
Genome Biology 2004, 5:249

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Review
Silencing of transposons in plant genomes: kick them when
they’re down
Daniel Zilberman and Steven Henikoff

Address: Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North,
Seattle, WA 98109, USA.

Correspondence: Steven Henikoff. E-mail: steveh@fhcrc.org

Abstract

Recent progress in understanding the silencing of transposable elements in the model plant
Arabidopsis has revealed an interplay between DNA methylation, histone methylation and small
interfering RNAs. DNA and histone methylation are not always sufficient to maintain silencing,
and RNA-based reinforcement can be needed to maintain as well as initiate it.
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Throughout evolution, genomes have been invaded by

‘selfish’ DNA elements that use them as vehicles for self-

propagation. In order to defend themselves against these

genomic parasites, genomes need something akin to an

immune system - a mechanism that can distinguish self from

non-self at the nucleic-acid level and inactivate the non-self

sequences. In the last few years, studies of DNA methylation,

post-translational histone modifications and RNA silencing

in the plant Arabidopsis thaliana and other organisms have

begun to reveal what appears to be just such an integrated

genome defense system. 

An essential property of eukaryotic cells is the ability to

establish heritable patterns of gene silencing without alter-

ations in DNA sequence. Methylation of cytosine

nucleotides, usually within CG dinucleotides, is the most

common form of covalent DNA modification in the eukary-

otic kingdom, and most eukaryotes use it to propagate epige-

netic control [1]. For example, DNA methylation plays an

important role in imprinting (silencing of genes specifically

on the basis of their origin in one or other parent) and in

mammalian X-chromosome inactivation. But in many

organisms, a more widespread role of methylation appears

to be in silencing of parasitic DNA sequences. DNA methyla-

tion is predominantly found at repetitive sequences that are

descended from transposable elements and viruses, and it

marks them for transcriptional inactivity [2]. 

Another feature of gene silencing is covalent modification of

histones, especially methylation of lysine 9 of histone H3

(H3 K9) [3]. Methyltransferases that include a SET domain

(named after three members of the family, Su(var)3-9,

Enhancer-of-zeste and Trithorax) have been identified as

catalyzing this modification; mutations in the Drosophila

Su(var)3-9 gene are dominant suppressors of heterochro-

matin-induced silencing. Another gene with such a suppres-

sor mutant phenotype encodes Heterochromatin-associated

Protein 1 (HP1), which contains a chromodomain that

specifically binds methylated H3 K9 [4]. 

In Neurospora and Arabidopsis, a reduction in H3 K9

methylation leads to a reduction in DNA methylation [5-7].

A question then arises as to what determines the substrates

for H3 K9 methylation throughout the genome. Recent find-

ings have implicated small interfering RNAs (siRNAs) in this

process. Members of gene families involved in posttranscrip-

tional silencing by siRNAs (the Dicer, RNA dependent RNA

polymerase (RdRP) and Argonaute (Ago) families) have

been shown to play important roles in transcriptional gene

silencing in plants, animals and fungi [8-11]. Mutations in



these genes lead to loss of H3 K9 methylation in a number of

organisms and to loss of DNA methylation in Arabidopsis. A

complex that mediates transcriptional RNA silencing in

Schizosaccharomyces pombe contains a protein of the Arg-

onaute family and a chromodomain protein, further rein-

forcing the connection between siRNAs and H3 K9

methylation [12].

Genome-scale observation of the features of
silencing 
Many of the advances in understanding gene silencing have

been made in plants, largely using model reporter systems in

which changes in silencing can be sensitively detected. For

example, screens for genes that relieve the silencing of the

Arabidopsis SUP and PAI loci that is induced by inverted

repeats led to the discovery of three components of epige-

netic processes: the CHROMOMETHYLASE3 (CMT3) DNA

methyltransferase; an H3 K9 methyltransferase (KYP, also

called SUVH4); and an Argonaute family member (AGO4)

[6,7,8,13,14]. These studies revealed that mobile elements

are among the targets for DNA methylation by CMT3, an

observation confirmed by microarray analysis of DNA

methylation patterns in mutant cmt3- plants [15]. Recently,

the correlations between DNA methylation, H3 K9 methyla-

tion and siRNAs were shown to extend over a large contigu-

ous portion of the Arabidopsis genome [16]. These features

were primarily associated with mobile elements, suggesting

that multiple silencing mechanisms are used for controlling

genomic parasites. When a mutation in the ATP-dependent

chromatin remodeling protein DDM1 was introduced,

methylation of both DNA and H3 K9 was sharply decreased

at mobile elements, with concomitant increases in transcrip-

tion of these elements. Even the siRNAs were decreased in

abundance in a ddm1- mutant background. Interdependent

mechanisms involving chromatin remodeling, DNA methy-

lation, histone methylation and siRNAs therefore maintain

mobile elements in a silent state in Arabidopsis. 

What is responsible for this interdependence? One possibil-

ity is that DDM1 facilitates synthesis of siRNAs, which would

trigger downstream silencing events. But the loss of siRNA-

mediated silencing components has no obvious effects on

the silencing of extensive genomic regions [11,17]. An alter-

native possibility is that multiple components of epigenetic

silencing act at the same place at the same time. In this way,

the elimination of the ATP-dependent remodeler that pro-

vides access to chromatin would have effects on multiple

silencing components. For example, if DDM1 were to act at

the replication fork to promote DNA methylation and chro-

matin assembly, then a concerted process of silencing would

be disrupted in ddm1- mutant plants. Indeed, there are

intriguing connections between various epigenetic-silencing

components and the machinery for DNA replication and

replication-coupled chromatin assembly. Where silent

regions are extensive, replication-coupled mechanisms

might suffice, but where they are small, targeting by siRNAs

would be required to reinforce silencing. Below, we explore

these concepts in light of recent evidence.

Active and passive maintenance of methylation  
Most DNA methylation in both plants and animals is on CG

dinucleotides [1]. A CG methylated on one strand but not the

other (hemi-methylated), which results from replication of

fully methylated DNA, serves as a substrate for a mainte-

nance methyltransferase that restores the site to a fully

methylated state. The enzyme responsible for maintenance

of CG methylation, called DNA methyltransferase 1 (Dnmt1),

was first cloned in mice and is associated with DNA replica-

tion foci during the S (synthesis) phase of the cell cycle [1].

An orthologous Arabidopsis enzyme called MET1 is similarly

required for maintenance of CG methylation [18]. 

The Dnmt1 subfamily of cytosine DNA methyltransferases

should be capable of maintaining methylation passively, so

that the only signal required for a methylation pattern to be

propagated is the initial methylation itself. Some of the best

evidence for this comes from experiments in plants after

induction of RNA-dependent DNA methylation [19]. CG

methylation and transcriptional silencing can be maintained

for generations after the RNA trigger has been eliminated

from the plants, and MET1 function is required for silencing

to be heritable in the absence of the RNA trigger [17,20-22].

Also, mutations affecting H3 K9 methylation and RNA-

dependent DNA methylation have little effect on CG methy-

lation at most loci [6-8,11,23]. CG methylation can thus be

maintained passively, without the need for an active signal. 

Non-CG methylation is generally found on CNG motifs or

more rarely on asymmetrical motifs (CNN), where N is any

nucleotide. Most CNG methylation in Arabidopsis is main-

tained by CHROMOMETHYLASE3 (CMT3) [13,14], so

named because of the presence of a chromodomain within

the catalytic domain [24]. CMT3 mutants lack virtually all

CNG methylation in pericentric heterochromatin, and a

number of transposable elements that reside there are reac-

tivated [18]. But at some silent regions that span only a few

nucleosomes, loss of CMT3 function leads to only partial loss

of methylation on CNG and asymmetric motifs [8,25]. At

these sequences, the remainder of non-CG methylation is

catalyzed by the DRM family of methyltransferases. This

effect is most pronounced at loci consisting of tandem direct

repeats, such as FWA and MEA-ISR, where mutations in

CMT3 have only a minor effect on non-CG methylation

whereas DRM loss-of-function mutations eliminate this

methylation completely [25].

The first clues about how CMT3 might be recruited came

from the discovery of its partial dependence on the

KYP/SUVH4 H3 K9 methyltransferase [6,7]. Mutations in

kyp/suvh4 mimic the cmt3 phenotype with respect to DNA
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methylation and transposon reactivation, although the effect

is weaker than that of cmt3 mutants. A potential mechanism

for how histone methylation may target CMT3 is suggested

by the fact that CMT3 contains a chromodomain. CMT3

could therefore have the ability to directly interact with

methylated histone H3. 

Further insight into the mechanism of CMT3 regulation was

provided by the recovery of an allele of AGO4 from the

screen for suppressors of silencing of the SUP locus [8]. The

ago4 mutant plants exhibited substantial loss of CNG

methylation, dramatic loss of asymmetric methylation and

decreased H3 K9 methylation at several silent regions that

span only a few nucleosomes. Experiments with PAI silenc-

ing also provide evidence that siRNA-mediated silencing

plays a role in targeting CMT3 [26]. An upstream promoter

is responsible for making a transcript that reads through the

inverted repeat responsible for silencing PAI, thus creating a

long double-stranded RNA. Silencing of this promoter leads

to loss of both non-CG methylation and silencing at PAI.

Crosses that remove the inverted repeat produce similar

results [20]. Additionally, highly transcribed inverted-repeat

loci designed to trigger RNA-dependent DNA methylation

induce high levels of non-CG methylation, which is largely

lost when the inverted repeat is removed by crossing. These

observations suggest that CNG and asymmetric methylation,

unlike CG methylation, need to be actively maintained. 

Establishment of methylation versus active
maintenance 
So far we have described two general modes of maintenance

DNA methylation: passive and active. Passive maintenance

is self-perpetuating, and clearly distinct from de novo

methylation on a naive template. Active maintenance, on the

other hand, may be nothing more than recurring rounds of

de novo methylation. Alternatively, the requirements for

active maintenance methylation and de novo methylation

may be different, despite the fact that they both require an

active signal. At least two lines of evidence indicate that the

latter is indeed the case. First, the Arabidopsis de novo

methyltransferases of the DRM family are absolutely

required for the establishment of the RNA-directed DNA

methylation that is triggered by a number of loci involving

inverted repeats, but DRM proteins have only a partial role

in the active maintenance of asymmetric and CNG methyla-

tion at these loci [25,27,28]. The rest of the non-CG methyla-

tion is maintained by CMT3, which is not required for

establishment of methylation. CMT3 is therefore capable, at

least in some cases, of responding to an RNA signal in order

to actively maintain, but not to establish, DNA methylation. 

A second line of evidence comes from the effects of the ddm1

mutation on DNA methylation. After erasure of methylation

by passage through a ddm1 mutant background, restoration

of DDM1 activity by crossing into a wild-type background

does not restore methylation [16]. Restoration of DDM1

function is therefore not sufficient to regain methylation and

silencing, despite the observation that many of the trans-

posons in question are associated with siRNAs. Thus, in the

same cell, the same silencing signal is sufficient to maintain

DNA methylation and silencing of transposons on one set of

chromosomes but is not sufficient to efficiently initiate DNA

methylation and silencing of the same sequences on a differ-

ent set of chromosomes. 

Maintaining a silent chromatin state 
How do these various processes fit together in order to

maintain silent chromatin? Like Dnmt1, MET1 is thought to

maintain CG methylation following DNA replication [18].

Old histones are evenly distributed between the two prod-

ucts of replication, so each chromatid has a memory not only

of the original DNA-methylation state but also of the original

histone-modification state. New nucleosomes are deposited

after replication by the Chromatin Assembly Factor 1 (CAF1)

chaperone complex. The H3 K9 methylation state of old

nucleosomes would provide cues for CAF1 to deposit methy-

lated nucleosomes [29] (see Figure 1a). The modified regions

recruit CMT3 in order to maintain CNG methylation. In

support of a role for replication-coupled nucleosome assem-

bly in helping to maintain silent chromatin, mutations in

CAF1 components have recently been shown to destabilize

heterochromatic silencing in Arabidopsis [30]. Mutation of

the DDM1 chromatin remodeler could thus simultaneously

disrupt the maintenance of both DNA and histone methyla-

tion, leading to a profound loss of silencing.

Such replication-coupled maintenance may be all that is nec-

essary to maintain silencing of large regions of chromatin.

Regions that are only a few nucleosomes in length might be

difficult to maintain, however, because the ‘unit’ of chro-

matin memory is a nucleosome and the distribution of old

nucleosomes to daughter chromatids is random [31]. For

example, if two adjacent nucleosomes are distributed to one

daughter chromatid, then all histone-associated information

is lost from the corresponding region of the other chromatid

(Figure 1a). Therefore, to maintain stable silencing, DNA

and histone modifications that are limited to small regions

may need to be occasionally reinforced by active targeting of

siRNAs to the homologous DNA (Figure 1b). In accordance

with this idea, mutations in genes affecting siRNA-mediated

silencing and de novo methylation have the strongest effects

on short stretches of silent chromatin interspersed in other-

wise active regions [8,11,25,32]. One of these genes encodes

a putative ATP-dependent chromatin remodeling protein,

thus providing a DDM1 counterpart where silent regions are

of limited extent [32]. 

Thus, in this model, siRNAs would have a dual role in

silencing: they would provide triggers for establishing silent

regions, but when these regions are too small to maintain
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themselves siRNAs would provide active reinforcement for

maintenance of silencing. This latter process would be espe-

cially important for the silencing of newly integrated trans-

posable elements, where chromatin-based silencing alone

may be unstable. Stable silencing of such elements requires

reinforcement by siRNAs; it amounts to ‘kicking them when

they’re down’.
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Figure 1
A model for the maintenance of chromatin silencing. (a) Replication-
coupled maintenance of a silent region of chromatin. Solid lines indicate
DNA; cylinders represent nucleosomes (light, old; dark, newly added);
circles represent other proteins or protein complexes; flags indicate
histone methylation; M indicates DNA methylation (with new methylation
in bold); the large oval represents DNA polymerase. Before replication (1), a
silenced region is marked by histone methylation and DNA methylation
on CG and CNG motifs. As the polymerase moves along the leading
strand from left to right (2), methylation on CG dinucleotides is passively
maintained behind the replication fork by MET1 (3). Old nucleosomes are
randomly distributed between the two chromatids and new nucleosomes
are added by the CAF1 chaperone complex (4). In the top chromatid in
the diagram (A), there are two adjacent nucleosomes that are methylated
on H3 K9, thus providing cues for CAF1 to deposit a new nucleosome
that is methylated on H3 K9 by KYP (5). On the bottom chromatid (B),
however, the nucleosome distribution leads to loss of epigenetic
information at the edge of the silent domain, so new nucleosomes are
deposited by CAF1 without H3 K9 methylation (6). CMT3 is therefore
able to use the cues provided by H3 K9 methylation to properly maintain
CNG methylation on the top chromatid (7), but not the bottom (8).
Chromatin remodeling by DDM1 enables both DNA and histone
methylation, perhaps by allowing access of other proteins to the DNA.
(b) RNA-based reinforcement of silencing. The bottom (B) chromatid
from (a) is shown after the replication fork has passed completely. Now
siRNAs homologous to the silent region guide H3 K9 methylation by KYP
and DNA methylation by DRM. H3 K9 methylation also allows the
maintenance of CNG methylation by CMT3. The problem shown in (a) is
thus solved: the silent domain is fully maintained, despite random
nucleosome distribution during replication.
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