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ABSTRACT

Background

Transcripts in a GeneChip type microarray is represented by multiple independent short 

oligonucleotide probes.  One widely used approach is to compute a model based unified 

expression index for the transcript which is subsequently used for comparative data 

analysis.  Alternative approach is to analyze the data at the probe-level. A good 

understanding of the effect of the number of probe-pairs included at different statistical 

threshold used for selection should aid optimal selection of differentials.  A test dataset 

with known differentials was used to study this property in comparisons involving two 

datasets.

Results

A response surface was plotted by formulating an equation that captures the effect of 

varying threshold of probe-pairs and t-statistic on true positives and false positives 

identified.  The resulting response surface indicate that a wide range of probe-pair and t-

statistic combinations yield comparative results.  The toplology of the surface was used 

to define one form of additive cost-based approach - involving t and number of probe-

pairs used - to determine the optimum threshold to achieve a good balance of true 

positives and false positives when comparing two datasets at the probe-level.  In 

addition a data scaling approach was used to study the impact of a selected threshold 

on the number of false negatives of differing magnitude of differentials in a given 

dataset.

Conclusions

The results indicate that this response surface assisted approach (termed ResurfP) 

would be effective in determining optimal data-specific threshold for number of probe-



pairs used and of the t-statistic when analyzing differentials between two datasets using 

probe-level data.



BACKGROUND

The recent availability of complete genome sequences of a number of organisms 

and the development of powerful microarray technologies [1-3] allow the determination 

of the comparative expression levels of all the genes in a cell, tissue or organism. A 

common paradigm is to compare the transcriptome patterns of two or more experimental 

treatments or biological backgrounds (e.g., mutant versus wild type, or infected versus 

control tissue) using two to several replicates in each data set at one or more time points 

with one or more replicates.

Two fundamental variations of microarray technologies are in common use. The first 

being represented by reasonably long large PCR fragments of the transcript of interest 

and the other using oligonucleotides representing regions of the transcript. One version 

of the latter technology that is in widespread use is GeneChip (Affymetrix, CA). In this 

version of the technology each transcript is represented by eleven or more 

oligonucleotides 25 nucleotides long and each of these also have another corresponding 

oligonucleotide with a mismatch in the exact middle nucleotide to account for non-

specific hybridization. The chips are hybridized with labeled cRNA representative of all 

the transcripts at a given point of time in the organism/tissue/cells. In principle, having 

perfect match and mismatch probes together with multiple probes representing each 

transcript should aid selective and sensitive identification of differential expression 

between two conditions being compared. These same features also add to significant 

degree of technical complexity. For example, physico-chemical features of sequences 

under a given hybridization condition, differing kinetics of hybridization, lead to differing 

signals for sequences representing the same transcript. In addition, cross-hybridization 

e.g., due to regions that are not sequenced in an organism, and lack of hybridization of 

certain probes make certain probe-pairs unusable thus reducing the effective usable 



number of probe-pairs. A common practice is to reduce the complexity of the multiple 

probe-pairs representing a probeset or transcript by extracting a single expression index 

after using an appropriate normalization technique [e.g., 4-6].  Statistical methods are 

applied to the expression index to identify differentials and reduce false discovery rate. 

The quality of most downstream numerical analyses (clustering, etc.) and biological 

interpretations depend on the sensitive and selective identification of differentially 

regulated genes. Many new measures and adaptations of statistical tests are constantly 

being proposed with varying degrees of success and none being accepted as a most 

effective approach yet.

Some of these limitations can be overcome by directly dealing with probe level data 

rather than a summary expression index. This is complicated due to the same reasons 

highlighted above and sometimes due to computational cost involved with such an 

approach. Here a response surface approach together with a cost factor - comprising the 

number of valid probe-pairs and the t statistic from Student’s t-test [7] - is proposed to 

identify dataset dependent threshold, to apply statistics to probe level data that would aid 

sensitive and selective identification of differentials.

METHODS

The GeneChip expression data set used in these analyses is from the Affymetrix dataset 

released for purposes of algorithm development, and based on HG-U133A-Tag arrays 

Experiments 2 through 5, replicates R1 through R3 

(http://www.affymetrix.com/support/technical/sample_data/datasets.affx). This data set 

was generated using a hybridization cocktail consisting of specific RNA spike-ins of 

known concentration mixed with total cRNA from HeLa cell line, by Affymetrix.  All probe 

sets starting with AFFX not part of the spike-ins of known concentration were removed 



for calculation of true and false positives involving spike-ins, since some of them had 

obviously discernible differences. Three probesets were reported to have perfect 

homology of 5 or more probe-pairs. Thus leaving 45 true positives and 22,185 false 

positives for each comparison in the dataset. Unless mentioned otherwise, values 

represented are based on average of three comparisons between experiments differing 

in spike-ins with two fold difference in concentration viz., experiments 2 with 3, 3 with 4 

and 4 with 5. Probe level data were extracted from Cell files (using tiling coordinates 

defined by probesequence information supplied for the chip type – U133A-Tag by 

Affymetrix) and the mean of all signal values (of perfect matches and mismatches that 

were between the value 28 (the lowest background in the chips used) and a saturation 

value of 46,000) were scaled to target value of 500, i.e.,

with i representing each probe-pair, n the total number of probe-pairs in that arrray, xp

and xm are the intensity values for perfect matches and  mismatches, respectively, Np

and Nm are the number of perfect and mismatches satisfying the conditions in the first 

term of the equation, and b is the background of that chip (as determined by Microarray 

Siute 5.0). When more than 11 probe-pairs represented a probeset only the first 11 (in 

their order of listing in Affymetrix probesequence file) were extracted and used.  The 

difference between perfect match and mismatch value for each probe-pair was used for 

all further evaluations. Zero or negative differences were set to background.  

The signal values were extracted using Microarray Suite 5.0 (Affymetrix, CA) with the 

trimmed mean (top and bottom 2% signal values are trimmed) for each array scaled to a 

xi = [(  (xpi – b | 0 <= (xpi – b) <= 46,000)  +  (xmi – b | 0 

<= (xmi – b) <= 46,000))]/(Np+Nm) *(1/500) * (xpi-xmi)

i = 1

n

i = 1

n

[1]
xi = [(  (xpi – b | 0 <= (xpi – b) <= 46,000)  +  (xmi – b | 0 

<= (xmi – b) <= 46,000))]/(Np+Nm) *(1/500) * (xpi-xmi)

i = 1

n

i = 1

n

[1]



target intensity of 500, for representation in Figure 3.  Standard definitions for sensitivity 

and positive prediction value (PPV) were used.  Sensitivity was calculated as sn = TP / 

(TP + FN); PPV was calculated as: PPV = TP /(TP + FP), where TP is true positives, FP 

is false positives, and FN is false negatives. Weighted average for t was calculated as:

where j runs over probe-pairs, m is the number of probe-pairs used, and  is the 

standard deviation of t over selected probe-pairs.

For the preliminary evaluation on biological replicates, the data from human patients with 

aortic stenosis (samples JB-as_0806, JB-as_1504 and JB-as_1805 were compared 

against JB-as_2111, JB-as_2604 and JB-as_2708, hybridized to U75-Av2 chips), from 

Genomics of Cardiovascular Development, Adaptation, and Remodeling site. NHLBI 

Program for Genomic Applications, Harvard Medical School. URL: 

http://www.cardiogenomics.org [accessed 28 May, 2004]. This chip consisted of 16 

probe-pairs for most transcripts and the average background was used as 60. 

Calculations were performed using C++ on MS-Developer environment in Windows XP 

background.

[2]t jtj | j = (1/j
2) /  (1/j

2)]  
j = 1 j = 1

m m [2]t jtj | j = (1/j
2) /  (1/j

2)]  
j = 1 j = 1

m m



RESULTS

Typical analysis of GeneChip data for identification of differentials between datasets 

involve extraction of the probe level data using an unified expression index signifying the 

estimated level of expression of that transcript summarizing the information in the eleven 

or more probe-pairs, following normalization or scaling. Some common methods used 

for this purpose are dCHIP [4], RMA [5] and MAS (Microarray Suite, currently version 

5,0, Affymetrix, CA). The use of unified expression index is advantageous in terms of 

computational simplicity and easy adaptation of statistical methods to high dimensional 

datasets.  But, due the extremely variable behavior inherent to each probe representing 

the transcript the unified expression index do not always perform satisfactorily. 

Consequently, statistical approach to reduction of false positives based on ordered 

statistics or other Bayesian approaches does not satisfactorily address the issue of false 

positives. This aspect has recently been evaluated for a few test datasets such as the 

one used in this article [8]. While improvements in the aforementioned aspects are 

constantly being proposed, statistics applied directly to probe-level data is an attractive 

alternative. As discussed earlier, several biological and sequence related issues 

complicate simple selection of a statistical threshold such as a p-value when using the 

Student’s t-test. The following approach is motivated by the fact that the multiple 

independent features measured signifying the expression level of a transcript should in 

principle allow selection of a threshold that is appropriate to the noise in a particular 

dataset. In many well behaved dataset this threshold should be lower than a commonly 

acceptable threshold, e.g., t signifying p <= 0.05.

A Response surface model involving probe-pair number and statistical threshold

In order to study the performance of differential expression measured at probe level the 

response surface of sensitivity, positive prediction value, number of true positives and 



number of false positives were evaluated as a function of number of valid probe-pairs 

and a range of values for t (the Student’s t statistic). This was done with triplicate 

datasets that had spike-ins of two fold difference with different probesets in 

concentration ranges (0 – 512 pM) between the two datasets. A valid probe-pair was 

defined as one that has a minimum difference of average signal value (difference 

between signal for perfect match and mismatch) above background, and the ratio of 

averages is at least 1.1 (selected intuitively, but can be determined empirically for 

different datasets) and above threshold t, to avoid values in very close range. In addition, 

a condition that there are no more than one-fifth the probesets that had change in 

opposite direction was enforced.  In general this latter condition was never a determining

factor in selection of differentials in this dataset.  This selection criteria for can be 

expressed as: 

where n is the number of probe-pairs satisfying the conditions, t’ is the threshold for t 

statistic, np is the threshold for number of valid probe-pairs, xie and xib is the signal value 

for probe-pair  i, in experimental and baseline chips, respectively. The above equation 

represents selection of probesets where the chip designated the experimental chip has 

higher value than the chip designated the baseline chip, the equation for probesets with 

value for baseline chip higher can be obtained by interchanging xie and xib. For example 

for a probeset that satisfies the threshold of 6 valid probe-pairs and t value of 7.0, at 

least 6 probe-pairs representing that probeset will individually have a t-statistic of 7.0 or 

above - all having the same direction of change. As can be seen from Figure 1A, and as 

expected, with increasing threshold of t and probe-pair threshold the positive prediction 

n | t >= t’, xie/ xib >= 1.1, (xie – xib) >= b) ] >= np
i = 1

m

[3]n | t >= t’, xie/ xib >= 1.1, (xie – xib) >= b) ] >= np
i = 1

m

[3]



value (PPV) increases i.e., a decreasing number of false positives are identified and 

sensitivity decreases i.e., lesser number of true positives are identified as differentials. 

Figure 1B, shows the decrease of true and false positives with increasing threshold of t 

and np.

Identification of optimal threshold

The above problem can in principle be viewed as area under the Receiver operating 

characteristic (ROC) curve problem [9] with two dimensions t threshold as one 

dimension and number of valid probe-pair number as another dimension. In this kind of 

situation, one would expect multiple thresholds involving the two dimensions that would 

have optimal area under the ROC curve. Alternatively, this can be viewed as an 

optimization problem with the goal of detecting as many true positives with optimal 

combination sensitivity and positive prediction value. In other words this can be written 

mathematically as, termed effective number of positives identified (Neff):

Figure 2A shows the response surface of this effective number of positives as a function 

of t and number of valid probe-pairs (np). It can be seen from the figure that a range of t 

and np can result in comparable Neff, with top two Neff at (t’,np) of (7,5) and (6,6) with 

(true positives, false positives) of (91,1),(89,1) and (87,0), respectively. The total 

possible number of true positives and false positives were 135, and 66,555, respectively. 

It should be noted that the lowest differential (two fold) was used from the dataset, 

higher differentials would lead to identification of higher number of true positives. The 

presence of a large portion of the surface across a range of t and np having similar Neff

Neff = TP * TP/(TP + FP) * (1 – FP/TP) [4]Neff = TP * TP/(TP + FP) * (1 – FP/TP) [4]



in Figure 2A suggests that it would be possible to achieve good sensitivity and selectivity 

for many np and t values thus potentially increasing the sensitivity of detection of small 

differentials and differentials in transcripts expressed at low levels. This can be achieved 

in principle by defining a cost factor consisting of the two parameters being tested. One 

form of defining such a cost adjusted effective number of positives picked (CANeff) would 

be:

The response surface for CANeff as a function of t’ and np is shown in Figure 2B. It can 

be seen from the surface of CANeff (Figure 2B) that the largely flat area near the peak of 

Neff (in Figure 2A) can now be reduced to a few distinct and narrow peaks. The (t’,np) 

values yielding the top three CANeff are (3,7), (4,6) and (4,7) with (true positives, false 

positives) (86, 2), (91,5) and (85,0), respectively. It should be highlighted that these 

values of true and false positives selected at this threshold are comparable to that of the 

maximum Neff mentioned before. For comparison, at t signifying p<= 0.05 and a 

threshold of six valid probesets the (true positives,false positives) was (85,0). The 

number of true and false positives identified and the concentration range of the spike-in 

positives for a selected set of t’ and np values are summarized in Table 1.

The possibility of selecting a lower threshold and still being able to maintain high 

selectivity would especially be of interest (i) with certain datasets where there is a large 

increase in positives with a small reduction in threshold, whereas the training dataset 

indicative of variability in the experiment suggest that this would result in a very small 

number increase in selection of false positives, and (ii) for sensitive identification of small 

CANeff = Neff /(t’ + np) [5]CANeff = Neff /(t’ + np) [5]



differentials without significant loss of selectivity (illustrated in the next section with some 

test cases).

Evaluation of the threshold determined by ResurfP

The methodology outlined above is termed ResurfP, for Response surface assisted 

Parametic test. It can immediately be reckoned that lower the threshold that can give 

good selectivity, the better it is to select small differentials and differentials in transcripts 

with low expression levels. Thus, the advantage of the lowered threshold were evaluated 

by scaling one of the two datasets (i.e., the probe level data extracted as outlined in 

Methods section) used in above comparison to varying extents (1.5, 2, 3 and 4 fold) and 

comparing to the other dataset. This should allow comparison of data classes with wider 

variety of variances as opposed to a few signified by the spike-ins. Further, this should 

also reveal the sensitivity of the methodology in the context of technical replicates, thus 

revealing the maximum achievable sensitivity. The results for this evaluation at the 

thresholds yielding the top two CANeff, t signifying p <= 0.05, and the threshold 

specifying the top Neff are represented in Table 2. As expected, the lower thresholds 

lead to higher sensitivity of detection at any given level. It should be noted that even at

the lower threshold (t’, np) of (3,6), the differentials (average of three comparisons 

compared to maximum identifiable differentials defined below) identified were only 42%, 

61%, 81% and 86% of 1.5, 2, 3 and 4 fold respectively, which further emphasizes the 

need for and importance of the proposed approach. At a threshold of (7.71, 6) these 

values were significantly lower viz., 30%, 47%, 63% and 70%, respectively. For the 

purpose of calculating percentage of differentials identified the maximum identifiable 

differentials was set at 21,485, which is the differentials (average of three comparisons) 

identified at the threshold of (t’ = 4, np = 5) with a scaling factor of 10. A steep decline 



face on the surface of Figure 2B (right hand side) with increasing probe-pair threshold 

together with results indicated in Table 2 also indicate a higher penalty for increasing the 

probe-pair threshold than for increasing t statistic threshold. Additionally, these data 

indicate that an appropriate choice of a lower probe-pair threshold can lead to 

significantly higher number of true differentials without concomitant increase in false 

positives.

In order to have a preliminary idea of the nature of probesets/transcripts that are 

selected and are missed in this study, the distribution of the expression indices (to 

simplify the representation) of these probesets for one of the thresholds (t’,np) of (3,7) is 

shown in Figure 3A. As can be seen from this figure and as expected the distribution of 

the expression indices of probesets, low expressors are detected better at higher 

differential ratios. Conversely, almost all the probesets missed at higher differential ratios 

were low expressors, which is consistent with observations that there is high variability in 

the low detection ranges.

The optimal application of ResurfP on biological samples with different properties need 

additional testing with an independent confirmation using another technology. 

Nevertheless, the results of a preliminary evaluation to test if the lower threshold 

identified by ResurfP would lead high false positives when tested on biological replicates 

are very encouraging. For this purpose (t’,np) thresholds of (3,6) and (3,8) were tested 

on one set of biological replicates from cardiogenomics website (see methods).  For this 

purpose, data from six human patients with aortic stenosis were split into two groups  (of 

triplicates) and the method was evaluated. This lead to identification of only 52 and 21 of 

12,624 probesets at (3,6) and (3,8), respectively, even though this chip type consisted of 

16 probe-pairs for most probesets/transcripts.



Ranking differential genes identified

Another useful parameter will be to rank the genes in order of significance. For this 

purpose, the product of the number probe-pairs contributing to selection and the 

weighted average of the statistic t of those probe-pairs was evaluated. The resultant 

ranking index was used to order the probesets with ranks decreasing with ranking index. 

The results shown in Figure 3B indicated a tendency of probesets with higher expression 

levels to have higher rank, indicating higher reliability at higher signal intensities.

DISCUSSION

Studies on genome-wide analysis of transcripts is becoming increasingly popular, 

primarily due to availability of genome sequence of large number of organisms and 

technologies that permit arraying and probing sequences representing transcripts/other 

genomic regions. One primary problem with this increasing trend of large scale data 

generation and analysis is careful control of data quality at each stage of workflow (viz., 

data generation, first stage analysis to select genes/transcripts of interest), which has 

direct impact on the quality of all downstream analysis, hypothesis generation and 

testing.

Two common microarray platforms are widely in use, one representing long PCR 

fragments representing transcripts, or more recently long oligonucleotides to improve 

specificity and cross-hybridization and the other, a set of eleven or more probe-pairs 

each having a perfect match and a mismatch representing each transcript. Influenced by 

a variety of factors including intrinsic nature of the probe sequence, kinetics and 

efficiency of labeling and hybridization, labeled transcripts hybridize with varying degrees 



of specificity and efficiency, thus yielding varying signal levels even for probe-pairs 

representing the same transcript. A commonly used approach is the use of an estimated 

signal measure that represents the summary of the signals from multiple probe-pairs, 

called the expression index. Different normalization schemes and models are used to 

achieve this index. Statistical and other data selection rules are applied to this index. An 

attractive and powerful alternative is to apply statistics directly to probe level data. In this 

article, an algorithm for the determination of threshold for identification of differentials 

between two datasets using analysis of probe level data from GeneChip type 

microarrays is proposed and evaluated on a test dataset. An earlier approach to identify 

differentials by application of statistics to probe-level data utilized a pairwise comparison 

(comparing one chip from each treatment) using non-parametric Wilcoxon signed rank 

test with a perturbation factor to account for technical variability [10]. Subsequently, 

standard p value cut-off (from Student’s t-test) at median probe level analysis after 

applying logit transformation of the probe level data has been reported [8]. The former 

has the limitation of having to compare pairwise (i.e., one chip to one chip) and not 

directly applicable to datasets with replicates, the latter while being powerful does not 

exploit the full potential of the technological design. Another application involves more 

involved algorithm using combination of t-test p values, all pairwise ratios and Wilcoxon 

signed rank test [11]. More recently, application of two-factor ANOVA to probe-level data 

has been shown to be very sensitive and powerful than the method proposed here or the 

other methods discussed above on trial datasets [12]. However, this approach could 

potentially suffer from certain limitations including (i) between group deviations on either 

directions for different probe-pairs representing the same probesets and (ii) a large 

deviation of one or two probe-pairs among mostly invariant probe-pairs.



The approach proposed here determines data specific statistical threshold and a probe-

pair threshold required for optimal selection of differentials using a response surface 

assisted model. In addition to the use of the response surface two simple equations are 

formulated: one to determine the optimal selection of true positives with maximal 

combination of sensitivity and selectivity, and other to achieve this goal considering the 

cost for this selection. The latter aids selecting the optimal threshold with the least cost.  

In this case, the cost factor is a simple additive value between the statistic t the number 

of probe-pairs (np). Application of additional safeguards to further control false positives 

are feasible. Further evaluation of the methodology on different biological datasets of 

varying properties with independent confirmation of the results using another technology 

should be valuable.

While the utility of this approach has been demonstrated with GeneChip type data it 

should have applicability in sensitive identification of differentials in time course data and 

in study of other data types where a response/phenotype is measured using multiple 

independent measurements.
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Table 1. Effect of different threshold of t-statistic and number of probe-pairs on 

the selection of spike-ins of varying concentrations

3,6 3,7 4,6 4,7 6,6 7,5 12,6 7.71,6
0* 1 0 0 0 0 0 0 0

0.125 4 1 3 1 3 3 1 2
0.25 3 1 3 1 1 1 1 1
0.5 1 1 1 1 1 1 0 1
1 5 5 5 5 5 5 4 4
2 7 6 6 6 6 6 5 6
4 8 8 8 8 8 8 6 8
8 8 8 8 7 7 8 7 7
16 8 8 8 8 8 8 8 8
32 9 9 9 9 9 9 9 9
64 9 9 9 9 9 9 9 9

128 9 9 9 9 9 9 9 9
256 9 8 8 8 8 8 6 8
512* 9 9 9 9 9 9 9 9
CR†

5 4 5 4 4 5 3 4
Total 

identified 95 86 91 85 87 89 77 85
Total 

present 135 135 135 135 135 135 135 135
FP 16 2 5 0 0 1 0 0

PPV 0.86 0.98 0.95 1.00 1.00 0.99 1.00 1.00
Sensitivity 0.70 0.64 0.67 0.63 0.64 0.66 0.57 0.63

Indicated are the number of spike-ins of two fold difference identified at each threshold (out of 9, 

three in each comparison for three individual comparisons). The concentration of the spike-in (in 

pM) are indicated in the leftmost column in each case the concentration of the spike-in in the 

other dataset is twice this amount (except as indicated below). The threshold of t-statistic (t’) and 

number of valid probe-pairs (np) is indicated in the first row as (t’,np). FP is number of false 

positives, PPV is positive prediction value [TP/(TP+FP)], sensitivity is [TP/(TP + FN)].  

* 0 pM spike-in was compared to 0.125 pM spike-in, and 512 pM spike-in is compared to 0 pM 

spike-in.

† CR indicates cross-reactive transcripts/probesets with homology to spike-ins (out of 9, three in 

each comparison for three individual comparisons).



Table 2. Effect of different thresholds of t statistic and minimum number of probe-
pairs on the identification of 1.5, 2, 3 and 4 fold differentials

Indicated are the number of probesets (average of three independent comparisons) 

detected (out of possible 22,301) at the given thresholds of t statistic cut-off (t’) and 

minimum number of probe-pairs (np) satisfying this t’, indicated as (t’,np) in column 1.  

For the purpose of this evaluation three replicates were compared to three other 

independent replicates essentially representing the same samples scaled to the given 

differential (indicated in first row), and the values indicated are averages of three such 

independent evaluations.

1.5 2 3 4
3,5 9287 13595 18001 19251
3,6 7553 11031 15101 16657
4,6 8548 12753 16947 18287
4,7 6927 10333 13965 15431
6,6 7418 11444 15235 16677
7,5 8588 13500 17426 18690

12,6 5164 8993 12204 13596
7.71,6 6634 10584 14111 15600



Figure Legends

Figure 1: Effect of different combinations of the statistic t and threshold probe-

pair number on sensitivity, positive prediction value, number of true and false 

positives selected.

(A) Positive prediction value - true positives/(true positives + false positives) identified –

are indicated by black lines with values indicated in the primary y-axis, and sensitivity –

true positives/(true positives + false negatives) – are indicated by grey lines with values 

indicated in the secondary y-axis (to the right) as a function of increasing t-statistic. (B) 

True positives identified are indicated by black lines with values indicated on primary y-

axis and false positives by grey lines indicated on secondary y-axis as a function of 

increasing t-statistic.  Each line on the graph represents the response for a specified 

number of probe-pair threshold increasing from 3 to 10.  Arrows indicates direction of 

increasing probe-pair threshold.

Figure 2: The response surface of effective number of true positives picked (Neff) 

and cost adjusted Neff (CANeff) as functions of changing t statistic probe-pair 

thresholds.

(A) The response surface of Neff, defined as the product of true positives picked, positive 

prediction value and residual proportion of false positives to true positives on the two-

dimensional plane of varying t (3 through 12) and minimum number of probe-pair 

satisfying the t threshold (3 through 10). (B) Response surface of cost adjusted Neff, 

CANeff – defined as the product of the sum of threshold t and probe-pair and Neff.  

Values are colored from green at lower values and red at higher values.



Figure 3: Distribution of signal values identified (+) or missed (-) at different ratios 

of differential (A) and distribution of signal values as a function of rank for 

differential ratio of two (B). 

Signal values were extracted with Microarray Suite 5.0 (Affymetrix, CA).  Panel A 

represents signal values at 5th percentile through 95th percentile (at increments of 5%) -

bottom to top - for the probesets identified (+) or missed (-) for each differential ratio are 

indicated.  The number of probesets of that category is indicated in the top.  The median 

value is indicated by “
_
” symbol, and the remaining values by diamonds.  In each case 

the average of signals of three replicates from the dataset representing the lower value 

is indicated.  Panel B represents the signal values as a function of rank (product of 

weighted average of t statistic and number of probe-pairs used for selection of 

differential) with higher ranks indicating higher significance.  For the purpose of this 

evaluation three replicates were compared to three other independent replicates 

essentially representing the same samples scaled up by 2 fold.  The data are with (t, 

probe-pair) threshold of (3,7).
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Figure 2
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Figure 3
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