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A novel method for intracellular fluxome profiling<p>A novel method for intracellular fluxome profiling that does not require <it>a priori </it>knowledge of the metabolic system allowed the identification of characteristic flux fingerprints in 10 <it>Bacillus </it>mutants from 132 <sup>2</sup>H and <sup>13</sup>C trac-ers experiments.</p>

Abstract

We introduce a conceptually novel method for intracellular fluxome profiling from unsupervised
statistical analysis of stable isotope labeling. Without a priori knowledge on the metabolic system,
we identified characteristic flux fingerprints in 10 Bacillus subtilis mutants from 132 2H and 13C
tracer experiments. Beyond variant discrimination, independent component analysis automatically
mapped several fingerprints to their metabolic determinants. The approach is flexible and paves the
way to large-scale fluxome profiling of any biological system and condition.

Background
Genome-wide analyses of cellular mRNA, protein or metabo-
lite complements have become workhorses in biological
research that produce unprecedented amounts of data on cel-
lular network composition. In contrast to such compositional
information, molecular fluxes through intact metabolic net-
works link genes and proteins to higher-level functions that
result from biochemical and regulatory interactions between
the components [1]. As such, quantitative knowledge of in
vivo molecular fluxes is highly relevant to functional genom-
ics, metabolic engineering and systems biology [2,3]. Intrac-
ellular fluxes, or in vivo reaction rates, can be assessed by
methods of metabolic flux analysis that are based on stable
isotopic tracer experiments [4,5], which have successfully
unraveled novel biochemical pathways [6,7] and gene func-
tions [8,9]. The presently tedious and limited methodologies,
however, hamper broader application to a large range of envi-
ronmental conditions, isotopic tracers and higher biological
systems [4].

We set out to overcome a principal bottleneck in metabolism-
wide flux (fluxome [10]) analysis: the requirement for math-

ematical frameworks to interpret the isotopic tracer data
from nuclear magnetic resonance (NMR) or mass spectro-
metric (MS) analyses within a detailed metabolic model [4,5].
Constructing such models requires a priori knowledge on
possible distributions of the tracer used within the network,
and, more importantly, extensive labeling and physiological
data to resolve all fluxes within a given model. The lack of
such structural knowledge on metabolic pathways and the
technical difficulty of acquiring sufficient data hamper stud-
ies of metabolism, in particular in higher cells with complex
nutrient requirements and for exotic tracer molecules. Hence,
fluxome analysis is largely restricted to few 13C-labeled car-
bon sources in microbes or plants cultivated in minimal
medium [7,11-16].

Here we discriminate mutants/conditions and assess their
metabolic impact directly from 'raw' mass-isotope data by
unsupervised multivariate statistics without a priori knowl-
edge of the biochemical reaction network. To illustrate the
applicability of this conceptually novel profiling method, we
focused on the reactions of central metabolism in the model
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bacterium Bacillus subtilis, for which detailed flux data were
available to validate the results [9,11,14].

Results
2H and 13C tracer experiments
Environmental and genetic modifications were used to per-
turb intracellular metabolic activities in B. subtilis. In partic-
ular, we chose 10 knockout mutants [17] that were affected in
metabolic genes or transcriptional regulators linked to cen-
tral metabolism (Table 1 and Figure 1). These mutants were
grown in 1-ml batch cultures [18] with six combinations of the
carbon sources [U-13C] or [U-2H]glucose, [U-13C]sorbitol or
[3-13C]pyruvate and the nitrogen sources ammonium or
casein amino acids (CAA). As a proof of concept, we detected
the isotopic labeling patterns in proteinogenic amino acids by
gas chromatography MS (GC-MS), which provides direct
access to several metabolic nodes in the network [6,7,19] (Fig-
ure 1). The raw mass isotope data of all mutants under each of
the six experimental conditions are given in Additional data
file 2.

In media supplemented with amino acids, cell protein was
only partly synthesized from the isotopically labeled sub-
strate. In such cases, current flux-analysis methods such as
isotopomer balancing or flux ratio analysis are not applicable
[4,5] because they do not account for variations in the labe-
ling patterns due to amino-acid uptake and catabolism. Prac-
tically, we tackled here a worst-case scenario: growth in a
medium enriched with unlabeled amino acids and profiling of
the labeling pattern from tracers in the proteinogenic amino
acids, which may potentially originate entirely from the
medium. Nevertheless, a sufficiently high fraction of all ana-
lyzed amino acids was synthesized de novo from the labeled

substrates to obtain relevant MS signals, indicating that
information on pathway activities was recorded in the labe-
ling patterns (Figure 2). To capture the impact of genetic or
environmental modifications, we analyzed the 260-330 raw
mass isotope data points for each mutant and condition. This
is essentially a table of mass-distribution vectors for all
detected amino-acid fragments upon correction for naturally
occurring stable isotopes, that is, the list of the relative fre-
quencies of all possible isotope isomers for each detected
analyte.

Identification of metabolic determinants for altered 
flux profiles
For the visualization of metabolic effects, the corrected MS
signals of the wild type were subtracted from those of the
mutants (Figures 3 and 4). Some mutations, such as pps, were
silent under the conditions tested and exhibited only noise in
the wild-type-normalized data. In other mutants, characteris-
tic profiles of strongly affected amino acids were readily
apparent. One example was the almost identical signature of

Table 1

B. subtilis strains used

Strain Description of deleted gene

Wild-type 168 trpC2

pgi P-glucoisomerase

yqjI 6-P-gluconate dehydrogenase

sdhC Succinyl-CoA dehydrogenase component

ytsJ Malic enzyme

mdh Malate dehydrogenase

pps PEP synthetase

ccpA Main carbon catabolite repressor

cggR Repressor of the gapA operon

glcP Hexose/H+ symporter

glcR Repressor of PTS system

Strains were provided by S. Aymerich (INRA, CNRS, Thiverval-
Grignon, France) and K. Kobayashi (Nara Institute of Science and 
Technology, Nara, Japan) [17].

Simplified biochemical reaction network of Bacillus subtilis central carbon metabolismFigure 1
Simplified biochemical reaction network of Bacillus subtilis central carbon 
metabolism. Gray arrows outline the biosynthesis of precursor amino 
acids that are indicated by their one-letter code. Amino acids in square 
brackets were not detected. Black dashed arrows illustrate the uptake of 
substrates. Black boxes highlight pathways or reactions that are affected in 
the mutants used (see also Table 1). G6P, glucose 6-phosphate; F6P, 
fructose 6-phosphate; T3P, triose phosphate; PGA, phosphoglycerate; PEP, 
phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetic acid; MAL, malic 
acid; OGA, 2-oxoglutarate.
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serine (S) fragments in the profiles of the glcP and cggR
mutants during growth on sorbitol with CAA; that is, high
fractions of masses m0 and m3 and low fractions of m1 and m2

(where the subscripts denote the number of 13C atoms in each
amino-acid fragment). While the S signature of the mdh
mutant on sorbitol with CAA was also distinct, it was different
from that in the above two mutants with low m1, m2, and m3

fractions (Figure 3). These characteristic labeling profiles are
biochemically very informative and may be linked to precise
metabolic causes. For the above examples, the high fraction of
uncleaved serine molecules with intact C3 backbones (that is,
m0 and m3) in glcP and cggR is evidence of a lower exchange
with the glycine pool, when compared with the wild type
[19,20]. In the mdh mutant, the high fraction of uncleaved
but unlabeled S (m0) reveals high incorporation of unlabeled
serine from the CAA supplement, and thus low de novo bio-
synthesis from 13C-labeled sorbitol.

As well as consistency with the data in the literature, the anal-
ysis also revealed new information on pathway activity and
regulation that was not previously accessible. One example is
the pronounced signatures of the sdhC mutant on glucose and
sorbitol. Because the sdhC mutation disrupts the tricarboxylic
acid (TCA) cycle, the wild-type flux through the cycle must be
similar on these substrates, both with and without CAA (Fig-
ure 3). The sdhC signatures of the TCA cycle-derived amino
acids aspartate (D) and glutamate (E) were also present in the
CAA profiles of the other TCA cycle mutant mdh. Their
absence on ammonium indicates activity of the malic
enzyme-based pyruvate bypass [11] in the mdh mutant.

While such a level of detailed biochemical insight is possible,
it requires considerable expertise and time to retrieve. Alter-
natively, metabolic impacts in new mutants can be identified
by comparison of the mass fingerprints in mutants with
known metabolic lesions. During growth on sorbitol and
pyruvate in minimal media but not with CAA, the CggR

repressor of the glycolytic gapA operon, for example, appears
to affect TCA cycle fluxes because the mutant profile matches
those of the TCA cycle mutants sdhC and mdh (Figure 3). In
contrast to glucose, sorbitol does not elicit catabolite repres-
sion; hence, comparison of sorbitol and glucose profiles can
identify repression-dependent effects. Examples are the sig-
natures of the oxaloacetate-derived amino acids isoleucine
(I), threonine (T) and aspartate in the cggR profile that
reveal, by the similarity to the sdhC and mdh mutants, a TCA
cycle flux-promoting effect of CggR on sorbitol but not on glu-
cose. This is consistent with the repression of cggR on glucose
[21], and the TCA cycle effect is probably indirect, through the
repression of glycolytic genes [22].

A significant extension beyond the canonical 13C-tracer meth-
ods is the applicability to any isotope, which broadens the
observable metabolic processes. Here we used fully deuter-
ated [U-2H]glucose that allows us to monitor dehydrogenase
activities and water release. The 2H-label was present exclu-
sively in the variable side chains, because the α-carbon hydro-
gen was lost in the transaminase reaction. Thus, glycine
contains no label and the acidic aspartate and glutamate lose
the label proximal to the carboxyl group as a result of
exchange with water at the low pH during hydrolysis. The
remaining amino acids provided a stable and informative 2H-
pattern (see Additional data file 1). An illustrative example is
the cggR mutant signatures for the pyruvate-derived amino
acids valine (V), leucine (L) and, partially, alanine (A) (Figure
3) In all three cases, reduced m2 and increased m0 fractions
revealed a double loss of 2H-label in their common precursor
pyruvate at position C-3. This loss of 2H indicates increased
exchange of 2H with water at the C-3 position of pyruvate (or
any upstream triose), which is fully consistent with increased
transcription of the glycolytic enolase in the cggR mutant on
glucose [23] that could catalyze this exchange. As the enolase
activity does not affect the carbon backbone, the correspond-
ing patterns cannot be identified in 13C experiments

Independent component analysis (ICA)
For large-scale profiling studies, automated mutant classifi-
cation based on metabolic function without user supervision
would be desirable. Initially, we used principal component
analysis (PCA), which is often used for graphical representa-
tion of multidimensional variables from profiling experi-
ments [24,25], as was recently described for pretreated
(summed fractional labels) mass isotope data [26]. From the
raw mass isotope data, the first two PCs discriminated, under
most conditions, mutants with extreme labeling patterns (see
Additional data file 1). The differences become smaller with
increasing PCs, and only the initial three to four PCs allowed
reliable discrimination. In the present data, PCA tended to
discriminate extreme singular labeling patterns in few frag-
ments or, more frequently, combinations of altered patterns
in the fragments of many amino acids, as was expected from
the variance maximization of PCA. Unfortunately, the

Fraction of amino acids that were synthesized de novo from [U-13C]glucose (white bars) and sorbitol (gray bars) in batch experiments supplemented with 0.5 g/l casein hydrolysateFigure 2
Fraction of amino acids that were synthesized de novo from [U-13C]glucose 
(white bars) and sorbitol (gray bars) in batch experiments supplemented 
with 0.5 g/l casein hydrolysate. Amino acids are given in the one-letter 
code.
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Figure 3 (see legend on next page)
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resulting complex PCs are difficult to interpret metabolically,
and thus are of limited biochemical relevance.

Consequently we used independent component analysis
(ICA) for unsupervised, automatic recognition of conserved
labeling patterns that are biochemically relevant. The under-
lying assumption is that these patterns result from the super-
position of independent metabolic activities. Each activity
causes a specific shift in the mass distributions of one or more
intermediates. ICA seeks to separate the observed variables
into non-gaussian components that are statistically as inde-
pendent as possible [27]. Generally, ICA clearly discriminated
mutants and conditions from the corrected (non-normalized)
MS data (see Additional data file 1). While the weights in PCs
were more broadly distributed among the input variables, ICs
were dominated by fewer, sharper peaks (Figure 4).

For the particular example of the [U-13C]sorbitol with ammo-
nium experiment, we explored the ICA results in more detail
(Figure 5). The first, striking, observation was that the second
IC contains the biochemically redundant signals of m2 T, m2

D, and m1 and m3 E (highlighted in red in Figure 5a) that arise
from acetyl-CoA units in the TCA cycle [19]. This shows that
ICA automatically provides insights into the biosynthetic
linkage between amino acids with a resolution that eclipses
visual comparison of the normalized signatures. For amino
acids, this information was of course previously available, but
statistical identification of biochemical relations could poten-
tially also be obtained for less well-characterized compounds.
Second, ICA often clustered biosynthetically related signals in
the same component (Figure 5): IC7 grouped the similar sig-
natures of phenylalanine (F) and tyrosine (Y) together; IC1
reports labeling shifts in glycine (G) and partially serine; and
IC4 concentrated high weights in signals of the pyruvate
derivatives alanine, valine and leucine (highlighted in blue in
Figure 5). While isoleucine is also synthesized from pyruvate,
it had only a marginal weight in IC4 because of interference
from its second precursor oxaloacetate. Third, specific signa-
tures of proline (P), leucine and serine are clearly recognized
in IC3, IC8 (highlighted in green in Figure 5a), and IC10,
respectively. These signatures reflect those previously identi-
fied in the normalized profiles (Figures 3 and 5c). Among the
remaining components, IC5 and IC6 emphasize outliers in
the cggR and ytsJ MS data, respectively, whereas the noisy
IC9 profile indicates that the identified ICs in our small data-
set approach a limit.

Akin to PCA, ICA allowed us to discriminate mutants from the
corrected MS data (Figure 5b and Additional data file 1). On
sorbitol, mutants such as pgi, yqjI, pps, glcP and glcR were
mostly silent, and typically projected in proximity to the par-
ent strain. In contrast to PCA, ICs classified the mutants on
the basis of specific metabolic effects. In some cases (IC2 or
IC4 in Figure 5b), the IC defined well-separated clusters of
mutants, usually two groups, reflecting a binary (on-off)
effect. In the majority of the components, however, the even
distribution between the extremes reveals progressive meta-
bolic responses (for example, IC3, IC7 or IC10). Overall, the
ICs correlated favorably with the signatures of wild-type-nor-
malized profiles (Figure 5 and Additional data file 1). Thus,
ICA clearly outperformed PCA by its capacity for unsuper-
vised recognition of metabolic responses and its ability to cor-
relate biochemically redundant information in the data.

Comparison of PCA and ICA with analytically 
determined flux ratios
For most experimental conditions tested, mathematical
frameworks for numerical flux analysis such as isotopomer
balancing or flux-ratio analysis [4,5] were not available. Only
the [U-13C]glucose minimal medium experiments allowed a
direct comparison of fluxome profiles with flux ratios. There-
fore, we examined whether any of the statistically identified
PCs and ICs was linearly correlated with eight analytically
determined flux ratios [9,19] that were obtained from the
same MS data (Figure 6). For PCs, the correlation coefficients
decreased with increasing component number, and singular
correlations could not be detected between individual PC-flux
ratio pairs. Generally, the ICs were much better correlated
with the flux ratios, for particular pairs with coefficients close
to 0.90. This indicates that the identified ICs define signa-
tures in the mass distribution of the analytes that bear high
metabolic relevance, similarly to analytically derived flux
ratios.

Notably, IC6 was almost perfectly correlated with the flux
ratio of oxaloacetate derived through the TCA cycle (Figure
6). This IC contained high weights in TCA-cycle-derived
amino acids signals that are linked to the incorporation of C2

units from acetyl-CoA (Figure 4). As shown above, the projec-
tion of a data point on the axis defined by a component
reflects the presence of the fluxome signature in its labeling
patterns, and hence directly quantifies the occurrence of a
particular metabolic activity. When plotting the projection

Comparison of labeling profiles in amino acids of B. subtilis mutants that were normalized by subtraction with the wild-type values obtained under the same condition, as obtained from five different medium compositionsFigure 3 (see previous page)
Comparison of labeling profiles in amino acids of B. subtilis mutants that were normalized by subtraction with the wild-type values obtained under the same 
condition, as obtained from five different medium compositions. The line deviates above (or below) the null line when an amino acid (represented by their 
one letter code at the top of the first panel) mass is more (or less) abundant in the mutant than in the parent. For each amino acid, the available data points 
are in the order of their total mass fragment. Gray areas represent the deviation of the normalized values, based on duplicate analyses of mutant and wild 
type. To reduce the dimension of the data for visual comparison, we excluded those values that, on average, accounted for less than 5% of the fragment 
pool in all mutants under a given condition.
Genome Biology 2004, 5:R99
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versus the numerical values, the IC6-derived data exhibited a
highly linear correlation, while the correlation coefficient was
almost halved for PC3, the closest relative to IC6 (Figure 7).
This confirms numerically the enhanced capacity of ICA to
capture essential and independent information for a complex
metabolic trait such as the TCA cycle activity. The extraordi-

narily high correlation coefficient of 0.99 demonstrates that
IC6 represents very closely the analytically deduced TCA-
cycle flux ratio. This is surprising because IC6 was statistically
identified from 265 masses, whereas the flux ratio was calcu-
lated on the basis of a large body of biochemical background
information [19,20].

Weights of input variablesFigure 4
Weights of input variables. Weights of input variables in the first eight components obtained by (a) PCA and (b) ICA from the corrected MS data of the 
[U-13C]glucose experiment with ammonium.
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Discussion
For the example of central and amino-acid metabolism in B.
subtilis, we show that fluxome profiling by multivariate sta-
tistics from mass isotopomer distribution analysis is mean-
ingful for the discrimination of mutants or conditions on the
basis of their metabolic behavior, and applicable to condi-
tions that are inaccessible to previous flux analysis. In sharp
contrast to metabolome concentration data [24,25], fluxome
profiles contain functional information on the operation of
fully assembled networks [1,4]. As shown here by ICA, this
approach enables us to distill the essential signatures of inde-
pendent metabolic activities, and supports the identification
of the underlying biochemical causality. Because no model or
a priori knowledge on the investigated system is required, the
metabolic imprints of any tracer atom and molecule can be
followed in virtually any biological system, including multi-
cellular organisms in complex multisubstrate media.

Similarly, a priori knowledge of the number of ICs to be com-
puted is not a prerequisite. As a matter of fact, the optimal
number depends primarily on the labeling patterns and can
hardly be estimated from the dataset dimensions. An under-
estimate will generally leave some relevant signatures unrec-
ognized, whereas an overestimate will lead to an increased
fraction of components reflecting measurement or biological
noise. Although statistical significance can be assessed with
duplicates, this becomes prohibitive with large datasets (that
is, hundreds of mutants or analytes) or reduced availability of
replicas. The bottleneck resides in the stochastic approach of
most ICA algorithms, for which independent runs result in
different ICs or ordering thereof. Instead, algorithmic and
statistical reliability of the ICs can be evaluated by repeating
the estimation several times either with randomly chosen ini-
tial guesses or by slightly varying the dataset (bootstrapping
[28]), respectively, and then clustering all results to identify
robust ICs [29].

Two factors directly affect the results that can be obtained by
comparative fluxome profiling: the detected analytes and the
choice of isotopic tracer. As well as polymer-based analytes
such as the proteinogenic amino acids monitored here, flux-
ome profiles can be detected in any set of intra- or extracellu-

lar metabolites, thereby widening the observable metabolic
processes The choice of tracer depends, to some extent, on the
metabolic subsystem of interest. Uniformly labeled sub-
strates provide a more global perspective because they allow
assessment of the scrambling of any carbon backbone and, in
the case of experiments performed in rich media, also allow
quantification of the fraction of de novo biosynthesis from the
tracer relative to the uptake of a medium component. Simi-
larly, uniformly deuterated substrates or 2H2O are valuable
for simultaneously capturing a wide number of ICs that are
affected by the release, binding and exchange of water or
protons. Substrates that are labeled at specific positions, in
contrast, enable deeper interrogation of particular sub-net-
works, for example, [1-13C]hexoses for the initial catabolic
reactions [8,19] or [1-13C]aspartate to assess urea cycle
activity.

The results also revealed new biological information on path-
way activity, function or regulation. First, both glycolysis and
the pentose phosphate pathway actively catabolized glucose
in the presence of CAA, because the pgi and yqjI mutant
signatures were different from the wild type and from each
other. On sorbitol, in contrast, the same mutants were very
similar to the wild type, suggesting that both reactions are
only marginally involved in catabolism of this sugar. Second,
the Krebs cycle flux was similar on glucose and sorbitol (with
and without CAA), as deduced from the similarly pronounced
signatures of the sdhC mutant. Third, absence of the sdhC sig-
natures in the Krebs cycle-derived amino acids aspartate and
glutamate of the mdh mutant when grown with ammonium
(but not CAA) indicates activity of the malic enzyme-based
pyruvate bypass [30]. Fourth, activity of the NADP-depend-
ent malic enzyme appears to be independent of catabolite
repression because pronounced signatures of the ytsJ mutant
were seen on all substrates. The gluconeogenic phosphoe-
nolpyruvate synthetase Pps, in contrast, was inactive in the
presence of the repressing glucose but active on pyruvate or
sorbitol. Fifth, as discussed above the data reveal a Krebs
cycle-promoting effect of the repressor CggR on sorbitol but
not on glucose, most likely through the repression of glyco-
lytic genes [22].

Fluxome profiling by independent component analysis of B. subtilis mutants grown on a 50:50 mixture of [U-13C]- and naturally labeled sorbitol with ammoniumFigure 5 (see following page)
Fluxome profiling by independent component analysis of B. subtilis mutants grown on a 50:50 mixture of [U-13C]- and naturally labeled sorbitol with 
ammonium. (a) Weights of input variables (amino-acid mass-distribution vectors) in the mixing matrix of 10 ICs. (b) Projections (on x-axis) of samples on 
the IC shown in (a). The vertical line is drawn to intersect the average of the wild-type values. (c) Wild-type-normalized labeling profiles. Colors are used 
to highlight those aspects of the amino-acid profiles that were identified by ICA as relevant for the discrimination of the samples (b) along selected 
components.
Genome Biology 2004, 5:R99
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Figure 5 (see legend on previous page)

(a) (b) (c)
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The comparative fluxome profiling presented here comple-
ments traditional flux analysis because it enables potentially
rapid and automated identification of relevant mutants or
conditions from large-scale datasets, for example from entire
mutant libraries. The approach is quantitative in terms of the
relative difference between variants, but qualitative with
respect to the in vivo flux. Interesting variants are then sub-
jected to deeper interrogation of the specific metabolic
phenomenon identified. Besides mere data mining, fluxome
profiling also has the potential to identify complex functional
traits in higher cells where current flux methods fail, and
possibly even identify the underlying biochemical mechanism
of discriminant mass isotope signatures.

Materials and methods
Strains and growth conditions
Wild-type B. subtilis 168 (trpC2) [31] and knockout mutants
containing an antibiotic marker in single genes [17] were
grown in M9 minimal medium [9] at pH 7.0 with 50 mg tryp-
tophan. Six different combinations of 2H- or 13C-labeled iso-
topic tracers (3 g/l) and nitrogen sources were used: (i + ii)
uniformly 13C-labeled [U-13C]glucose with either 0.5 g/l CAA
(Sigma) or 1 g/l NH4Cl; (iii + iv) [U-13C]sorbitol with either
0.5 g/l CAA or 1 g/l NH4Cl; (v) [U-2H]glucose ([1,2,3,4,5,6,6-
2H]glucose) with 1 g/l NH4Cl; and (vi) [3-13C]pyruvate with 1
g/l NH4Cl and twofold higher concentrations of phosphate to
ensure pH buffering. [U-13C]glucose (Martek Biosciences),
[U-13C]sorbitol (Omicron Biochemicals), and [1,2,3,4,5,6,6-
2H]glucose (Euriso-Top) were supplemented as 50:50 mix-

tures of labeled and unlabeled isotopomers. Pyruvate was
supplied entirely as the [3-13C] isotopomer (Euriso-Top).

Aerobic batch cultures were grown in silicone-covered, deep-
well microtiter plates at 37°C and 300 rpm in a 5-cm orbital
shaker [18]. Frozen stocks were used to inoculate 1 ml LB
medium with selective antibiotics. After 10 h of incubation, 10
µl were used to inoculate 1 ml M9 medium with 5 g/l glucose
and selective antibiotics, incubated for 12 h, and 10 µl of these
precultures were used to inoculate 1.2 ml of M9 medium with
isotopic tracers. Cultures were harvested upon entry into sta-
tionary phase (assessed by visual evaluation). Because the
length of batch growth varied, cultures with CAA, with NH4Cl,
and with pyruvate were harvested after 10, 14 and 24 h,
respectively. Labeling patterns in the analyzed proteinogenic
amino acids are rather stable [10,19]; hence differences of a
few hours in growth phase at harvest were irrelevant. This
was also confirmed in separate (data not shown) and dupli-
cate experiments for each combination of strain and medium
that was independently started from culture stocks.

GC-MS analysis and data preprocessing
Cell harvest, protein hydrolysis and GC-MS analysis of amino
acids were done exactly as described before [19,32]. Amino-
acid mass distributions were derived from the spectra after
correction for the natural abundance of stable isotopes [19].
Since amino acids are fragmented during electron impact ion-
ization in the MS, we obtained three to five fragments with
partially redundant information for each amino acid. For
each fragment, a normalized vector m0, m1, ..., mn, expresses

Correlation between analytically derived metabolic flux ratios (on the y-axis) [19] and the projections of the data on the first eight components obtained by PCA and ICA for the [U-13C]glucose experiment with ammoniumFigure 6
Correlation between analytically derived metabolic flux ratios (on the y-axis) [19] and the projections of the data on the first eight components obtained 
by PCA and ICA for the [U-13C]glucose experiment with ammonium. The brightness reflects the correlation coefficient, with black and white 
corresponding to values of 0 and 1, respectively. For coefficients higher than 0.8, the numerical value is reported. ub, upper bound; lb, lower bound.
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the fraction of molecules that are labeled at 0,1, ...,n positions,
depending on the total number n of carbon or hydrogen
atoms present. Considering all corrected fragment vectors
obtained per sample, a complete dataset typically consisted of
about 260 and 330 single mass values from 13C and 2H exper-
iments, respectively, depending on the quality of the MS
measurement.

Multivariate data analysis
To obtain a new representation of the multivariate MS data
and to make their essential structure accessible, we applied
PCA to the corrected fragment vectors. This approach
projects the input variables in an orthogonal space that is
spanned by the PCs. Among the infinite number of possibili-
ties, each successive PC is selected to maximize the variance
of the projected data and to be orthonormal to the previous
ones [33]. Consequently, PCA concentrates the maximum

Weights of input variables in the component that is linked to TCA cycle activityFigure 7
Weights of input variables in the component that is linked to TCA cycle activity, identified by either (a) PCA or (b) ICA from the [U-13C]glucose 
experiment with ammonium. In (c) and (d), the projections of the mutant data on the component shown in (a) and (b), respectively, were plotted versus 
the analytically derived fraction of oxaloacetate (OAA) originating from TCA cycle [19]. The correlation coefficients are for linear fits.
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and nonredundant information of the entire dataset in the
minimal number of dimensions, and thus is best suited for
data compression [27]. The computation was performed with
Matlab (The Mathworks) using the princomp function of the
Statistics toolbox 4.0. No input vectors were eliminated from
the dataset to filter outliers in PCA, because this operation
affected only PCs with higher order but only marginally PC1
and PC2.

To reveal hidden information in the labeling patterns, the cor-
rected MS vectors were subjected to ICA [27], which is fre-
quently used in the neurosciences [34,35] and in gene-
expression studies [36,37]. For ICA, we assume that inde-
pendent metabolic processes such as reactions or pathways
produce characteristic fingerprints in the labeling pattern.
These metabolic fingerprints are defined by m fundamental
components S = (s1, ..., sm)T, each of which is represented by
a vector of p MS-signals. We assumed that the experimental
data X = (x1, ..., xn)T, with n vectors of p corrected MS signals
for each mutant/condition, result from a linear combination
of the m fundamental processes, given by xi = ai1s1 +...+ aimsm.
In matrix notation, this leads to Xp×n = Ap×mSm×n, with A as
the mixing or loading matrix. ICA seeks to estimate the
unknown terms A and S from the observed values X but has
different objectives from PCA. Briefly, ICA identifies statisti-
cally ICs by selecting those with maximum non-gaussianity
[27]. Hence, ICs are nonlinearly decorrelated and assumed to
have non-gaussian distributions. Because of the central limit
theorem, which states that the sum of non-gaussian random
variables is closer to gaussianity than the original ones, ICs
are identified by selecting the linear combinations of the
observed variables that have maximum non-gaussianity [27].
In particular, we used the publicly available FastICA 2.1 algo-
rithm [38] to estimate the number of components that were
equal to the number of strains in the dataset, excluding dupli-
cates. The data dimension was not reduced (by PCA) before
IC computation.

Additional data files
The following additional data is available with the online ver-
sion of this paper. Additional data file 1 contains three figures
(Additional Figure 1 shows the mass distribution in the 2H
experiment; Additional Figure 2 shows mutant discrimina-
tion by PCA (less relevant than by ICA); Additional Figure 3 is
a complete representation of the 660 ICs (10 ICs in 6
experiments for 11 strains). All the raw data is contained in six
Excel tables in Additional data file 2.
Additional data file 1Three additional figures (Additional Figure 1 shows the mass distri-bution in the 2H experiment; Additional Figure 2 shows mutant discrimination by PCA (less relevant than by ICA); Additional Fig-ure 3 is a complete representation of the 660 ICs (10 ICs in 6 exper-iments for 11 strains)Three additional figures (Additional Figure 1 shows the mass distri-bution in the 2H experiment; Additional Figure 2 shows mutant discrimination by PCA (less relevant than by ICA); Additional Fig-ure 3 is a complete representation of the 660 ICs (10 ICs in 6 exper-iments for 11 strains)Click here for additional data fileAdditional data file 2All the raw data contained in six Excel tablesAll the raw data contained in six Excel tablesClick here for additional data file
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