlay of concentration ellipses for the bivariate standard normal on simulated dataFigure 3
Overlay of concentration ellipses for the bivariate standard normal on simulated data. Scatter plots of nine simulated datasets (generated as random 
samples from a bivariate normal population) with overlaid concentration ellipses for the standard bivariate normal distribution (see Figure 1 for the 
portions captured). Channel intensity values were log(base 2)-transformed, normalized and standardized.
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intensities. In the mid-range of Xi values, smoothed STIs lead
to intervals that are narrower than ordinary STIs that do not
consider heteroscedasticity. Therefore, candidates for differ-
entially-expressed genes are more likely to be identified in the
middle range of Xi values and are less likely to be defined at
the extremes.

We evaluated the lowess- and supsmu-smoothing procedures
by applying them to a simulated dataset taken from an 'ideal'
bivariate normal population with the same parameters as the
empirical mac1 dataset. The robust scale estimates using the
Huber τ-estimator for scale, supsmu- and lowess-based scale
estimators are shown in Figure 19a. The smoothed scale esti-
mators generate approximately straight lines parallel to the
Huber τ-scale estimator.

Adjusted STI
An adjustment for Gaussian efficiency is necessary for the
application of robust estimators [31] such as those we use for
outlier identification in the presence of heteroscedasticity.
We therefore adjust smoothed STIs to improve their accu-
racy. We calculate an adjustment constant (scale factor) to

compensate for the difference between the Huber τ-estimator
for scale and supsmu- or lowess-based scale estimators (see
Methods for details). The adjusted constant is used as a scale
factor for the smoothed STIs for empirical data. Adjusted
smoothed STIs are shown in Figure 18 and Figure 19b. The
dramatically different STIs amongst the ten datasets reflect
their individual patterns of residual variance and demon-
strate the necessity of tailored analysis of a dataset.

Candidates for differential expression
We identify candidates for differential expression by using
STIs containing the P = 100(1 - α) portion of normal distribu-
tion covered with probability at least 1- γ (see Methods). For
mac1, no simulated data lies outside the 99.998% ordinary
STIs (γ-level = 0.0001) suggesting that empirical data points
outside the corresponding adjusted smoothed supsmu-based
STIs are good candidates for differentially-expressed genes.
For the mac1 analysis (Table 3), 41 candidate genes for up-
regulation and 20 candidates for down-regulation are identi-
fied using a 99.998% (γ-level = 0.0001) adjusted supsmu-
based STI. For the ten datasets examined, up to approxi-
mately 2% of the genes were candidates for differential

Overlay of concentration ellipses for the bivariate standard normal on real data with prominent outliers removedFigure 4
Overlay of concentration ellipses for the bivariate standard normal on real data with prominent outliers removed. Scatter plots of nine datasets from 
Hughes et al. [18] after outlier removal with concentration ellipses for the standard bivariate normal distribution (see Figure 1 for the portions captured). 
Two-sided 99.9% cut-off and robust measure of scale (median absolute deviation) for residuals were used to identify outliers. Channel intensity values 
were log(base 2)-transformed, normalized and standardized.
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expression (see Table 2, Table 3 and Table 4 for mac1 data
and a comparative summary table for all ten datasets in Addi-
tional data). Overall, adjusted smoothed STIs provide a better
balance between sensitivity and specificity across the whole
range of predictor variable values (log2(Cy3)) and are thus
more reliable than ordinary STIs. The approach takes into
consideration multiplicity of comparisons, variation in the
experimental response around the line of equivalence (or
around zero for residuals) and intensity dependent variation
in residual variance.

Differential expression in a single cDNA microarray: 
adjusted smoothed STIs and existing methods
We compared the adjusted smoothed STI technique for iden-
tifying differentially-expressed genes with other methods for
single cDNA microarray data [13,14,17-19]. Within the frame-
work of outlier detection analysis, the primary difference
amongst these methods is the means used to define statistical
intervals (see Discussion for the details of each model). In the
arbitrary ratio approach, Yi/Xi = log2(Cy5/Cy3) = ri defines a
gene i as being differentially expressed if ri >t where t is a
user-defined threshold [13,14,17]. The most frequently used

value t corresponds to residuals of -1 (two-fold down) and 1
(two-fold up). Figure 20 compares differential expression in
three different experiments using a ratio threshold and
adjusted supsmu-based STIs. For t = ± 1, any gene outside
this cut-off would be deemed as up- or down-regulated. How-
ever, employing the criterion of genes higher than the
99.998% (γ-level = 0.0001) adjusted supsmu-based STIs
would yield additional candidates for differential expression.
Although t = ± 1 seems more conservative for these datasets,
it may be overly liberal for others.

Hughes et al. [18] developed an error model that made use of
additional information about the variability of each gene
based on 63 'same versus same' control experiments. Figure
21a and Table 4 compare differential expression in the mac1
data as defined using the 'gene-specific' error model [18] and
adjusted supsmu-based STIs. As we discuss below, some
genes which were identified as differentially expressed using
our adjusted supsmu-based STIs were not identified by the
error model [18]. Our approach with four other models
[17,19,20] (see also Discussion) in an outlier detection frame-
work is compared in Figure 21a,b.

QQNP for real data: residuals of nine datasets from Hughes et al. [18]Figure 5
QQNP for real data: residuals of nine datasets from Hughes et al. [18]. Channel intensity values were log(base 2)-transformed and normalized. Compare 
with Figure 18 (colors for outliers match the tolerance band colors).
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In general, our adjusted smoothed STI method generates nar-
rower bands in the mid-range of gene expression levels and
broader bands in low and higher intensity areas. For mac1,
the bands for Newton et al.'s method [19] and our method
appear similar qualitatively. The STI-based measure of statis-
tical significance takes into consideration the unique features
and properties of empirical microarray datasets.

Simulation studies
We carried out simulation studies using sample parameter
estimates from the mac1 dataset to assess the performance of
each of the single-slide methods. We created artificial data-
sets with 100 candidates (outliers) for differential expression.
We simulated k = 100 non-regular observations and N-k =
6,068-100 = 5,968 regular observations (the main body of
non-differentially-expressed genes). A random component
was added to each outlier value using standard normal distri-
bution with variance dependent on intensity. This set of 100
represents the 'true' outliers due to 'differential expression'.
We simulated heteroscedasticity present in many datasets by
including intensity-dependent variability in the low and high
intensity levels for both non-regular and regular data points.
We then compared the performance of each method to iden-
tify candidates for differential expression in multiple repeat
runs of the simulation. (R code and data used for the simula-
tions can be obtained from the authors upon request.) Figure

22 shows a plot of the simulated data with true outliers shown
in red. We compared the performance of several different sin-
gle-slide methods at ten 'cut-off' levels of relatively equivalent
stringency as shown in Table 5 (except for Chen et al. [17]
which use only two levels of significance). We compared PPV
(positive predictive value), NPV (negative predictive value),
sensitivity, specificity and likelihood ratios at each cut-off for
each method (please see definitions of the test accuracy meas-
ures in [32] and in Additional data). We plotted these results
in Figure 23 as a receiver operating characteristic (ROC)
curve, a PPV curve, and a likelihood ratio curve. These results
clearly demonstrate that our method outperforms existing
single-slide methods with improved positive predictive val-
ues, likelihood ratio and higher ROC curves (greater area
under the curve). These improved performance differences
are most apparent at the most stringent significance levels
which are likely to be most relevant in the context of multiple
comparisons.

Comparison of biological significance of mac1 results
The effects of the mac1∆ on the metabolism and gene expres-
sion in yeast are well documented. The absence of the Mac1p,
a copper responsive transcription factor, results in down-reg-
ulation of copper uptake transporters and subsequent copper
deficiency [33-36]. Copper is required for Fet3p which in turn
is necessary for iron uptake in yeast. As a consequence,

QQNP for residuals of nine simulated datasets (generated as random samples from a normal population)Figure 6
QQNP for residuals of nine simulated datasets (generated as random samples from a normal population). Channel intensity values were log(base 2)-
transformed and normalized. Compare with Figure 18 (colors for outliers match the tolerance band colors).
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copper deficiency results in secondary iron deficiency
[37,38]. Iron deficiency leads to activation of iron responsive
transcription factors, Aft1p and Aft2p, which induce tran-
scription of a host of genes encoding proteins involved in iron
uptake [39]. The identification of up-regulation of these tar-
get genes provides a reasonable biological standard for com-
paring the performance of the different methods. In addition,
down-regulation of Mac1p targets might be expected in a
mac1∆. In Table 4, we present a comparison of the methods at
relatively equivalently high levels of stringency for likely Aft1/
2p and Mac1p targets present on the arrays and identified by
at least one method as differentially expressed. We also
include the two-fold cut-off for comparison. A total of 13
genes were not identified as up-regulated by Hughes et al.
Two genes previously identified as a Mac1p target
(YFR055W) [40] or down-regulated in mac1∆ (CTT1) [33]
and MAC1 itself were not identified by the Hughes et al.
method. While identifying many of the Aft1/2p targets
excluded by Hughes et al., the other two methods did not
identify MRS4 or SMF3, which are regulated in response to
iron deficiency, nor did they identify YFR055W and CTT1 as
down-regulated. We suggest that these results provide some
biological validation of our approach and indicate increased
performance of our method over the other methods at

stringent significance levels - necessary given the multiplicity
of comparisons.

Discussion
Multiple replications in the design of reagents (multiple spot-
ting of each gene on a microarray) and experimental
approach (multiple replicates of each hybridization) provide
the soundest approach to confirm differential expression of
genes (see, for example, [2-12]). However, experimental real-
ities such as limited samples (for example, tumor specimen),
a large number of samples (for example, time course experi-
ments) and experimental cost have resulted in the vast major-
ity of published cDNA microarray studies using limited or no
replication. Several methods currently exist for the analysis of
data from experiments with limited or no replication. Unfor-
tunately, real microarray data generally violate the assump-
tions underlying these methods.

Limitations of underlying assumptions of current single- 
slide methods
Chen et al. [17] assumed that raw non-normalized and non
log-transformed Cy5 and Cy3 intensities (raw intensities) are
drawn from independent normal populations with common

QQNP for residuals of nine datasets from Hughes et al. [18] after prominent outlier removalFigure 7
QQNP for residuals of nine datasets from Hughes et al. [18] after prominent outlier removal. Two-sided 99.9% region and robust measure of scale 
(median absolute deviation) for residuals were used to remove outliers. Channel intensity values were log(base 2)-transformed and normalized. Compare 
with Figure 18 (colors for outliers match the tolerance band colors).
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coefficient of variation. An asymmetric density function for
raw ratios was derived. This results in asymmetric bands with
the identification of more up-regulated than down-regulated
genes irrespective of the dataset (compare Figure 4 in [19]
and Figure 7 in [8]).

Newton et al. [19] assumed that because raw Cy5 and Cy3
intensities are always positive they can be considered as
observations from a Gamma distribution with the same coef-
ficient of variation (if Cy3 and Cy5 are independent, their
joint distribution is a bivariate Beta distribution). Hierarchi-
cal Gamma-Gamma and Gamma-Gamma-Bernoulli models
were formulated in which the posterior odds of change in
expression were an additive (Cy5 + Cy3) and multiplicative
(Cy5Cy3) functions of intensity. Contours of the posterior
odds in (X ≡ log(Cy3), Y ≡ log(Cy5)) scatter plots were used to
identify differentially-expressed genes. In practical
situations, it may be difficult to determine if data are log-nor-
mal or Gamma [41] but we argue that the former is more real-
istic for microarray data because the combination of
biological and experimental noise results in the majority of
the measured expression levels changing randomly,

independently, non-directionally and for those changes to be
small. The central limit theorem would therefore predict
bivariate normality for the majority of log-transformed spot
intensity values.

Sapir and Churchill [20] compute the posterior probability of
differential expression using a mixture of orthogonal
residuals derived from ordinary least squares regression of (X
≡ log2(Cy3), Y ≡ log2(Cy5)). The approach assumes that differ-
entially-expressed genes are drawn from populations with
unknown distributions approximated with uniform distribu-
tions. This mixture model approach assumes that all outliers
(k non-regular observations) follow the same distribution D0

= D1 = ... = Dk. Under a mixture model, contaminants are less
separated from the regular observations than when using Fer-
guson-type model [16]. The method used to obtain orthogo-
nal residuals in this approach is not resistant to outliers [42]
and is redundant because the use of log-transformed ratios
log2(Cy5/Cy3) assumes normalization by linear regression to
enforce slope equal to 1 and intercept equal to 0 (compare
[8]). This approach does not take into consideration residual
heteroscedasticity. Similarly, Yue et al. [1] described a

QQNP with simulation envelopes (based on 1,000 random samples from a normal population) for residuals of nine datasets from Hughes et al. [18]Figure 8
QQNP with simulation envelopes (based on 1,000 random samples from a normal population) for residuals of nine datasets from Hughes et al. [18]. 
Channel intensity values were log(base 2)-transformed and normalized. The envelopes are depicted as dashed red lines.
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method based on parametric two-sided tolerance intervals for
ratios. This approach does not consider residual hetero-
scedasticity and the multiplicity of comparisons.

Hughes et al. [18] performed 63 control 'same versus same'
hybridizations in addition to 300 'treatment versus control'
cDNA microarray experiments, many in duplicate. They fil-
tered candidates for differential expression on the basis of the
information about individual variability in expression levels,
and genes with unusually high variation were discarded (Fig-
ure 21a). One possible drawback is the assumption that the
expression variance is the same in both samples. Hughes et
al. [18] quantified residual heteroscedasticity using weighted
location and scale estimators for 'same versus same' repli-
cates. Their method used non-robust versions for the estima-
tors - consequently the location estimates may have a bias and
the scale estimates would be significantly inflated in the pres-
ence of outliers [43]. In addition, since this method uses
extensive 'same versus same' hybridizations, it cannot be con-
sidered to be a single-slide method.

Advantages of α-outlier model and outlier 
identification method
In this work, we have described a post hoc (data-oriented)
method, which makes fewer assumptions about the nature of
the data, tests the assumptions to ensure their validity and
produces computationally reasonable results. We showed
that a reasonable model is one where the processed
fluorescent intensity values are samples drawn from a bivari-
ate normal population contaminated with outliers and possi-
bly distorted due to heteroscedasticity. After a normalization
by a robust linear regression fit to make slope equal to 1 and
intercept equal to 0, in general, most data points in the
log2(Cy5) versus log2(Cy3) scatter plot lie close to the line of
equivalence (log2(Cy5) = log2(Cy3)) while a limited number
of data points, outliers, lie outside the vicinity. The outliers
are good candidates for differentially-expressed genes. The
further an outlier is located from the line of equivalence the
more likely it is to represent a systematic outlier rather than a
chance observation. The α-outlier-generating model
approach for identifying differentially expressed gene

QQNP with simulation envelopes for Monte Carlo simulated dataFigure 9
QQNP with simulation envelopes for Monte Carlo simulated data. QQNP with simulation envelopes (based on 1,000 random samples from a normal 
population) for residuals of nine simulated datasets (generated as random samples from a normal population). Channel intensity values were log(base 2)-
transformed and normalized. The envelopes are depicted as dashed red lines.
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QQNP with simulation envelopes (based on 1,000 random samples from a normal population) for residuals of nine datasets from Hughes et al. [18] after prominent outlier removalFigure 10
QQNP with simulation envelopes (based on 1,000 random samples from a normal population) for residuals of nine datasets from Hughes et al. [18] after 
prominent outlier removal. Two-sided 99.9% cut-off and robust measure of scale (median absolute deviation) for residuals were used to remove outliers. 
Channel intensity values were log(base 2)-transformed and normalized. The envelopes are depicted as dashed red lines.

Table 1

Detecting heteroscedasticity

Dataset Xmin Rho1 Rho1 p-value Rho2 Rho2 p-value

mac1 -1.50 -0.08 1.36E-03 0.16 0.00E+00

yer033c -0.70 -0.10 2.30E-08 0.11 3.70E-09

cup5 -0.93 -0.17 0.00E+00 0.11 5.44E-10

spf1 -1.44 -0.18 0.00E+00 0.20 0.00E+00

ymr031c -0.89 -0.17 0.00E+00 0.11 3.43E-10

vm8 -0.82 -0.10 7.98E-09 0.10 1.66E-08

yap1 -0.97 -0.23 0.00E+00 0.12 1.59E-10

sod1 -1.54 -0.09 3.68E-04 0.15 0.00E+00

fre6 -1.77 -0.13 2.69E-10 0.06 2.46E-04

cin5 -0.28 -0.12 2.17E-14 0.11 1.09E-07

Use of Spearman rank correlation for absolute residuals to detect heteroscedasticity [25] in ten datasets from Hughes et al. [18]. Empirical 
hyperbolas (here they are based on supsmu smoother) have minima around sample means. As a result, we use two subintervals to compute 
Spearman rank correlation coefficient: from minus infinity to Xmin (log2(Cy3) axis) and from Xmin to plus infinity. We note that sign of Spearman rank 
correlation always coincides with the sign of first derivative for empirical hyperbolas at a given subinterval (compare Figure 20). Rho1, Spearman 
coefficient of rank correlation for the former subinterval; Rho1 p-value, p-values for values in column Rho1; Rho2, Spearman coefficient of rank 
correlation for the latter subinterval; Rho2 p-value, p-values for values in column Rho2 (p-values are given in scientific notation, 0.00E+00 means that 
the respective p-value was less than 10-16).
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Table 2

Candidate differential expressed genes with different approaches

RN ORF name STI1 STI2 smuSTI1 smuSTI2 adsmuSTI1 adsmuSTI2

1 YBR047W + + +

2 YBR207W + + + + + +

3 YBR295W + + + +

4 YDR264C + + + + +

5 YDR269C + +

6 YDR270W + + + + + +

7 YDR441C + +

8 YDR476C + + + + +

9 YDR534C + + + + + +

10 YEL065W + + + + + +

11 YER145C + + + + + +

12 YFL041W + + + + +

13 YFR023W +

14 YFR024C-A +

15 YGL015C + + + + + +

16 YGL039W + + + + + +

17 YGL055W +

18 YGR065C + + + +

19 YGR079W + + +

20 YGR257C + +

21 YHL035C + + + + + +

22 YHL040C + + + + + +

23 YHL047C + + + + + +

24 YHR042W + + + +

25 YHR175W + + + + + +

26 YJL145W +

27 YJL153C + + + +

28 YKL039W +

29 YKL220C + + + + + +

30 YKR052C + + +

31 YLL051C + + + + + +

32 YLL053C + + +

33 YLR034C + + + +

34 YLR046C + + + +

35 YLR056W + + + +

36 YLR126C + + + + + +

37 YLR127C + +

38 YLR136C + + + + +

39 YLR192C +

40 YLR205C + + + + + +

41 YLR214W + + + + + +

42 YMR006C + + + +

43 YMR011W + + + +

44 YMR058W + + + + + +

45 YMR251W + + + + + +

46 YMR319C + +

47 YNL237W + + + + + +

48 YNL259C + + + + + +
Genome Biology 2004, 5:R18
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49 YNR056C + + + + + +

50 YNR060W + + + + + +

51 YOL153C + + + + +

52 YOL158C + + + + + +

53 YOR334W + + + +

54 YOR381W + + + + + +

55 YOR382W + + + + + +

56 YOR383C + + + + + +

57 YOR384W + + + + + +

58 YPL171C +

59 YBR250W +

60 YDR423C +

61 YER028C +

62 YHR199C +

63 YIL169C +

64 YJL149W + + +

65 YOL101C + +

66 YOL164W + +

RN ORF name STI1 STI2 smuSTI1 smuSTI2 adsmuSTI1 adsmuSTI2

1 YBR054W + + + + +

2 YBR145W +

3 YBR147W + + + +

4 YCL030C + + + + +

5 YDL171C + + + + +

6 YDR035W + + +

7 YDR234W + +

8 YEL039C + + + +

9 YER001W +

10 YER156C + +

11 YER174C + + + + +

12 YFL014W + + + + +

13 YFR030W + + + + + +

14 YFR055W + + + +

15 YGL009C + + + + + +

16 YGL117W + + + + + +

17 YGR088W + + + +

18 YGR286C + + + + + +

19 YHL021C + + + + + +

20 YHL028W + + +

21 YHR018C + + + +

22 YHR029C +

23 YHR045W +

24 YIL111W + +

25 YJL048C + + +

26 YJL088W + +

27 YJL089W + +

28 YJL200C + + +

29 YJR016C +

30 YJR025C +

Table 2 (Continued)

Candidate differential expressed genes with different approaches
Genome Biology 2004, 5:R18
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candidates makes no assumptions about outlier distribution
and dependency structure of the candidates. The mixture
model of Sapir and Churchill [20] assumes that all candidates
have the same distribution D0 (D0 = D1 = ... = Dk, see Meth-
ods). Other approaches (for example, [17,19]) assume inde-
pendence of channel intensities. The individual distributions
are usually not known and could be different for each gene,
since only replication allows estimation of the distributions.
Multiple levels of dependence, such as co-regulated genes, are
expected rather than unlikely in gene expression analysis.
Since our model and analysis approach does not require such

assumptions, which are likely to be violated by the data, we
would argue that our approach is more realistic and generally
applicable.

Accommodating heteroscedasticity in outlier 
identification
We compensate for a source of reproducible systematic tech-
nical error, heteroscedasticity, by using robust non-paramet-
ric regression smoothers to quantify the differences in the
variability of gene expression values as a function of spot
intensity levels. STIs corrected for heteroscedasticity and

31 YJR109C + + +

32 YJR137C + + + + +

33 YKL062W + + +

34 YKL109W + + +

35 YKL141W + + +

36 YKL148C + + + +

37 YKL218C +

38 YKR066C + + +

39 YLL041C + + + + +

40 YLR220W + + +

41 YLR304C + + + + +

42 YMR021C + + + + + +

43 YMR022W + + +

44 YMR095C +

45 YMR096W + + +

46 YMR271C + +

47 YNL160W +

48 YOL058W + + +

49 YOL064C + +

50 YOR065W + + +

51 YOR195W + +

52 YOR230W +

53 YOR356W + + + +

54 YPL092W + + +

55 YPR123C + + +

56 YPR160W + +

57 YCR106W +

58 YGR052W +

59 YJR130C +

60 YOL119C +

61 YPL123C +

62 YPR167C +

Total 47 34 128 98 84 61

Candidates for differentially-expressed genes in the mac1 cDNA microarray experiment based on three different approaches: STI1 is ordinary STI at 
99.98% and STI2, at 99.998%; smuSTI1 is supsmu-based STI at 99.98% and smuSTI2, at 99.998%; adsmuSTI1 is adjusted supsmu-based STI at 99.98% 
and adsmuSTI2, at 99.998%. The study monitored transcripts in a mac1 knockout and wild type S. cerevisiae. For the STIs, the above-mentioned 
captured portions of the respective normal distributions were covered with probability at least 99.99%.

Table 2 (Continued)

Candidate differential expressed genes with different approaches
Genome Biology 2004, 5:R18
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adjusted for Gaussian efficiency relative to the line of equiva-
lence (Cy5 = Cy3) serve as a probabilistic tool for identifying
outliers. Our approach uses robust scatter plot smoothing
techniques to simultaneously diagnose and quantify the
variance structure of the data and allow natural accommoda-
tion of heteroscedasticity in the identification of outliers. This

post hoc approach makes sense especially in view of the large
sample size common in microarray experiments.

α-Outlier-generating model can be extended to 
multiple slide studies
We can extend our adjusted smoothed STI approach to data-
sets with multiple levels of replication. This provides a con-
sistent method for experiments with and without replication.
It is not clear how extant single-slide methods could be
adapted for multiple-slide comparisons. Usually, two meth-
ods, each with their own data models and assumptions - one
for single-slide and a second for a multiple-slide based
method, are used.

Transformations versus interpretation of microarray 
datasets
Our method is based on limited data transformations (for
example, background subtraction, log-transformation and
global channel normalization) designed to preserve the data
distribution and account for heteroscedasticity. A variety of
non-linear transformation methods can be used to remove
heteroscedasticity, for example, variance-stabilizing monot-
onic continuous non-linear transformations [21-23,44].
Equalizing residual variance in this manner does not guaran-
tee that bivariate normality will be preserved for the majority
of genes which are not differentially expressed. A model
distribution assumption is especially important for statistical
inference in the case of limited or no replication in the data.
Non-linear transformation methods require preliminary
research and computational experimentation with different
types of transformations for each specific microarray dataset
in order to make a choice between different transformations.
Although transformation methods could represent a valuable

The use of smoothed absolute residuals to diagnose and quantify residual heteroscedasticityFigure 11
The use of smoothed absolute residuals to diagnose and quantify residual 
heteroscedasticity. 'Absolute residuals versus log2(Cy3)' scatter plot 
smoothed using supsmu and lowess and different values of the smoothing 
parameters bass and f, respectively. The figure illustrates the dependence 
of smoothing effect from magnitude of smoothing parameters. bass is 
control of the low frequency emphasis when using cross validation. The 
larger the value of bass (up to ten), the smoother the fit from automatic 
span selection [51,52,63]. f is fraction of the data used for smoothing at 
each log2(Cy3) point. The larger the f value, the smoother the fit 
[51,52,63].

The use of smoothed absolute residuals for sequential intensity intervalsFigure 12
The use of smoothed absolute residuals for sequential intensity intervals. 
'Absolute residuals versus log2(Cy3)' scatter plot based on supsmu and 
lowess for 20 sequential intervals of equal size and using different values of 
smoothing parameters (see legend to Figure 11 for details). Data are 
shown with higher resolution than in Figure 13.
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of smoothing parameters (see legend to Figure 11 for details). Scale is 
different from Figure 12.
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approach to microarray data analysis, any complex non-lin-
ear data transformation calls into question the validity of the
transformations. Therefore, the application of these
transformation methods requires trial and error followed by
validation of each transformation for a particular experimen-
tal dataset [44]. We suggest that our approach, which relies
on interpretation of existing data distributions including any
heteroscedasticity rather than application of methods to
change distributions, provides a reasonable alternative to
variance-stabilizing methods.

Multiple comparisons in microarray data analysis
Typically, microarray data involve thousands of genes so
clearly there is a problem of multiplicity of comparisons.
Other model-based single-slide approaches do not consider
this issue explicitly (see single-slide procedures described in
[1,13,14,17,18]). First, we identify candidate outliers without
correction to obtain unadjusted p-values (Table 3). A p-value
is a probability to reject the null hypothesis when the null

hypothesis is true and represents a measure of statistical sig-
nificance in terms of false positive rate. One way to obtain
adjusted p-values is to apply a Bonferroni correction based on
N (the sample size of the entire dataset) which may be too
conservative, so we examine two alternative corrections. In
one alternative approach, we apply a multiplicity of
comparison correction based on an estimate of k (number of
non-regular observations) rather than the sample size of the
entire dataset. This approach emphasizes stable outliers at
the expense of other possible outliers (that is, N-k) which are
inliers in the current single-slide experiment. Clearly, this
Bonferroni correction by k provides a much less conservative
result than the correction by N and we would argue more
reasonable correction to identify true outliers. Other robust
exploratory tools (see Methods) can be used to estimate k. In
a more sophisticated approach to address these issues, the q-
value is calculated from the ordered list of unadjusted p-val-
ues [45,46] (Figure 24). The q-value is the minimum false dis-
covery rate [47] for a particular feature from a list of all

Boxplots for residuals using ten sequential intervals of equal sizeFigure 14
Boxplots for residuals using ten sequential intervals of equal size. A box corresponds to the IQR (inter-quartile range), the mid point is a sample median, 
and whiskers are 3IQR limits. Outliers (non-regular observations) are points outside the whiskers. Abscissa is based on medians for ten intervals of 
approximately equal size (the total sample size is 6,068, the first nine sets were 606, the tenth set was 614).
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features [45,46]. The false discovery rate is the proportion of
true null hypotheses among all null hypotheses which were
found to be significant - for example, a false discovery rate of
1% means that among all candidates for differential expres-
sion found significant, 1% of these are true nulls on average
[46].

Exploratory and confirmatory differential gene 
expression analysis
We suggest distinguishing explicitly between exploratory
data analysis to identify candidates for differential gene
expression and confirmatory analysis to identify differen-
tially-expressed genes based on strict statistical inference.
Exploratory differential gene expression analysis is
appropriate for datasets with limited replication to identify
the most likely candidates for differential expression. Clearly,
additional independent experimental approaches or addi-
tional replicates are needed to confirm the exploratory
analysis and distinguish outliers by chance from systematic

outliers. Alternatively, confirmatory differential gene expres-
sion analysis with multiple layers of experimental and techni-
cal replication provides sound conclusions based solely on the
microarray datasets. Nevertheless, exploratory microarray
data analysis followed by independent confirmatory valida-
tion studies (for example, quantitative RT-PCR) represents a
practical and cost effective solution for expression studies.

Methods
Transcript profiling data
The transcript profiling datasets examined in this study are
from a published study that employed cDNA microarrays to
compare gene expression in wild type S. cerevisiae and single
gene deletion mutants [18]. Hughes et al. monitored 6,295 S.
cerevisiae genes [18] in their study. For our analysis we used
6,068 of the 6,295 genes monitored. For each experiment, we
used a Monte Carlo procedure to generate simulated datasets
of N = 6,068 data points drawn from an 'ideal' bivariate

Boxplots for residuals using 20 sequential intervals of equal sizeFigure 15
Boxplots for residuals using 20 sequential intervals of equal size. Details are the same as for Figure 14 but using 20 sequential intervals.
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normal population having the same parameters of location
(means) and variance-covariance matrix as the empirical,
observed data (the R/S-plus function rmvnorm()).

Data preprocessing
For each experiment, the observed data consisted of N =
6,068 pairs of Cy3 and Cy5 fluorescent intensity values which
had been background corrected, tested for linearity,
normalized by total signal intensity and log transformed [18],
log2(Cy3)i, log2(Cy5)i, i = 1,... 6,068.

Exploratory data analysis
The empirical bivariate intensity data {log2(Cy5), log2(Cy3)}
and simulated datasets were examined using the following
exploratory data analysis tools: concentration ellipses
(ellipse() from package ellipse in R) and QQNP for residuals
(qqnorm()).

Graphical tests for normality
Our approach assumes that the majority (more than 50%) of
genes under consideration are not differentially expressed.
We posit that changes in the expression levels of these genes
are random, independent, non-directional and relatively
small. These assumptions suggest that for the majority of data
points, scatter plots 'log2(Cy5) versus log2(Cy3)' should
exhibit bivariate normality, or univariate normality if
log2(Cy5/Cy3) is used as a measure of differential expression.
Since we assume linearity (additivity), the data generally need
to be normalized to remove non-linearity, if any, using global
or print-tip group lowess method [48].

In addition to mac1, we examined data from nine other exper-
iments, mac1, cin5/YOR028C, cup5/YEL027W, fre6/

YLL051C, sod1/YJR104C, spf1/YEL031W, vma8/YEL051W,
yap1/YML007W, yer033c and ymr031c. We tested these
data for normality using three tools: scatter plots with con-
centration ellipses (tolerance ellipses), ordinary QQNPs for
residuals, and QQNPs with simulation envelopes. The first
and the third tools could be used to identify candidates for
differential expression if the data are homoscedastic. We note
that homoscedasticity may be imposed by applying variance-
stabilizing transformations as discussed above (see
Discussion).

For each experiment, we examined empirical and simulated
data: firstly, log-transformed normalized channel intensities,
log2(Cy5) versus log2(Cy3); secondly, channel intensities
simulated as random samples from a bivariate normal popu-
lation with the same location and scale parameters as in the
first set of data; and thirdly, the same as the first set of data
but after removing outliers defined as data points outside the
99.9% cut-off obtained using robust location and scale
estimators. We used these tools rather than formal, analytical
tests for univariate and bivariate normality [49,50] because
the latter are sensitive to even small departures from normal-
ity if the sample size is large, that is, many thousands of data
points.

Scatter plots with concentration ellipses (tolerance 
ellipses)
We overlay scatter plots of the experimental data with con-
centration ellipses for a bivariate normal distribution; the
ellipses indicate curves of constant probability density for the
standard bivariate normal population. The plots can be used
as a visual test for bivariate normality and to investigate
systematic and random deviations from it. As a diagnostic
display for outliers [31], the plots can detect (projecting the
data on the line Y = -X [43]) regular observations, with inter-
nal X and well-fitting Y, and three types of outliers: only Y-
outliers (vertical outliers with internal X and non-fitting Y),
only X-outliers (outlying X and well-fitting Y) and both Y- and
X-outliers (Y-X-outliers with outlying X and non-fitting Y).

In this work, we used sample medians and mads (medians of
absolute deviations from the sample medians) to construct
tolerance ellipses (Figures 2,3,4) but more sophisticated
robust location and scale estimators can be utilized. For loca-
tion, this includes a Huber M-estimator or Tukey's bi-square
with 96% Gaussian efficiency [51,52] (location.m() in S-plus
and hubers() from package MASS in R). For scale, this
includes a Huber τ-estimate (scale.tau() in S-plus and
hubers() in R), a bi-square A-estimate of scale (scale.a() in S-
plus), which are 80% Gaussian efficient [51,52], or the use of
MVE (cov.mve()/plot.mve()) and MCD (cov.mcd()/
plot.mcd()) estimators.

QQNP for residuals
QQNP is a plot of the data sorted in ascending order com-
pared with the corresponding quantiles of the standard

Boxplots for residuals based on ten sequential intervals of equal size using smoothers to detect heteroscedasticityFigure 16
Diagnostics for heteroscedasticity pased on the upper and lower 
extremes computed  as 3IQR for ten sequential intervals of equal 
size and using supsmu and lowess smoothers (compare with
Figure 14).
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normal distribution, that is, a normal distribution with mean
zero and variance one [53,54]. An approximately linear plot
signifies that the data are reasonably Gaussian. A U-shape
suggests that the empirical distribution is skewed. A plot that
is bent down on the left and bent up on the right denotes a dis-
tribution with 'heavier' (longer) tails than the standard nor-
mal. Although useful for the analysis of residual distribution,
QQNP for residuals is not an effective tool for identifying
outliers for three reasons. Firstly, there is no formal test to
judge departures from the normal distribution [53]; secondly,
residual heteroscedasticity, if any, is not considered; and
thirdly, the residuals are linear combinations of random var-
iables and tend to be more normal ('super-normality'), than
the underlying error distribution. A possible solution for the
latter is use of simulation envelopes [51,55,56].

QQNP with simulation envelopes for residuals
To enhance interpretation of QQNP, an approach based on
simulation envelopes can be applied [51,55,56]. The simula-
tion envelopes are obtained from randomly generated normal
samples, which are standardized, sorted and then used to
identify the maximum and minimum values to construct the
upper and lower envelopes [51]. The simulation is repeated
1,000 times. For our implementation of the algorithm we
used S-plus code developed by Venables and Ripley [51].

Data structure and outlier model
The term 'outlier' lacks a precise definition. Usually, outliers
are interpreted as gross errors, or extreme, spurious, discord-
ant, contaminating observations. In many contexts, outliers
are undesirable data points. In our application, they are a

Five ordinary STIs for the (a) real and (b) simulated mac1 datasetsFigure 17
Five ordinary STIs for the (a) real and (b) simulated mac1 datasets. The line of equivalence (black) has slope 1 and intercept 0 which corresponds to the 
case of Cy5 = Cy3. (c,d) Scatter plots of residuals for the real mac1 dataset versus predictor variable. On this figure (c,d) and other figures 'residuals' mean 
'log2(Cy5/Cy3)'. The residuals are depicted in (c) and this is the same as (a) except that the linear trend has been subtracted resulting in a slope A = 0. The 
ordinary STIs assume residual homoscedasticity. (d) STIs shown corrected with the S-plus scatter plot smoother supsmu to reveal the dependence of 
residual variance on the value of the predictor variable. The supsmu-based STIs assume residual heteroscedasticity. Pink and cyan points lie in the interval 
between the upper and lower 95% and 99% STIs, respectively. Red and blue points lie above the upper and lower 99% STI, respectively. Black points lie 
below the upper and lower 95% STI. In all panels, the 95% (innermost), 99%, 99.8%, 99.98% and 99.998% (outermost) STIs are shown (covered with 
probability at least 0.9999). The vertical dotted line marks the location of the minima of the empirical hyperbolas. Therefore, red/pink, blue/cyan and black 
points represent up-regulated, down-regulated and unchanged genes, respectively.
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matter of considerable biological interest because they are
candidates for differentially-expressed genes. Outlier-gener-
ating models [15,16] assume that a sample of size N contains
N-k regular data points which are i.i.d. (independently and
identically distributed) observations from a distribution F.
The remaining k non-regular observations come from other
distributions D1, ..., Dk. If these distributions are defined as Di

= F(χ - µi), or Di = F(χ/σi) where µi > 0, σi > 1, i = 1, ..., k, then
the resulting models are known as location-slippage (Fergu-
son-type model) or scale-slippage, respectively. An alterna-
tive approach [15] connects outliers with their surprisingly
extreme nature. Such a definition makes sense due to a logical
relationship between extreme observations, outliers and
contaminants [28]: extreme observations may or may not be
outliers, outliers are always extreme observations, outliers
may or may not be contaminants, and contaminants may or
may not be outliers.

The following types of outliers in microarray experiments are
possible: outliers by chance (due to finite sample sizes used),
sporadic technical or biological outliers, and systematic out-
liers. Systematic outliers can be divided into reproducible
technical outliers (for example, outliers due to

heteroscedasticity), and biological outliers which contain
both differentially-expressed genes, and genes with unusual
high individual variability in expression. In general, only
sufficient replication can distinguish differentially-expressed
genes from other types of outliers. However, some types of
outliers can be quantified in a single-slide experiment as we
have shown in this article, in 'same versus same' hybridiza-
tions, or using loop design [4,5,57].

Data structure
The distribution F can be any unimodal symmetric distribu-
tion with positive density. We require that F be reasonably
approximated by a normal distribution N(0, σ2(I)) with a zero
mean and an unknown intensity-dependent variance. Gener-
ally, the extreme contaminants may differ from the regular
observations by their distributions but their location in the
sample may overlap the bulk of regular data points. Outliers
may depend on each other as well as on the regular
observations.

A single-slide cDNA microarray experiment without spot rep-
lication generates 2N channel intensity values that can be
reduced to N log-transformed ratios. Therefore, we can

Residuals versus X≡log2(Cy3) scatter plots for nine different cDNA microarray experimentsFigure 18
Residuals versus X≡log2(Cy3) scatter plots for nine different cDNA microarray experiments. Each plot, yer033c, cup5, spf1, ymr031c, vma8, yap1, sod1, fre6 
and cin5, shows the 95% (innermost), 99%, 99.8%, 99.98% and 99.998% (outermost) adjusted supsmu-based STIs (covered with probability at least 0.9999). 
Red and blue dots mark up-regulated and down-regulated genes, respectively, with p-value ≤ 0.01 (≤ 0.05). The corresponding knockout genes are 
identified as the most prominent down-regulated ones (cin5, sod1, spf1, vma8 and yer033c) or one of the most prominent down-regulated genes (cup5, 
fre6, yap1 and ymr031c) with p-values always much less than 0.00002.
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consider each single-slide outcome as a sample of N size. As a
result, in single-slide experiments the number of genes is the
sample size. In M replicated cDNA microarray experiments
we have a sample of size M (log-transformed ratios) for every
gene. Hence, we can consider a single-slide experiment
without spot replication as a special case of the multiple-slide
design with M technical replicates when M = 1. In this case,
each gene could be considered as the sampling unit rather
than each array.

Outlier model
We define the following outlier model [15,16], in which an
observation is equivalent to log2(Cy5/ Cy3).

Consider a random sample of size N consisting of n regular
observations and k non-regular observations or α'-outliers
with respect to H0, N = n + k, and α' = 1 - (1 - α)1/N, and k <N/
2. In other words, α is a significance level without adjustment
for multiplicity of comparisons while α' is based on a correc-
tion for multiple comparisons. The n = N - k regular observa-
tions are i.i.d. data points drawn from the same underlying
distribution of a parametric family. For example, H0 distribu-
tion could be normal N(µ, σ2), for which the parameters µ and
σ2 are unknown, and k is unknown as well (with the only
restriction that k <N/2). The k non-regular observations have
unknown individual distributions: D1, ..., Dk, that may depend
on each other as well as the regular observations.

As an outlier identification rule we use a one-step procedure
to detect an unknown number of outliers. The approach can
be applied to univariate, bivariate and multivariate samples
[16]. Given the random sample of N observations, the task is
to determine whether the point is an α'-outlier with respect to
the underlying normal distribution N(µ, σ2). The estimated
outlier region is specified by lower and upper bounds which
are functions of N and α'. All points that are less (greater)
than the lower (upper) bound will be in the outlier region
being identified as α'-outliers. For the 'normalizing condition'
[15,16]:

P (no outliers amongst N i.i.d. data points from a normal dis-
tribution) = 1 - α  (1)

Therefore, a regular observation can be identified as an α-
outlier but with probability α only. For the univariate homo-
scedastic case, consider the value ti = |log2(Cy5/Cy3)i - m|/s,
where m and s are location and scale estimators, respectively.
An outlier can be defined as a point i for which ti ≥ cN(α'),
where cN(α') is a cut-off that is a function of N and α'. The
choice of m and s is highly important for the performance and
robust versions of these estimators are preferable [15,16].

A comparison of some specific outlier identification rules
based on performance criteria revealed that one-step proce-
dures with robust estimates for location and scale (outlier
resistant rules) are superior at identifying outliers [16]).

The outlier model we used is only completely specified when
we know distribution(s) for regular observations and
distributions of the contaminants [16]. From this one can
conclude that in the absence of information about the distri-
butions of the contaminants, data analysis can be just
explorative; for example, without replication it is impossible
to differentiate between systematic outliers due to differential
expression or other types of outliers.

Scatter plots of residuals for mac1 versus log2(Cy3) as independent variables together with various STIsFigure 19
Scatter plots of residuals for mac1 versus log2(Cy3) as independent 
variables together with various STIs. (a) Residuals for artificial data drawn 
from a bivariate normal distribution with the same parameters as the real 
mac1 data shown below. This plot is based on the same simulated dataset 
as in Figure 17b except that the linear trend has been subtracted resulting 
in slope = 0. A robust scale estimator (a Huber τ-estimate of scale) for 
residuals (green, outer), supsmu (purple, middle) and lowess-based (orange, 
inner) scale estimators are shown. Scale factors calculated to adjust 
supsmu- and lowess-based scale estimates were 1.25 and 1.35, respectively. 
(b) Adjusted supsmu-based STIs for the real data at the 95% (innermost), 
99%, 99.8%, 99.98% and 99.998% (outermost) levels. These adjusted STIs 
take into account differences between the ordinary STIs and supsmu-based 
STIs for an artificial dataset having the same parameters (location, scale 
and coefficient of correlation) as its cognate real data. The vertical dotted 
line marks the location of the minima of the empirical hyperbolas. Red or 
pink and blue or cyan dots correspond to up-regulated and down-
regulated genes, respectively, with p-value ≤ 0.01 (≤ 0.05). The most 
prominent down-regulated gene with case index number 4,301 is Mac1 
(see also Table 3), which is not expressed in the mac1 strain.
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Table 3

Candidate differentially-expressed genes

RN ORF Name Synonyms CIN log2(Cy3) log2(Cy5/Cy3) RSE SR p p' p'' q

Up-regulated genes

1 YBR207W 427 -0.62 1.06 0.14 7.30 3.30E-13 2.00E-09 2.01E-11 1.11E-10

2 YBR295W PCA1, PAY2 515 -2.30 0.83 0.16 5.26 1.50E-07 9.13E-04 9.18E-06 2.47E-05

3 YDR264C AKR1 1186 0.10 0.87 0.17 5.22 1.81E-07 1.10E-03 1.11E-05 2.90E-05

4 YDR270W CCC2 1192 -2.98 1.19 0.21 5.75 9.09E-09 5.52E-05 5.54E-07 1.62E-06

5 YDR476C 1394 -1.87 0.84 0.14 6.08 1.24E-09 7.51E-06 7.55E-08 2.78E-07

6 YDR534C 1452 -3.83 3.43 0.25 13.66 0.00E+00 0.00E+00 0.00E+00 0.00E+00

7 YEL065W SIT1 1528 -0.60 2.46 0.15 16.89 0.00E+00 0.00E+00 0.00E+00 0.00E+00

8 YER145C FTR1 1692 -0.49 2.25 0.15 15.11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

9 YFL041W FET5 1778 -0.84 0.94 0.14 6.76 1.54E-11 9.32E-08 9.37E-10 4.05E-09

10 YGL015C 1879 -3.40 1.04 0.23 4.53 6.07E-06 3.69E-02 3.71E-04 7.23E-04

11 YGL039W 1903 -0.68 1.01 0.14 7.06 1.80E-12 1.10E-08 1.10E-10 5.76E-10

12 YGR065C 2189 -0.19 0.76 0.16 4.82 1.49E-06 9.01E-03 9.06E-05 1.80E-04

13 YHL035C 2453 -2.20 1.70 0.15 11.07 0.00E+00 0.00E+00 0.00E+00 0.00E+00

14 YHL040C ARN1 2458 -2.38 2.45 0.16 14.95 0.00E+00 0.00E+00 0.00E+00 0.00E+00

15 YHL047C 2465 -4.59 4.19 0.29 14.43 0.00E+00 0.00E+00 0.00E+00 0.00E+00

16 YHR042W NCP1 2511 0.27 0.72 0.17 4.27 2.00E-05 1.21E-01 1.22E-03 2.01E-03

17 YHR175W CTR2 2644 -1.38 1.08 0.13 8.32 0.00E+00 0.00E+00 0.00E+00 0.00E+00

18 YJL153C INO1, APR1 3057 -2.03 0.74 0.15 5.06 4.33E-07 2.63E-03 2.64E-05 6.25E-05

19 YKL220C FRE2 3507 -3.98 2.78 0.26 10.75 0.00E+00 0.00E+00 0.00E+00 0.00E+00

20 YLL051C FRE6 3668 -1.44 0.97 0.13 7.55 4.97E-14 3.02E-10 3.03E-12 1.78E-11

21 YLR034C SMF3 3716 0.04 0.72 0.16 4.41 1.04E-05 6.32E-02 6.35E-04 1.11E-03

22 YLR046C 3728 -1.88 0.72 0.14 5.19 2.21E-07 1.34E-03 1.35E-05 3.44E-05

23 YLR056W ERG3, SYR1 3738 0.92 0.80 0.18 4.47 8.04E-06 4.88E-02 4.90E-04 8.71E-04

24 YLR126C 3808 -2.03 1.00 0.15 6.85 8.07E-12 4.90E-08 4.92E-10 2.23E-09

25 YLR136C TIS11, CTH2 3818 -1.31 0.91 0.13 7.02 2.41E-12 1.46E-08 1.47E-10 7.30E-10

26 YLR205C 3885 -2.91 1.19 0.20 5.87 4.47E-09 2.71E-05 2.72E-07 8.47E-07

27 YLR214W FRE1 3894 -1.18 1.51 0.13 11.62 0.00E+00 0.00E+00 0.00E+00 0.00E+00

28 YMR006C PLB2 4286 -0.84 0.61 0.14 4.39 1.16E-05 7.06E-02 7.10E-04 1.22E-03

29 YMR011W HXT2 4291 0.02 0.81 0.16 4.96 7.28E-07 4.42E-03 4.44E-05 1.00E-04

30 YMR058W FET3 4340 0.42 1.91 0.17 11.10 0.00E+00 0.00E+00 0.00E+00 0.00E+00

31 YMR251W 4540 -4.28 1.19 0.27 4.33 1.48E-05 9.00E-02 9.05E-04 1.53E-03

32 YNL237W YTP1 4856 -4.34 1.25 0.28 4.50 6.86E-06 4.16E-02 4.18E-04 7.95E-04

33 YNL259C ATX1 4878 -0.06 0.96 0.16 5.95 2.90E-09 1.76E-05 1.77E-07 5.86E-07

34 YNR056C BIO5 5003 -2.74 1.45 0.19 7.60 3.38E-14 2.05E-10 2.06E-12 1.28E-11

35 YNR060W FRE4 5007 -3.64 1.22 0.24 5.03 4.96E-07 3.01E-03 3.02E-05 7.00E-05

36 YOL158C 5181 -2.76 2.93 0.19 15.28 0.00E+00 0.00E+00 0.00E+00 0.00E+00

37 YOR334W MRS2 5524 -0.15 0.68 0.16 4.27 1.95E-05 1.18E-01 1.19E-03 1.97E-03

38 YOR381W FRE3 5571 -2.23 1.77 0.16 11.37 0.00E+00 0.00E+00 0.00E+00 0.00E+00

39 YOR382W 5572 -2.86 2.86 0.20 14.42 0.00E+00 0.00E+00 0.00E+00 0.00E+00

40 YOR383C 5573 -4.03 4.72 0.26 18.07 0.00E+00 0.00E+00 0.00E+00 0.00E+00

41 YOR384W FRE5 5574 -3.82 1.56 0.25 6.23 5.11E-10 3.10E-06 3.12E-08 1.29E-07

Down-regulated genes

1 YBR054W YRO2 273 1.28 -0.95 0.19 -5.12 3.11E-07 1.89E-03 1.90E-05 4.72E-05

2 YBR147W 366 -1.68 -0.64 0.13 -4.87 1.13E-06 6.86E-03 6.90E-05 1.40E-04

3 YCL030C HIS4 547 1.80 -0.87 0.19 -4.50 6.95E-06 4.22E-02 4.24E-04 7.95E-04

4 YDL171C GLT1 857 -0.59 -0.87 0.15 -5.95 2.81E-09 1.70E-05 1.71E-07 5.86E-07
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Ordinary STIs
The relationship between (residual) outlier test statistics and
tolerance regions [27,29,30] has shown a need for using STIs
to detect Y-outliers in regression. For probability at least (1 -
γ), the central tolerance intervals (STIs are centered about 0)
that are simultaneous in X and q can be determined using:

where λ(q) is a two-sided quantile for the standard normal
distribution, P = 100%q is portion of the population to be
covered with the STI, γ is a confidence level, χ2(N - 2, γ/2) is
the lower γ/2 quantile of a χ2-distribution with N - 2 degrees
of freedom, F(2, N - 2, 1 - γ/2) is the upper (1 - γ/2)-quantile
of F-distribution with 2 and N - 2 degrees of freedom.
Equation 2 uses the Bonferroni inequality to evaluate how far
out on the tail of its distribution each observation lies. It is
based on formula 6.5 discussed in [29,30]. The corresponding
formulae for sample mean and residual variance are:

In our case, Xi = log2(Cy3i) and residuals Yi = log2(Cy5/Cy3),
where i = 1,..., N. Because log2(Cy5i) and log2(Cy3i) are highly
correlated, Xi = log2(Cy5i) or Xi = log2(Cy3i + Cy5i)/2 could be
used as well. We used scatter plots 'residuals versus average
spot intensity' to compute p-values. For figures we used
'residuals versus log2(Cy3i)' scatter plots.

We used robust estimators for the location (robust options:
sample median, Huber M-estimator, Tukey's bi-square) and
for the scale (supsmu or lowess fits for s2 = f(X) adjusted with
simple Monte Carlo simulations to guarantee approximate
Gaussian efficiency). We computed five STIs with five differ-
ent portions of the normal distribution: 95%, 99%, 99.8%,
99.98% and 99.998%, correspondingly, and covered with
probability at least 1 - γ = 99.99%. The corresponding interval
estimates for p-values using, for example, formula 8 to
approximate sample distribution for residuals under the null
hypothesis are: 0.05 <p, 0.01 <p ≤ 0.05, 0.002 <p ≤ 0.01,
0.0002 <p ≤ 0.002, 0.00002 <p ≤ 0.0002 and p ≤ 0.00002.
'p-value' here is the chance or probability that the tolerance
interval constructed from a single sample will not include the
true inlier or regular observation. Alternatively, it is the

5 YEL039C CYC7 1502 -1.34 -0.69 0.13 -5.31 1.14E-07 6.91E-04 6.95E-06 1.92E-05

6 YER174C GRX4 1721 1.09 -0.92 0.18 -5.06 4.31E-07 2.61E-03 2.63E-05 6.25E-05

7 YFL014W HSP12, GLP1, HOR5 1751 1.18 -0.91 0.18 -4.95 7.57E-07 4.60E-03 4.62E-05 1.02E-04

8 YFR030W MET10 1836 0.54 -1.01 0.17 -5.79 7.61E-09 4.62E-05 4.64E-07 1.40E-06

9 YFR055W 1862 -0.74 -0.69 0.14 -4.90 1.00E-06 6.07E-03 6.11E-05 1.27E-04

10 YGL009C 1873 4.10 -1.27 0.23 -5.58 2.54E-08 1.54E-04 1.55E-06 4.40E-06

11 YGL117W 1979 1.05 -1.25 0.18 -6.85 8.05E-12 4.89E-08 4.91E-10 2.23E-09

12 YGR088W CTT1 2212 -1.93 -0.63 0.14 -4.48 7.50E-06 4.55E-02 4.57E-04 8.34E-04

13 YGR286C BIO2 2409 0.97 -1.10 0.18 -6.11 1.09E-09 6.61E-06 6.65E-08 2.54E-07

14 YHL021C 2440 -0.19 -0.97 0.16 -6.17 7.25E-10 4.40E-06 4.42E-08 1.76E-07

15 YJR137C ECM17, MET5 3263 0.42 -0.85 0.17 -4.92 8.71E-07 5.28E-03 5.31E-05 1.12E-04

16 YKL148C SDH1 3436 -1.12 -0.77 0.13 -5.91 3.56E-09 2.16E-05 2.17E-07 6.97E-07

17 YLL041C SDH2 3658 -0.49 -0.90 0.15 -6.05 1.50E-09 9.10E-06 9.15E-08 3.25E-07

18 YLR304C ACO1, GLU1 3985 2.05 -0.88 0.20 -4.48 7.56E-06 4.59E-02 4.61E-04 8.34E-04

19 YMR021C MAC1, CUA1 4301 -0.43 -1.83 0.15 -12.17 0.00E+00 0.00E+00 0.00E+00 0.00E+00

20 YOR356W 5546 -0.03 -0.80 0.16 -4.93 8.45E-07 5.13E-03 5.16E-05 1.12E-04

Candidates for differentially-expressed genes in the mac1 cDNA microarray experiment defined as those outside the adjusted supsmu-based 
99.998%-STIs (unadjusted p-value ≤ 0.00002). The study monitored transcripts in a mac1 knockout and wild-type S. cerevisiae. RN, row number; ORF 
name, systematic name for open reading frame; Synonyms, alternative gene names (if any); CIN, case index numbers used in scatter plots to identify 
data points; log2(Cy3), predictor variable (log base 2 transformed Cy3 intensity value); log2(Cy5/Cy3), log base 2 of Cy5/Cy3 ratio (here ratios are 
residuals); RSE, residual scale estimator (for data points represented in the table it is based on supsmu non-parametric regression smoother); SR, 
standardized residuals (log2(Cy5/Cy3) divided by RSE); p, unadjusted p-values based on statistics for two-sided tolerance intervals; p', Bonferroni 
adjusted p-values using N = 6,068; p'', Bonferroni adjusted p-values using k = 61, q, q-values calculated using qvalue() function [45,46] (see Figure 24 
supporting q-value calibration). p- and q-values are given in scientific notation and 0.00E+00 means that a value was less than 10-16.

Table 3 (Continued)

Candidate differentially-expressed genes
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probability of having observed our data, or more extreme
data, when the null hypothesis is true. Therefore, the null
hypothesis here is: 'a data point is an inlier from i.i.d. random
sample of size N', and we assume the corresponding null dis-
tribution for inlying residuals to be a normal distribution with
mean = 0 and unknown variance, which may not be a
constant.

Simultaneous tolerance intervals for data with 
replication
If replicated data are available, we have several (for example,
ni) observations on Y at each point X : Yij = log2 (Cy5/Cy3)ij, i
= 1,..., K, j = 1,..., ni. In terms of ANOVA it can be described as
two-way layout (if all ni are equal) [58,59].

Table 4

Comparison of genes identified as differentially expressed in mac1∆

Gene ORF Loguinov et al. 
(this work) 

(0.0001)

Hughes et al. 
[18] (0.0001)

Churchill and 
Sapir [20] 
(0.9999)

Newton et al. 
[19] (0.9999)

2FC Reference

FTH1 YBR207W + + + + + [67]

PCA1 YBR295W + a + + a [68]

AKR1 YDR264C + a + + a [69]

CCC2 YDR270W + + + + + [67]

FIT1 YDR534C + a + + + [70]

SIT1 YEL065W + + + + + [70]

FTR1 YER145C + + + + + [67]

FET5 YFL041W + a + + [71]

YFR055W* - b b b b [72]

CTT1   YGR088W* - b b b b [33]

VMR1 YHL035C + + + + + [69]

ARN1 YHL040C + + + + + [70]

ARN2 YHL047C + + + + + [70]

FRE2 YKL220C + a + + + [67]

MRS4 YKR052C* + a a a a [73]

FRE6 YLL051C + a + + a [74]

SMF3 YLR034C* + a a a a [75]

TIS11 YLR136C + a + + a [76]

HMX1 YLR205C + + + + + [77]

FRE1 YLR214W + + + + + [67]

MAC1 YMR021C - a - - - [33]

FET3 YMR058W + + + + + [67]

ATX1 YNL259C + a + + a [78]

BIO5 YNR056C + a + + + [69]

FRE4 YNR060W + a + + + [74]

ARN4 YOL158C + + + + + [70]

FRE3 YOR381W + + + + + [74]

FIT2 YOR382W    + + + + + [79]

FIT3 YOR383C + + + + + [79]

FRE5 YOR384W + + + + + [74]

The performance of each method (except Chen et al. [17]) at equivalently high stringency levels is presented for selected genes likely to be 
differentially expressed in mac1∆ as described in text. For Sapir and Churchill [20], the cut-off (0.9999) corresponds to posterior probability of being 
differentially expressed and for Newton et al. [19], the cut-off 0.9999 is posterior probability of true differential expression. For this work, 0.0001 is 
a cut-off for q-values. For Hughes et al. [18], 0.0001 is a cut-off for p-values. 2FC is indicates two-fold change approach. A (+) sign indicates that a 
gene was identified as up-regulated by a method at this level of stringency while a (-) sign indicates that it was identified as down-regulated. Genes 
not identified by one method that were identified by other methods are indicated by a (+) or b (-) in the appropriate column. Genes identified only 
by this work are asterisked.
Genome Biology 2004, 5:R18
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This information can be used when building STIs following an
analogy with simultaneous prediction interval [58,59] (see
also Equations 12 and 13 below):

where

Comparison with a two-fold cut-offFigure 20
Comparison with a two-fold cut-off. Candidates for differentially-
expressed genes defined using adjusted supsmu-based STIs or a threshold 
for ratios from the (a) mac1, (b) spf1 and (c) cin5 experiments. The 
dashed horizontal lines with intercepts of -1 and +1 correspond to two-
fold changes in log-transformed (base 2) ratio. Red and blue dots denote 
genes up-regulated and down-regulated, respectively, according to this 
criterion. Moving away from the zero line, the 95%, 99%, 99.8%, 99.98% 
and 99.998% adjusted supsmu-based STIs are shown (covered with 
probability at least 0.9999). Further details about the mac1 genes identified 
with case index numbers can be found in Table 3 (see also Table 2 for 
comparison of the adjusted supsmu-based STIs with other procedures).
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Comparison with other methodsFigure 21
Comparison with other methods. (a) Comparison of mac1 candidates for 
differentially-expressed genes defined using adjusted supsmu-based STIs 
and by Hughes et al. [18]. Red and blue dots denote genes designated as 
being up-regulated and down-regulated, respectively, by the Hughes et al. 
'gene-specific' error model at p-value ≤ 0.05. The 95%, 99%, 99.8%, 99.98% 
and 99.998% adjusted supsmu-based STIs are shown (covered with 
probability at least 0.9999). The vertical dotted line marks the location of 
the minima of the empirical hyperbolas. (b) Comparison 95% adjusted 
supsmu-based STIs (red) with statistical intervals based on three other 
single-slide methods: a hierarchical Gamma-Gamma-Bernoulli model [19] 
with the posterior odds of change in expression 1:1(innermost), 1:10 
(middle) and 1:100 (outmost); mixture of orthogonal residuals with 
posterior probability of differential expression 95% (blue) based on 
approach from Sapir and Churchill [20]; and 95% band using asymmetric 
density function for raw ratios (Cy5/Cy3) assuming the same coefficient of 
variation for both fluors [17].
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Table 5

Comparison of performance with simulated datasets with 100 true positives

Cut-off points PPV NPV Specificity Sensitivity Likelihood ratio

Sapir and Churchill [20]

0.5 0.54 1.00 0.99 0.85 70.46

0.6 0.56 1.00 0.99 0.80 75.78

0.7 0.56 1.00 0.99 0.78 76.31

0.8 0.56 1.00 0.99 0.73 76.43

0.9 0.55 0.99 0.99 0.64 73.45

0.95 0.55 0.99 0.99 0.60 71.62

0.99 0.54 0.99 0.99 0.53 70.29

0.998 0.57 0.99 0.99 0.48 79.57

0.9998 0.58 0.99 0.99 0.43 82.78

0.99998 0.57 0.99 1.00 0.34 78.04

Newton et al. [19]

0.43 (0.3) 0.62 1.00 0.99 0.76 96.50

0.67 (0.4) 0.61 0.99 0.99 0.70 92.84

1 (0.5) 0.61 0.99 0.99 0.66 91.60

2.33 (0.7) 0.61 0.99 0.99 0.59 95.17

4 (0.8) 0.60 0.99 0.99 0.52 91.28

5.67 (0.85) 0.60 0.99 0.99 0.50 90.42

9 (0.9) 0.61 0.99 0.99 0.49 94.33

19 (0.95) 0.62 0.99 0.99 0.49 97.48

99 (0.99) 0.63 0.99 1.00 0.44 101.00

499 (0.998) 0.60 0.99 1.00 0.36 89.52

Loguinov et al. (this work)

0.5 0.40 1.00 0.98 0.99 39.65

0.25 0.60 1.00 0.99 0.93 90.99

0.2 0.63 1.00 0.99 0.91 102.47

0.15 0.68 1.00 0.99 0.90 127.89

0.1 0.72 1.00 0.99 0.87 157.34

0.05 0.76 1.00 1.00 0.82 188.22

0.01 0.79 1.00 1.00 0.76 226.78

0.002 0.80 0.99 1.00 0.60 238.72

0.0002 0.88 0.99 1.00 0.44 437.65

0.00002 0.89 0.99 1.00 0.40 477.44

Chen et al. [17]

0.05 0.3 1.00 .97 1.00 37.30

0.01 0.45 1.00 .98 0.88 49.55

The first column lists the cut-off points used for each method for the performance comparison on simulated data as described in the text. For Sapir 
and Churchill [20] the cut-offs correspond to posterior probabilities of being differentially expressed. Similarly for Newton et al. [19] they 
correspond to posterior odds (probabilities) of true differential expression. For this work, the cut-offs for q-values are shown. Chen et al. [17] have 
two cut-offs which are approximated with a polynomial fit and are not shown in Figure 24 because there are no approximations available for other 
cut-offs. PPV is positive predictive value which equals TP (true positive)/TP + FP (false positive). NPV is negative predictive value which equals TN 
(true negative)/TN + FN (false negative). Sensitivity is TP/(TP + FN). Specificity is TN/(FP + TN). The likelihood ratio (Bayes' factor) is Sensitivity/(1-
Specificity). For computations we used simulated data shown in Figure 22.
Genome Biology 2004, 5:R18
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is the total number of observations, ni is the number of repli-
cates at point Xi,

where Xi = log2(Cy3i), and residuals Yij = log2(Cy5ij/Cy3ij), i =
1,..., K and j = 1,..., ni. If ni ≡ 1 then K ≡ N and Equation 5 coin-
cides with Equation 2.

Given replicated data, the fitted linear model can be checked
by breaking the residual sum of squares into two components,
lack of fit sum of squares and pure error sum of squares
provided that the pure error is approximately the same
throughout the data [58].

Other approximations for tolerance intervals
A two-sided β-expectation tolerance interval is given by [60]:

± (s(I) K(N, β))  (8)

where K(N,β) = (1 + 1/N)1/2 t(N-1,(1 - β)/2) and t(N-1,(1 - β)/
2) is a Student variable with N -1 degrees of freedom. As it is
clear from tables for tolerance factors [60], β-expectation tol-
erance intervals defined by (8) coincide with β-content
tolerance intervals for residuals of linear regression described
with (2) if N is large (> 1000).

For very large sample sizes, the null distribution could be
approximated by a normal approximation N(0,s2(I)):

± (s(I) λ (q))  (9)

where s(I) is intensity-dependent scale estimator and λ(q) is
a two-sided quantile (100%q is a portion of the population to
be covered) of the N(0,1) defined by Φ(λ) = (1 - β/2)1/N (Φ(λ)
is a cumulative distribution function for the standard normal
distribution). The goal is to quantify s(I) in the presence of
strong outliers. Our solution is the use of robust scatter plot
smoothers for absolute residuals which has been described
previously [25] (see details of our implementation below).

Relationships between STIs and simultaneous 
prediction intervals
In cDNA microarrays, the total number of predictions to be
made is unknown or subject to chance, or the number of pre-
diction intervals to be estimated simultaneously is large.
Given such conditions, STIs are preferred over simultaneous
prediction intervals (SPIs) [30]. When N is large, as in our
case, the corresponding STIs and SPIs are indistinguishable
on the scatter plots. If the majority of residuals are normally
distributed, then using Bonferrroni procedure [30] we have
this expression for the residuals:

where k is the number of 'future observations' or the number
of the null hypotheses tested (we test k null hypotheses about
k outliers). When N is large then the second term under the
square root is about 1 and the following approximation holds:

It is a horizontal band based on Bonferroni-corrected t-value
and one can expect that (1 - α/2)100% of the residuals will lie
in the interval in repeat runs under the same experimental
conditions. Thus, observations with the residuals situated far
from the horizontal band can be identified as outliers. Equa-
tions 10 and 11 assume an outside estimate for k. We note that
Equation 11 coincides with Equation 8 (within a degree of
freedom) if one takes Bonferroni correction into account. In
previous work, we used SPIs rather than STIs to identify can-
didates for differential expression [61].

Simulated dataset for method performance testingFigure 22
Simulated dataset for method performance testing. Non-regular 
observations (k = 100) and regular observations (N-k = 6,068-100 = 5,968) 
as the main body of non-differentially-expressed genes were used for the 
simulations. Sample parameters are taken from the mac1 dataset. A 
random component was added to each outlier value using standard normal 
distribution with variance dependent on intensity. Heteroscedasticity for 
regular observations was also simulated by including intensity dependent 
variability in the low and high intensity levels. Three non-parametric 
smoothing methods were used to check absolute residuals for 
heteroscedasticity: supsmu, lowess and loess (the latter was based on a 
locally-quadratic fitting).
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If we have a replication (for example, we consider K points Xi

with ni replicates in each point, i = 1,..., K) then this informa-
tion also may be incorporated while building SPIs [58,59]:

where: q is the number of future observations to be averaged
at point Xi, ni is the number of replicates at point Xi, residual
variance

, ,

and the total number of observations is

.

If both ni ≡ 1 and q ≡ 1 then Equation 12 coincides with Equa-
tion 10 (K ≡ N). Equation 12 can be simplified if there is the
same number of replicates in each point ni ≡ M and q ≡ M (that
is, we'll predict mean values of future M points for each Xi):

If N is large and using approximation similar to Equation 11:

Comparison of performance of three single-slide methods on simulated dataFigure 23
Comparison of performance of three single-slide methods on simulated data. (a) ROC curves for simulated data for each method. Each point represents 
one of the ten cut-offs used in Table 4 for each method. Area under curve is one in the case of an ideal method. ROC curves do not take prevalence into 
account and upper curves have better accuracy than lower ones (see text for details). (b) PPV curves which represent the probabilities that a gene 
identified as differentially expressed represents a true positive. (c) Likelihood ratio (or Bayes' factor) curves are calculated as Sensitivity/(1-Specificity) and 
can also be defined as the ratio of posterior odds to prior odds. PPV values takes into account prevalence of being differentially expressed in the simulated 
population.
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Therefore, for example, if we have spot duplicates on a slide
and assume M ≡ 2 for each spot then the corresponding SPIs
would be narrower than ones for the case without the dupli-
cation by a factor 1/  ≈ 0.71 if predicting averages of future
spot duplicates.

Smoothed STIs
STIs computed using Equations 2 and 5 (or SPIs using Equa-
tions 10 and 12) assume residual homoscedasticity: s2 is
independent of Xi and thus constant for all values X1,..., XN.
We refer to these STIs as ordinary STIs. For microarray data
used, however, residual variance versus predictor variable
plots usually provided evidence for heteroscedasticity: s2 is
dependent on Xi and thus not constant. To account for this
relationship between X and s2, we smoothed the data
(Xi,|Yi|), i = 1,..., N. The scatter plot smoothers supsmu() and
lowess() perform locally linear (symmetric or containing the
k-nearest neighbors) OLS-fit to point Xi [51,52,62,63]. The

span parameter is the fraction of data points used for smooth-
ing - larger values result in smoother fits. We used supsmu()
with the span parameter bass = 2-4 and lowess() with f = 0.2-
0.4. These values provide a compromise between sensitivity
to local variation and smoothness (compare [8]).

The function lowess() computes a robust locally-weighted lin-
ear fit [63]. An extended version of the function, loess(),
includes an option for locally-quadratic fitting [52]. A window
dependent on f is positioned around Xi. Data points inside the
window are weighted and a robust weighted regression is
used to compute , the predicted value of Yi at Xi. No
assumptions are made about the Xi values being evenly
spaced and the span parameter f is constant across the entire
range of the predictor variable X. A fixed span parameter,
however, is problematic if the curvature of the underlying
function varies; an increase in curvature would necessitate a
decrease in the span, for example. The function supsmu()

Interpreting q-values and calibrating q-value cut-offsFigure 24
Interpreting q-values and calibrating q-value cut-offs. Four plots to facilitate q-value interpretation and calibrate the q-value cut-off [45,46] using the 
function qplot(). (a) The estimated portion of the true null hypotheses (π0) versus the tuning parameter λ ('bootstrap' method is used for automatically 
choosing λ by the software and π0 estimate is 0.978). (b) The expected proportion of false positives (q-value) for different p-value cut-offs. (c) The 
number of significant candidates for differential expression for each q-value. (d) The expected portion of false positives as a function of the number of 
candidates for differential expression called significant. The dotted black line in (a) is π0 approximation using bootstrap method; the dotted color lines in 
(b) (green for expected false positives (FP) on average < 1 and red for < 0.1) are used to match q- and p-value levels (0.011 and 0.0016 for expected FT < 
1, 0.0015 and 0.000015 for expected FT < 0.1, correspondingly) for the expected FP cut-offs; the dotted color lines in (c) are used to match q-value cut-
offs (0.011 and 0.0015) and the number of significant tests on average (83 and 59); the dotted color lines in (d) are used to match expected FP cut-offs (< 
1 and < 0.1) and the number of significant tests on average (83 and 59, correspondingly).
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avoids this difficulty by automatically choosing the variable
span with cross-validation [62] of residuals in the neighbor-
hood of Xi. The function supsmu() is faster than lowess() and
whilst it is less robust for small sample sizes (N < 40), cDNA
data are large (here N = 6,068) and so it is sufficiently robust.
The choice between supsmu() and lowess() is a choice
between more or less sensitivity to underlying curvature;
loess() with locally-quadratic fitting also performs well recov-
ering curvature in empirical data.

Adjusting the smoothed STIs
The scale estimate for the smoothed STIs, however, may be
slightly different than the scale estimate for the ordinary STIs
(Figure 19a) suggesting that smoothed STIs for real data
require adjustments to improve their accuracy. Such adjusted
STIs are determined by first generating simulated datasets
assuming bivariate normality with the same parameters as in
real data. Adjustments for STI scale estimator are calculated
using the scale factor. The scale factor is defined as ratio in the
simulated data of the Huber τ-estimate for scale to the aver-
age scale estimate (based on the supsmu (or lowess) scale
estimator). The scale factor is then applied as an adjustment
to smoothed STIs to derive adjusted smoothed STIs for the
real mac1 (or any other) data (Figure 19a,b). For example, in
Figure 19a the scale factors to adjust supsmu- and lowess-
based scale estimates are 1.25 and 1.35, respectively. Those
estimates are very stable in repeat simulations: for example,
their standard error based on ten repeat simulations for mac1
dataset was 0.0008.

Computing p- and q-values
For every gene, we can compute the value of log2(Cy5/Cy3)/
s(I) for residuals, where s(I) is a robust scale estimator that
depends on intensity level. Then one can calculate p-values as
a measure of statistical significance for every gene, using any
appropriate formulas mentioned above if N large. An easy
and accurate way to do it is the use, for example, formula 11.
Then, having a list of p-values, one can calculate the
corresponding q-values using R software developed by John
Storey [46].

Calibrating q-values
Calibrating plots help to choose a cut-off for q-values (Figure
24). For example, if we select the number of false positives
less than one, on average, then the number of significant tests
= 83, q-value cut-off = 0.011 that corresponds to p-value cut-
off = 0.0016.

Simulating differential expression
We took sample parameters and the 100 most prominent
residual outliers from mac1 dataset. We then considered the
non-regular log-transformed ratios (k = 100) as location esti-
mates, adding random component to simulate intensity-
dependent variation. Heteroscedasticity for the main body of
data (N-k = 6,068-100 = 5,968 regular observations) was also
simulated using the same intensity dependence. Specifically,

we define that heteroscedasticity takes place for log2(Cy3)
intensity values ≤ -3 or ≥ +2.

For that intensity range, the scale estimator was considered
as a linear function of log2(Cy3). For example, for regular
observations:

simulated log2 (Cy5/Cy3) = initial log2 (Cy5/Cy3) + e(I)
(15)

where e(I) is intensity-dependent random variation gener-
ated using rnorm() function, e(I) = rnorm(k, mean=0,
sigma=aI+b), where I=log2(Cy3).

We define a = -0.5, b = -1.5 for the lower intensity area (log2

(Cy3) < -3) and a = 0.5, b = -1 for the upper intensity area
(log2 (Cy3) > +2).

Heteroscedasticity for outliers was simulated in a similar way.
R code and datasets used for simulations are available from
the authors upon request.

Software implementation
All data processing, analysis and visualization were per-
formed using S-plus 2000® [64]. Routines were written that
used standard S-plus procedures and functions wherever pos-
sible and which generated HTML output. The R version of the
code (DIGEX.R) is available from [65]. R [66] is a language
and environment for statistical computing and graphics sim-
ilar to S-plus. The R equivalents of S-plus functions are given
in the text.

Additional data files
A comparative summary table (in html format; Additional
data file 1) coupled with an auxiliary legend file (Additional
data file 2) shows candidates for differential gene expression
in all ten experiments used in the paper. An Excel table (Addi-
tional data file 3) gives the test accuracy definitions that were
used for simulations to evaluate method performance.
Additional data file 1A comparative summary tableA comparative summary tableClick here for additional data fileAdditional data file 2An auxiliary legend fileAn auxiliary legend fileClick here for additional data fileAdditional data file 3An Excel table gives the test accuracy definitions that were used for simulations to evaluate method performanceAn Excel table gives the test accuracy definitions that were used for simulations to evaluate method performanceClick here for additional data file
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