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Abstract

Identifying genomic locations of transcription-factor binding sites, particularly in higher eukaryotic
genomes, has been an enormous challenge. Various experimental and computational approaches
have been used to detect these sites; methods involving computational comparisons of related
genomes have been particularly successful.
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The publication of a nearly complete draft sequence of the

human genome is an enormous achievement, but character-

izing the entire set of functional elements encoded in the

human and other genomes remains an immense challenge

[1]. Francis Collins, Director of the National Human Genome

Research Institute (USA), has proposed that “the next phase

of genomics is to catalog, characterize and comprehend the

entire set of functional elements [including those that do not

encode protein] encoded in the human and other genomes”

[1]. Two of the most important functional elements in any

genome are transcription factors (TFs) and the sites within

the DNA to which they bind. These interactions between

protein and DNA control many important processes, such as

critical steps in development and responses to environmen-

tal stresses, and defects in them can contribute to the pro-

gression of various diseases. Much progress has been made

recently in the accumulation and analysis of mRNA tran-

script profiles of a variety of cell and tissue types, including

those associated with various human diseases [2]; much

remains to be understood, however, about the transcrip-

tional regulatory networks that govern these expression pro-

files. A more complete understanding of transcription

factors, their DNA binding sites, and their interactions, will

permit a more comprehensive and quantitative mapping of

the regulatory pathways within cells, as well as a deeper

understanding of the potential functions of individual genes

regulated by newly identified DNA-binding sites. 

The binding specificities of only a small number of TFs are well

characterized. Transcription-factor binding sites (TFBSs) are

usually short (around 5-15 base-pairs (bp)) and they are fre-

quently degenerate sequence motifs (Figure 1a); potential

binding sites thus can occur very frequently in larger genomes

such as the human genome. The sequence degeneracy of TFBSs

has been selected through evolution and is beneficial, because

it confers different levels of activity upon different promoters,

thus causing some genes to be transcribed at higher levels than

others, as may be required by the cell [3]. The function of

TFBSs is often independent of their orientation. In yeast, their

position within a promoter can vary, and in higher eukaryotes

they can occur upstream, downstream, or in the introns of the

genes that they regulate; in addition, they can be close to or far

away from regulated gene(s). Moreover, the human genome is

about 200 times larger than yeast genome, and approximately

95-99% of it does not encode proteins. For all these reasons, it

can be very difficult to find TFBSs in noncoding sequences

using relatively simple sequence-searching tools like BLASTN

or CLUSTALW [4].

Experimental methods for identifying
transcription-factor binding sites
Much of the information on TF binding specificity has been

determined using traditional methodologies such as foot-

printing methods that identify the region of DNA protected



by a bound protein, nitrocellulose binding assays, gel-shift

analysis that monitors the change in mobility when DNA and

protein bind, Southwestern blotting of both DNA and

protein, or reporter constructs. These methods are generally

quite time-consuming and not readily scaled up to whole

genomes, however. In recent years, therefore, a number of

high-throughput technologies have been developed, for iden-

tifying TFBSs both in vitro and in vivo. One high-throughput

method for finding high-affinity binding sequences in vitro is

the selection (frequently referred to as SELEX (systematic

evolution of ligands by exponential evolution)) from random-

ized double-stranded DNAs those that bind with high affinity

to a protein of interest [5]. This method has been further

modified into genomic SELEX, which uses a genomic library

as the starting material for the selections [6]. More recently,

the sequence specificities of DNA-binding proteins have been

determined by direct binding of proteins to double-stranded

DNA microarrays [7,8].

Similarly, high-throughput methods have also been devel-

oped for measuring the interactions between DNA and TFs

in vivo. Microarray-based readout of chromatin immuno-

precipitation assays (‘ChIP-chip’), also referred to as

genome-wide location analysis [9], is currently the most

widely used method for identifying genomic TFBSs in vivo

and in a high-throughput manner (see [10] for a review).

This approach has been used to characterize a number of

TFs in the yeast Saccharomyces cerevisiae [9,11-15] and,

more recently, to identify genomic targets in mammalian

cells [16-18]. Another recently developed method that takes

advantage of DNA microarrays for the identification of

TFBSs in vivo uses TFs tethered to DNA adenine methyl-

transferase (Dam) [19,20], resulting in DNA methylation

near sites bound by the TF-Dam fusion protein [19,20]. This

approach has been used to identify binding sites in vivo in

Drosophila [20,21] and Arabidopsis [22]. 

Identifying candidate TFBSs in silico
Once a regulatory sequence motif has been identified, the

next goal is frequently to identify candidate target genes that

may be regulated through it, potentially by a TF that may

bind to it. Although degenerate consensus sequences

(Figure 1a) are still frequently used to depict the binding

specificities of TFs, they do not contain precise information

about the relative likelihood of observing the alternate

nucleotides at the various positions of a TFBS. Thus, a

common way of representing the degenerate sequence pref-

erences of a DNA-binding protein is by a position weight

matrix (PWM), also known as a position-specific scoring

matrix (PSSM) (see [3] for review). Briefly, the elements of a

PWM correspond to scores reflecting the likelihood of

observing that particular nucleotide at that particular posi-

tion of the known or candidate TFBS (Figure 1b). Although

there are certain problems inherent in the use of PWMs,

they are nevertheless a good approximation and a useful rep-

resentation that can identify biologically interesting candi-

date sites [23-26]. Furthermore, even though the binding of

a TF in vitro can be predicted accurately from a large set of

experimentally defined binding sites, such predicted sites

may not serve a direct regulatory function, or even be bound,

in vivo. Stormo and Fields [27] have said that “this is not a

failure of the computational techniques, but rather reflects

biological reality: competition, chromatin structure and

other influences are as important as binding affinity”.

A number of collections of experimentally defined TFBSs

have been assembled. The largest and most commonly used

collection is the TRANSFAC database [28], which catalogs

eukaryotic TFs and their known binding sites, and provides

PWMs. Likewise, a number of tools, such as MatInd and

MatInspector [29], MATRIX SEARCH [30], SIGNAL SCAN

[31], and rVISTA [32], have been developed to allow the user

to search an input sequence, such as a genome of interest, for

matches to a PWM or a library of PWMs. In addition to

motif-match searching, genes can also be classified according

to whether they are likely to be regulated through a particular
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Figure 1
Representation of transcription-factor binding sites. (a) An example of six
sequences and the consensus sequence that can be derived from them.
The consensus simply gives the nucleotide that is found most often in
each position; the alternate (or degenerate) consensus sequence gives the
possible nucleotides in each position; R represents A or G; N represents
any nucleotide. (b) A position weight matrix for the -10 region of E. coli
promoters, as an example of a well-studied regulatory element. The
boxed elements correspond to the consensus sequence (TATAAT). The
score for each nucleotide at each position is derived from the observed
frequency of that nucleotide at the corresponding position in the input
set of promoters. The score for any particular site is the sum of the
individual matrix values for that site’s sequence; for example, the score
for TATAAT is 85. Note that the matrix values in (b) do not come from
the example shown in (a) but rather are derived from a much larger
collection of -10 promoter regions. Adapted, with permission, from [3].
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motif or combination of motifs, such as by using Hidden

Markov Models [33] to statistically model the number and

relative locations of TFBSs within a sequence [34].

The prediction and experimental identification of regulatory

regions in higher eukaryotes is more difficult than in model

organisms with smaller genomes, partly because of the

larger genome size, because a larger portion of higher

genomes is noncoding, and because even the general princi-

ples governing the locations of DNA regulatory elements in

higher eukaryotic genomes remain unknown. For example,

regulatory elements can be found far upstream of coding

regions, within introns, and even far downstream of the

genes they regulate, making the search for them difficult.

Given this large sequence space in which to search, methods

of enrichment are necessary for an efficient search. 

One method to enrich for shared sets of candidate regulatory

elements is to focus on the noncoding sequence surrounding

genes that have very similar mRNA expression patterns. A

number of studies have been successful in extracting

sequence motifs from expression data or groups of function-

ally related genes in yeast [35-39]. Extracting candidate reg-

ulatory motifs in this manner from a single genome’s

sequence becomes much more difficult in higher eukaryotes,

however, because of the much greater amount of input

sequence that must go into the motif search algorithms. This

increased amount of input sequence increases the back-

ground noise levels in the motif search, making it more diffi-

cult to extract the true regulatory motifs. For these reasons,

it has been suggested that comparisons between genomes be

incorporated into the searches of higher eukaryotic expres-

sion clusters for regulatory motifs, as an additional method

for further enriching for likely regulatory elements [40].

Phylogenetic footprinting 
A major method for enriching for candidate regulatory ele-

ments is to identify regions of sequence conservation

between genomes, as it is these conserved regions that are

likely to contain important regulatory sites. This method of

performing phylogenetic comparisons to reveal conserved

cis elements in the noncoding regions of homologous genes

is referred to as ‘phylogenetic footprinting’ [41]. It has been

described as searching for “islands of conserved sequences

in seas of less conserved noncoding sequence” [40]. 

An important first step in phylogenetic footprinting is to

identify orthologs, genes in different species that are derived

from the same gene in the last common ancestral species

and thus usually have similar functions in the genomes

being compared. In contrast, paralogs are duplicate gene

pairs within a genome that have diverged and typically have

different functions. Orthologs need to be distinguished from

paralogs, because it can be expected that as the functions of

paralog has diverged, their transcriptional regulators may

also have diverged. At relatively close evolutionary distances

- divergence around 40-80 million years ago (Mya) - it can

be difficult to distinguish between undiscovered coding

sequences and functional noncoding sequences, so compari-

son with distantly related species can improve the ability to

distinguish these classes of conserved sequences [42]. Frazer

and colleagues [42,43] have reviewed methods for cross-

species sequence comparisons. 

Identifying blocks of conserved noncoding sequence as
candidate DNA regulatory elements
With the development of improved sequencing technologies,

the cost of sequencing has dropped significantly, making

genome-scale comparative sequence analysis projects possi-

ble. In the initial sequencing and comparative analysis of the

mouse genome, Waterston and colleagues [44] found that at

the nucleotide level approximately 40% of the human

genome can be aligned to the mouse genome (which

diverged around 75 Mya), and that about 80% of mouse

genes have a single identifiable ortholog in the human

genome. By examining the extent of genome-wide sequence

conservation, they determined that a much higher fraction of

short segments in the mammalian genome are under selec-

tion than can be explained by protein-coding sequences

alone [44].

In a comparison by Loots and colleagues [45] of 1 megabase

(Mb) of orthologous human and mouse sequences sur-

rounding the interleukin genes IL-4, IL-13, and IL-5, 90

conserved noncoding elements with at least 70% identity

over at least 100 bp were discovered. Analysis of a subset of

these elements indicated that many were highly conserved

in at least two mammals in addition to humans and mice.

Many of the conserved noncoding sequences were found in

clusters, suggesting that they may work cooperatively. Sub-

sequent in vivo characterization of the largest element

(‘CNS-1’) in mice revealed it to be a coordinate regulator of

IL-4, IL-13, and IL-5 [45]. Although no experimental verifi-

cation is available on the remaining 89 conserved noncod-

ing sequences, these findings give hope that similar genomic

comparisons will be fruitful. A similar set of studies on

human-mouse pairwise sequence comparisons surrounding

the stem-cell leukemia locus (SCL) identified known and

predicted SCL enhancers [46-48]. 

The pufferfish Fugu rubripes has been considered as a partic-

ularly useful species for cross-species genome sequence com-

parisons [49] because, unlike mammals, it has a compact

genome [50]. For similar reasons, the human genome has also

been compared with the chicken genome (which diverged

about 300 Mya); about 30-50% of genes in the chicken

genome are concentrated in minichromosomes with gene

density approaching that of the pufferfish [51]. It is important

to remember, however, that the species that are compared will

determine what kinds of functional elements can be found

(primate-specific, mammal-specific, and so on). For example,
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only 16% of orthologous genes between mammals and bony

fishes (which diverged about 450 Mya) contain conserved ele-

ments in their noncoding regions, so mammal-specific ele-

ments are unlikely to be found through fish-human

comparisons [51]. These findings question both the utility of

sequence comparisons beyond mammals in thoroughly identi-

fying gene regulatory elements and the correct criteria for

identifying conserved noncoding sequences.

Algorithmic issues
In prokaryotes and yeast, motif-finding studies generally

need to search only a few hundred base-pairs upstream of

predicted translational start sites [36,37,52]. In higher

eukaryotic genomes, however, transcriptional start sites can

be kilobases away from the translational start sites [53], so

identification of the start site is an important task in order

that searches of upstream sequence can be focused on non-

coding sequence upstream of 5� untranslated regions (UTRs;

for reviews see [51,54]).

The next important algorithmic decision is whether to

perform local or global sequence alignments in order to

identify regions of sequence homology [55]. Whereas local

alignments are computed to produce optimal similarity

between subregions of the sequence, global alignments are

computed to produce optimal similarity over the entire

length of the two sequences being compared. Various align-

ment algorithms have been developed that permit pairwise

or multiple alignments of sequences [56]. The program

rVISTA performs global alignment of genomic sequences

and then searches within the conserved regions for con-

served TFBSs matching known PWMs [32]. One limitation

of this approach is that certain TFBSs may be located in

regions not conserved at sufficiently high levels to be identi-

fied as conserved by rVISTA parameters. Likewise, the

choice of which alignment method to use, and thus the

resulting genomic sequence alignments, can also have pro-

found effects on which potential cis-regulatory elements are

found. Of note is a pairwise comparison of D. melanogaster

and D. virilis (which diverged about 40 Mya), in which it

was found that that the majority of discordant blocks are

missed uniquely by only one of the three alignment methods

used [56]. Thus, the use of more than one alignment method

may be beneficial for the most complete identification of

candidate cis-regulatory elements.

In addition to considerations regarding which genomes to

compare and how to align them, there is the additional issue

that the level of sequence conservation varies widely across

genomes. In a comparison of orthologous human and mouse

sequence, Koop and colleagues [57,58] found variable levels

of sequence similarity, with high levels of similarity in the

T-cell receptor locus and the � and � myosin genes, and very

low levels in the �-crystallin, XRCC1, and �-globin gene clus-

ters. These and other findings [43,57-60] suggest that differ-

ent regions of the genome evolve at different rates. Thus,

using fixed percentage identity cutoffs across entire genomes

for considering regions conserved is likely to result in too

much sequence being identified as functionally conserved in

some regions and too little functionally conserved sequence

being identified in other regions [61]. Reviews are available

on strategies and resources for finding regulatory elements

in mammalian genomes [40,42,62], the theory behind

various alignment algorithms [33], and algorithms for

phylogenetic footprinting, including the development of an

algorithm that makes use of the phylogenetic tree underlying

the data [63]. In addition, the annual Nucleic Acids Research

Web Server Issue [64] includes tools for analysis of gene-

expression data, prediction of cis-regulatory modules,

sequence alignments, promoter prediction, and discovery and

identification of candidate TFBSs, and the annual Nucleic

Acids Research Database Issue [65] includes nucleotide

sequence databases, comparative genomics databases, gene-

expression databases, and various protein databases.

Identifying transcription-factor binding sites through
phylogenetic footprinting
TFs associated with expression specific to skeletal muscle

have been studied extensively, probably as a result of good

cell-culture models for differentiation. Wasserman and

Fickett [66] have created a TFBS database derived from a lit-

erature search for experimentally defined TFBSs for five TFs

associated with skeletal-muscle-specific expression: Mef-2,

Myf, Sp1, SRF, and Tef. In searching the Eukaryotic Pro-

moter Database (EPD) [67], they found that high-scoring

sites occurred more frequently in sequences linked to

muscle-specific expression [66]. In a comparison of 28

orthologous human-mouse gene pairs that are specifically

upregulated in skeletal muscle, Wasserman’s group [68]

found that 98% of experimentally defined sequence-specific

binding sites of TFs specific to skeletal muscle are confined

to the 19% of human noncoding sequences that are most

conserved in the orthologous rodent sequences. 

Clustering of transcription-factor binding sites 
In higher eukaryotes, TFs frequently bind DNA within seg-

ments of sequence, typically hundreds of base-pairs long,

termed cis-regulatory modules or enhancers. A given gene

can have multiple such modules in its surrounding noncod-

ing sequence; they typically direct expression in either a cell-

type-specific or temporal-specific manner [69]. Typically

four to eight different TFs bind within an enhancer, and each

factor can bind to multiple sites within it [53,70] (for reviews

on transcriptional regulation in metazoans, see [69,70]).

Because pairs of sites may correspond to TFs that coregulate

expression of the nearby gene(s) [71], a number of

approaches have been developed to identify pairs of binding

sites [72-78]. For example, one study focusing on the MEF2

and MyoD families of TF found that where the two bind in

the same regulatory region, their binding sites occur at

precise distances relative to the helical turn of DNA, and
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thus probably allow cooperative protein-protein interactions

[79]. Although some TFs may require specific distances

between their binding sites for cooperative binding, it has

been thought that in many cases the exact spacing and order

of TFBSs is not important for enhancer function [80].

More recently, approaches have been developed to identify

higher-order site clusterings [81-93]. Such clusters can be

homotypic, containing multiple sites for one particular TF,

or heterotypic, containing one or more binding sites for mul-

tiple TFs [89]. A search of vertebrate genomic sequence

revealed that sites bound by the liver regulatory TF hepato-

cyte nuclear factor 1 (HNF1) occurred more frequently in

hepatic genes than expected by chance, that HNF1-binding

sites in liver genes are more often associated in clusters with

sites for other TFs than expected by chance, and that the

enrichment is more pronounced in promoter regions [94]. In

a search for matches to TRANSFAC PWMs within conserved

noncoding sequences surrounding a set of human and

mouse genes, conserved segments in upstream regions con-

tained TFBS pairs colocalized in a manner consistent with

experimentally known pairwise co-occurrences of TFs [95]. 

In a recently published study, Wasserman and colleagues

[96] performed human-mouse sequence comparisons of 14

well-studied genes and searched for matches to TFBS PWMs

within the conserved noncoding regions, using a range of

PWM score thresholds. The choice of PWM score cutoffs is a

critical issue in all predictions of sites from PWMs, as the

requirement for a more stringent match (a higher cutoff) is

likely to result in fewer false-positive predictions but can

potentially result in more sites being missed (false nega-

tives). The same kind of problem occurs when conserved

regions are used: the assumption is that fewer of the motif

‘hits’ will be false positives than when searching the whole

genome, but a greater number of functional sites may be

missed because they occur outside conserved regions. Con-

sidering regions with 70% sequence identity and a 75% rela-

tive matrix score threshold, Wasserman and colleagues

found that 66% of previously verified TFBSs were detected

with phylogenetic footprinting, compared with 73% when

just single sequences were scanned. At a 60% matrix score

threshold, looking just within the conserved regions, they

were able to detect 83% of TFBSs [96] (although one has to

keep in mind that decreasing the PWM score threshold will

increase the number of likely false-positive hits).

Full-genome comparisons of yeast noncoding
sequences
The yeasts are good organisms for phylogenetic footprinting

because the complete S. cerevisiae sequence has been avail-

able for quite some time now, Saccharomyces genomes are

relatively small and have relatively compact noncoding

sequences (about 30% of the genome is noncoding), their

phylogeny is well-characterized (with many related species

at various evolutionary distances), and because of the ease of

experimental validation in yeast. Yeast strains closely related

to S. cerevisiae can be divided into three sub-groups: Sac-

charomyces sensu stricto, Saccharomyces sensu lato and

petite-negative (these last two sub-groups have fewer chro-

mosomes and are significantly different physiologically from

S. cerevisiae). In a key paper, Johnston and colleagues [4]

described their survey of a number of orthologous genomic

loci in seven yeast strains from these sub-groups, in order to

evaluate which genomes would be most useful for identify-

ing conserved TFBSs in promoter regions. As an example,

for Gal4 and Mig1 TFBSs, they saw conservation not just of

TFBS sequences, but also of spacing, in sensu stricto species,

but this conservation was not seen in sensu lato species.

Looking forward, the authors identified the problem of bal-

ancing the need to align orthologous sequences with the aim

of having the functional elements stand out [4].

Subsequently, the same group [97] sequenced the genomes

of three sensu stricto strains (S. mikatae, S. kudriavzevii,

and S. bayanus) and two more distantly related strains

(S. castellii and S. kluyveri), and performed both four-way

genome sequence alignments over just the sensu stricto

strains and also six-way alignments over all the sequenced

strains, including S. cerevisiae. They restricted their search

of the multi-species genome sequence alignments for

sequences of length 6-30 bp with no gaps (that is, there is no

nucleotide within the site for which there is no sequence

preference), and required motifs to be 100% conserved

across all species under consideration and found in the

upstream regions of at least five genes. They chose to focus

on ungapped sequences because of their observation that

most characterized sequence motifs do not have gaps. In

addition to identifying most characterized ungapped motifs

that met their stringent criteria, Johnston’s group [97] also

identified 79 unique unknown conserved elements of length

6-30 bp with no gaps, with some evidence for functionality,

as characterized by correlation with functional category

enrichment using Munich Information Center for Protein

Sequences (MIPS) annotation [98], mRNA expression

coherence, or correlation with ChIP-chip data.

In a similar study, Lander and colleagues [99] included an

elegant analysis focused on identifying known and novel

candidate regulatory motifs. They limited themselves to

comparing four sensu stricto species: S. cerevisiae, S. para-

doxus, S. mikatae, and S. bayanus; there was an overlap of

three species with the eight species examined by the John-

ston group [97]. The primary assumption [99] in choosing

these species was that they should represent as narrow a

taxon as possible (in contrast to the approach of Johnston’s

group [97]), as identified motifs must be common to all

species. To put these comparisons into perspective, the

sequence divergence between S. cerevisiae and the most

distant of these four species, S. bayanus, is similar to that

between human and mouse, although there is an inherent
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difference in signal-to-noise ratios in the genomes because

of the differences in gene density (yeast genomes are about

30% coding whereas the human genome is about 2% coding)

and the ratios of presumably non-regulatory noncoding

sequence (whereas in yeast about 15% of intergenic regions

are regulatory elements, in human only about 3% of noncod-

ing regions are regulatory elements) [99].

In an approach similar to the Johnston group’s [97], Lan-

der’s group [99] focused on Gal4 binding sites as a test case

(Figure 2). From observations of the conservation character-

istics of the Gal4 binding site, the Lander group formulated a

number of motif scores to apply generally in their searches

for candidate regulatory DNA sequence motifs. In contrast,

however, the Lander group [99] searched the multi-species

genome sequence alignments for conserved motifs consist-

ing of pairs of triplet base-pairs separated by up to 21 bp,

thus covering both gapped and ungapped motifs. This differ-

ence highlights the fact that no ‘best’ method for finding

DNA motifs has yet been determined. The full motifs that

were identified were searched for matches to known TFBS

motifs. The positional-enrichment criteria examined the

motif conservation rate in intergenic regions, higher conser-

vation in intergenic regions than in genes, and conservation

rates upstream versus downstream of genes. The functional-

enrichment criteria assessed the significance of the correla-

tion of a motif with a given functional category of putative

target genes, defined as the set of genes located immediately

downstream (or upstream) of that motif. The sources of

functional annotation were similar to those used by the

Johnston group [97]. Many of the motifs, both known and

novel, showed strong enrichment of particular functional

categories; from this, the Lander team [99] could assign a

tentative biological function to these novel motifs.

Using these various enrichment scores as filters, the authors

[99] identified 72 full motifs, 42 of which did not match pre-

viously described regulatory DNA motifs in yeast. Most of

the motifs were found preferentially upstream of genes,

although some did show enrichment downstream of genes.

This is an interesting observation to keep in mind, given that

many studies that aim to find regulatory DNA elements in

yeast have searched only upstream of the target gene(s). Fur-

thermore, the focus for finding regulatory elements is cur-

rently on noncoding sequences. There is a general lack of

data on the function of TFBSs within coding regions,

although one recent ChIP-chip study on the yeast TF Rap1

found that binding sites within coding regions were much

less likely to be bound in vivo [12]. As this study [12] was

performed on just one TF, however, it is unclear how general

the observation will be.

Nevertheless, even in these high-resolution genome

sequence comparisons, not all known motifs were found by

either genome-wide or category-based analysis. Interest-

ingly, some motifs appeared to define previously unknown

binding sites associated with known TFs. Some motifs did

not match regions bound by known TFs but showed strong

functional category correlation; these motifs are potential

binding sites for thus-far undiscovered TFs and are reason-

able candidates for directed experiments to identify what

TFs may bind them [99].

Phylogenetic footprinting in other organisms
Similar phylogenetic footprinting approaches have been

taken to try to identify regulatory elements in the noncoding

portions of other genomes. A comparison of the Escherichia

coli and Haemophilus influenzae genomes led to the identi-

fication of a novel motif that had not been found previously

in any of the individual genomes, and to the discovery of

new members of known regulons [100]. In a search within

alignments of a set of orthologous intergenic regions from

the Caenorhabditis elegans and Caenorhabditis briggsae

genomes (which are 23-40 Mya apart), an uneven distribu-

tion of short conserved sequence blocks was found across

the genomes, again suggesting the potential co-occurrence

of TFBSs within transcriptional enhancers [101]. In an

analysis of conservation over four Drosophila species span-

ning a range of divergence times, it was also found that con-

served noncoding sequences tend to cluster spatially, with

conserved spacing between them, and that there is a strong

tendency for known cis-regulatory elements to overlap clus-

ters of conserved noncoding sequences [102]. Such clusters

may correspond to functional interactions among transcrip-

tional enhancers.

In a landmark paper examining enhancer function in

Drosophila, Ludwig and co-workers [103] found that in a

comparison of 13 species, none of 16 surveyed D. melano-

gaster TFBSs was completely conserved. They also observed

differences in the spacing between TFBSs. Despite these dif-

ferences between species, each enhancer drove reporter-gene

expression at identical times and locations in the early

D. melanogaster embryo. Chimeric enhancers did not recapit-

ulate the wild-type expression pattern, however. The authors

proposed that stabilizing selection has maintained phenotypic

constancy, but has allowed mutation within the enhancer, and

that substitutions within TFBSs and changes in the lengths of

spacer regions between TFBSs would result in weak changes,

with many functionally compensatory mutations. One of their

significant conclusions was that this “may make it difficult to

identify homologous elements in different species groups by

sequence comparison alone” [103]. This is an important

observation to keep in mind in the development and applica-

tion of algorithms for discovery in silico of transcriptional

enhancers and TFBSs conserved across genomes, because

conserved TFBSs may not necessarily occur within longer

stretches of conserved sequence.

In an important recent study, Boffelli and colleagues [104]

sequenced four different regions from over a dozen primate
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species, including Old World and New World monkeys and

hominoids. The premise of their approach was that the

human-mouse comparisons can fail to align meaningfully,

and thus can fail to identify functional elements, and that the

additive collective divergence of higher primates as a group

is comparable to that of humans and mice [104]. An addi-

tional consideration is that in comparing just human and

mouse sequences there is the potential problem that some

regions of the genome are highly conserved [105]. In this

‘phylogenetic shadowing’ approach, they took into account

the phylogenetic relationships of the analyzed species. The

authors noted that the most informative subset of four to

seven species can capture most of the discriminative power

of the approach using the full set of species. Using gel-shift

assays and luciferase reporter assays, they found that con-

served regions were bound by protein more frequently, and

thus were presumably more likely to be functional, than

nonconserved regions [104].

In a similar study, Thomas and colleagues [106] compared

sequences from 12 evolutionarily diverse vertebrate species,

for sequences orthologous to a human chromosomal region

containing 10 genes, including the gene mutated in cystic

fibrosis (CFTR). The authors noted that the ‘multi-species

conserved regions’ that they detected overlapped with 63%

of the functionally validated regulatory elements in the

CFTR genomic region, and that many of the remaining

missed known regulatory elements may have been missed
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Figure 2
Sequence comparison of the GAL1-GAL10 intergenic region across four yeast species. Scer, S. cerevisiae; Spar, S. paradoxus; Smik, S. mikatae; Sbay,
S. bayanus. Arrows indicate the start and transcriptional orientation of the GAL1 and GAL10 open reading frames; dashes in the alignment indicate gaps;
nucleotide positions conserved across all four species are denoted by asterisks. Stretches of conserved nucleotides are underlined, and experimentally
validated transcription-factor binding-site footprints are boxed and labeled with the name of the footprinted transcription factor. Underlined regions that
are not boxed correspond to potential, previously unknown, transcription-factor binding sites. Note that not all nucleotide positions of a footprinted
binding site are necessarily conserved across all four species in this comparison (note the Mig1 sites, for example). The nucleotides matching the
published Gal4 binding-site motif are in gray; for the fourth Gal4 site, non-standard consensus motif nucleotides are shown in boldface. Reproduced with
permission from [99].

Scer   TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACA
         Spar   CTATGTTGATCTTTTCAGAATTTTT-CACTATATTAAGATGGGTGCAAAGAAGTGTGATTATTATATTACATCGCTTTCCTATCATACACA

Smik   GTATATTGAATTTTTCAGTTTTTTTTCACTATCTTCAAGGTTATGTAAAAAA-TGTCAAGATAATATTACATTTCGTTACTATCATACACA
Sbay   TTTTTTTGATTTCTTTAGTTTTCTTTCTTTAACTTCAAAATTATAAAAGAAAGTGTAGTCACATCATGCTATCT-GTCACTATCACATATA
      * * ****  * *  *   ** ** *  *   **           **  ** * *    *    **   **    *  * * ** * * *

Scer TATCCATATCTAATCTTACTTATATGTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACC--TTCTCTTTGGAACTTTCAGTAATACG
Spar TATCCATATCTAGTCTTACTTATATGTTGT-GAGAGT-GTTGATAACCCCAGTATCTTAACCCAAGAAAGCC--TT-TCTATGAAACTTGAACTG-TACG
Smik TACCGATGTCTAGTCTTACTTATATGTTAC-GGGAATTGTTGGTAATCCCAGTCTCCCAGATCAAAAAAGGT--CTTTCTATGGAGCTTTG-CTA-TATG
Sbay TAGATATTTCTGATCTTTCTTATATATTATAGAGAGATGCCAATAAACGTGCTACCTCGAACAAAAGAAGGGGATTTTCTGTAGGGCTTTCCCTATTTTG

 **   ** ***  **** ******* **   *  *   *     *  *    *  *       **  **      * *** *    ***    *  *  *

Scer CTTAACTGCTCATTGC-----TATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCT
Spar CTAAACTGCTCATTGC-----AATATTGAAGTACGGATCAGAAGCCGCCGAGCGGACGACAGCCCTCCGACGGAATATTCCCCTCCGTGCGTCGCCGTCT
Smik TTTAGCTGTTCAAG--------ATATTGAAATACGGATGAGAAGCCGCCGAACGGACGACAATTCCCCGACGGAACATTCTCCTCCGCGCGGCGTCCTCT
Sbay TCTTATTGTCCATTACTTCGCAATGTTGAAATACGGATCAGAAGCTGCCGACCGGATGACAGTACTCCGGCGGAAAACTGTCCTCCGTGCGAAGTCGTCT

       **  **          ** ***** ******* ****** ***** ***  ****   * *** ***** * *  ****** ***    * ***

Scer   TCACCGG-TCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAA-----TACTAGCTTTT--ATGGTTATGAA
Spar TCGTCGGGTTGTGTCCCTTAA-CATCGATGTACCTCGCGCCGCCCTGCTCCGAACAATAAGGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC
Smik ACGTTGG-TCGCGTCCCTGAA-CATAGGTACGGCTCGCACCACCGTGGTCCGAACTATAATACTGGCATAAAGAGGTACTAATTTCT--ACGGTGATGCC
Sbay GTG-CGGATCACGTCCCTGAT-TACTGAAGCGTCTCGCCCCGCCATACCCCGAACAATGCAAATGCAAGAACAAA-TGCCTGTAGTG--GCAGTTATGGT

      ** *   ** *** *      *      ***** ** *  *   ****** **     *   * **     * *             ** ***  

Scer   GAGGA-AAAATTGGCAGTAA----CCTGGCCCCACAAACCTT-CAAATTAACGAATCAAATTAACAACCATA-GGATGATAATGCGA------TTAG--T
Spar AGGAACAAAATAAGCAGCCC----ACTGACCCCATATACCTTTCAAACTATTGAATCAAATTGGCCAGCATA-TGGTAATAGTACAG------TTAG--G
Smik CAACGCAAAATAAACAGTCC----CCCGGCCCCACATACCTT-CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAA-AATATTAG--G
Sbay   GAACGTGAAATGACAATTCCTTGCCCCT-CCCCAATATACTTTGTTCCGTGTACAGCACACTGGATAGAACAATGATGGGGTTGCGGTCAAGCCTACTCG
              ****    *         *   *****     ***              * * *    *  * *    *     *           **    

Scer TTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCG--ATGATTTTT-GATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCAC-----TT
Spar GTTTT--TCTTATTCCTGAGACAATTCATCCGCAAAAAATAATGGTTTTT-GGTCTATTAGCAAACATATAAATGCAAAAGTTGCATAGCCAC-----TT
Smik TTCTCA--CCTTTCTCTGTGATAATTCATCACCGAAATG--ATGGTTTA--GGACTATTAGCAAACATATAAATGCAAAAGTCGCAGAGATCA-----AT
Sbay TTTTCCGTTTTACTTCTGTAGTGGCTCAT--GCAGAAAGTAATGGTTTTCTGTTCCTTTTGCAAACATATAAATATGAAAGTAAGATCGCCTCAATTGTA

  * *      *    ***       * **   *  *     *** ***   *  *  **  ** * ********   ****    *              

Scer   TAACTAATACTTTCAACATTTTCAGT--TTGTATTACTT-CTTATTCAAAT----GTCATAAAAGTATCAACA-AAAAATTGTTAATATACCTCTATACT
Spar TAAATAC-ATTTGCTCCTCCAAGATT--TTTAATTTCGT-TTTGTTTTATT----GTCATGGAAATATTAACA-ACAAGTAGTTAATATACATCTATACT
Smik   TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGAGTTATAGAAATACCAAAA-AAAAATAGTCAGTATCTATACATACA
Sbay   TAGTTTTTCTTTATTCCGTTTGTACTTCTTAGATTTGTTATTTCCGGTTTTACTTTGTCTCCAATTATCAAAACATCAATAACAAGTATTCAACATTTGT
       *   *     *     *      * *  **  ***   *  *        *        *  ** **  ** * *  * *    * ***       *   

Scer   TTAA-CGTCAAGGA---GAAAAAACTATA
Spar   TTAT-CGTCAAGGAAA-GAACAAACTATA
Smik   TCGTTCATCAAGAA----AAAAAACTA..
Sbay   TTATCCCAAAAAAACAACAACAACATATA

 *    *   **  *    ** **  **

GAL10

GAL1

TATA

Gal4 Gal4 Gal4

Gal4

Mig1

Mig1 TATA



either because they are shorter than their approach could

detect (< 25 bp), or because they are primate-specific. Inter-

estingly, their results suggest that the power to detect multi-

species conserved regions seems to depend mainly on the

total divergence of the subset of species rather than on the

particular distribution of the species among lineages, and

thus that combined phylogenetic branch length may be a

useful metric for guiding the selection of additional genomes

to sequence.

Future directions in the discovery of
transcription-factor binding sites
Francis Collins has said [1] that further multi-species com-

parisons, especially those occupying distinct evolutionary

positions, will lead to significant refinements in our under-

standing of the functional importance of conserved

sequences and are thus crucial to the functional characteri-

zation of the human genome. Sidow [107] noted that identi-

fication of the majority of functional elements relevant to

human biology requires placental genomes beyond those of

human, mouse, and rat. Sidow commented that “Building a

parts list is important, but multiple sequence alignments by

themselves do not quantify conservation and allow only

limited inference as to which conserved functional element

is more constrained than another” [107].

In recent years, a number of efforts have been focused on

attempting to predict TFBSs using structural information on

the protein or related protein-DNA complexes. Some of these

studies have attempted to determine what ‘recognition rules’

or ‘recognition code’ may exist that stipulate which DNA

base-pairs are likely to be bound by which amino acids, in the

context of a particular structural class of DNA binding pro-

teins. These approaches have come either from analysis of

databases of well-characterized DNA-protein interactions

[108-112], from computer modeling [113,114], or from experi-

ments employing in vitro selection from a randomized

library, either of the DNA base pairs or the amino-acid

residues implicated in sequence-specific binding [115-117].

There is no obvious, simple code like the genetic code,

however, and any recognition rules that might exist are likely

to be quite degenerate and highly dependent upon the

docking arrangement of the protein with its DNA binding site

[118]. This area of work, including the possibility of decipher-

ing a ‘probabilistic code’, is discussed by Benos et al. [119].

Such efforts will be greatly aided by the further development

of high-throughput technologies for identifying interactions

between TFs and their DNA binding sites, so that much larger

datasets can be generated for analyses required to decipher

any ‘degenerate probability codes’ or to be used as training

sets for developing improved DNA binding-site prediction

algorithms. Similarly, the lack of a sufficient set of TFs of

well-characterized DNA-binding specificities has also

resulted in the lack of a good test set for the evaluation of new

algorithms aimed at predicting transcriptional enhancers.

There are predicted to be around 1,850 TFs in the human

genome [120], but only a very small fraction of them have

well-characterized binding specificities. The challenge will

be to characterize these specificities, so that their target

genes and potential combinatorial modes of transcriptional

regulatory control can be discovered. Studies using the

various high-throughput technologies described earlier will

permit a better understanding of the locations and organiza-

tion of regulatory DNA elements in higher eukaryotic

genomes and the regulatory complexity resulting from com-

binatorial interactions of TFs. Finally, there is a need for the

development of high-throughput transgenic bioassays for

validating predicted enhancers, as experimental verification

of predicted cis-regulatory elements is currently another

major limiting step. The combination of these different

kinds of transcription-factor binding-site data, together with

mRNA expression analysis, protein-interaction databases

and prior genetic and biochemical data in the literature, will

allow the construction of more detailed connectivity maps of

transcriptional regulatory networks [10,13,121-125]. 
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