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Abstract 

Clustering is a common methodology for the analysis of array data, and many research
laboratories are generating array data with repeated measurements. We evaluated several
clustering algorithms that incorporate repeated measurements, and show that algorithms that
take advantage of repeated measurements yield more accurate and more stable clusters. In
particular, we show that the infinite mixture model-based approach with a built-in error model
produces superior results.
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Background 
The two most frequently performed analyses on gene-

expression data are the inference of differentially expressed

genes and clustering. Clustering is a useful exploratory tech-

nique for gene-expression data as it groups similar objects

together and allows the biologist to identify potentially

meaningful relationships between the objects (either genes

or experiments or both). For example, in the work of Eisen et

al. [1] and Hughes et al. [2], cluster analysis was used to

identify genes that show similar expression patterns over a

wide range of experimental conditions in yeast. Such genes

are typically involved in related functions and are frequently

co-regulated (as demonstrated by other evidence such as

shared promoter sequences and experimental verification).

Hence, in these examples, the function(s) of gene(s) could be

inferred through ‘guilt by association’ or appearance in the

same cluster(s). 

Another common use of cluster analysis is to group samples

by relatedness in expression patterns. In this case, the

expression pattern is effectively a complex phenotype and

cluster analysis is used to identify samples with similar and

different phenotypes. Often, there is the additional goal of

identifying a small subset of genes that are most diagnostic

of sample differences. For example, in the work of Golub et

al. [3] and van’t Veer et al. [4], cluster analysis was used to

identify subsets of genes that show different expression pat-

terns between different types of cancers.

There are numerous algorithms and associated programs to

perform cluster analysis (for example, hierarchical methods

[5], self-organizing maps [6], k-means [7] and model-based

approaches [8-10]) and many of these techniques have been

applied to expression data (for example [1,11-14]). Whereas

one might anticipate that some algorithms are inherently

better for cluster analysis of ‘typical’ gene-expression data,

nearly every software vendor is compelled to provide access

to most published methods. Hence, the biologist wishing to

perform cluster analysis is faced with a dizzying array of algo-

rithmic choices and little basis on which to make a choice. In

addition, in nearly all published cases, cluster analysis is per-

formed on gene-expression data for which no estimates of

error are available - for example, the expression data do not

contain repeated measurements for a given data point. Such

algorithms do not take full advantage of repeated data when

it is available. In this paper we address two questions. First,

how well do different clustering algorithms perform on both

real and synthetic gene expression data? And second, can we

improve cluster quality by using algorithms that take advan-

tage of information from repeated measurements?
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Introduction to cluster analysis 
A dataset containing objects to be clustered is usually repre-

sented in one of two formats: the data matrix and the simi-

larity (or distance) matrix. In a data matrix, rows usually

represent objects to be clustered (typically genes), and

columns usually represent features or attributes of the

objects (typically experiments). An entry in the data matrix

usually represents the expression level or expression ratio of

a gene under a given experiment. The similarity (or distance)

matrix contains the pairwise similarities (or dissimilarities)

between each pair of objects (genes or experiments). 

There are many similarity measures that can be used to

compute the similarity or dissimilarity between a pair of

objects, among which the two most popular ones for gene

expression data are correlation coefficient and Euclidean dis-

tance. Correlation is a similarity measure, that is, a high cor-

relation coefficient implies high similarity, and it captures the

directions of change of two expression profiles. Euclidean

distance is a dissimilarity measure, that is, a high distance

implies low similarity, and it measures both the magnitudes

and directions of change between two expression profiles.

Most clustering algorithms take the similarity matrix as

input and create as output an organization of the objects

grouped by similarity to each other. The most common algo-

rithms are hierarchical in nature. Hierarchical algorithms

define a dendrogram (tree) relating similar objects in the

same subtrees. In agglomerative hierarchical algorithms

(such as average linkage and complete linkage), each object

is initially assigned to its own subtree (cluster). In each step,

similar subtrees (clusters) are merged to form the dendro-

gram. Cluster similarity can be computed from the similarity

matrix or the data matrix (see Sherlock [15] or Sharan et al.

[16] for reviews of popular clustering algorithms for gene-

expression data).

Once a clustering algorithm has grouped similar objects

(genes and samples) together, the biologist is then faced with

the task of interpreting these groupings (or clusters). For

example, if a gene of unknown function is clustered together

with many genes of similar, known function, one might

hypothesize that the unknown gene also has a related func-

tion. Or, if biological sample ‘A’ is grouped with other

samples that have similar states or diagnoses, one might

infer the state or diagnosis of sample ‘A’. However, before

one does subsequent laboratory work to confirm a hypothe-

sis or, more important, makes a diagnosis based on the

results of cluster analysis, a few questions need to be asked.

The first is how reproducible are the clustering results with

respect to re-measurement of the data. Then, what is the

likelihood that the grouping of the unknown sample or gene

of interest with other known samples or genes is false (due to

noise in the data, inherent limitations of the data or limita-

tions in the algorithm)? And finally, is there a better algo-

rithm that will reduce errors in clustering results?

Related work 
Kerr and Churchill [17] applied an analysis of variance

model and bootstrapping to array data to assess stability of

clusters (for example, ‘if one re-measured the data and did

the same analysis again, would the same genes/samples

group together?’). In their approach, the original data was

re-sampled using variability estimates and cluster analysis

was performed using the re-sampled data. This post-hoc

analysis uses variability estimates to provide a good indica-

tion of cluster stability. However, this method does not

improve the overall clustering results, it only provides an

indication of the reproducibility of the clusters with a given

dataset and algorithm. 

Hughes et al. [2] analyzed their yeast datasets using the

commercial software package Resolver (Rosetta Inpharmat-

ics, Kirkland, WA). Resolver was developed with a built-in

error model that is derived from repeated data obtained on

the array platform of interest. Resolver uses this error model

and available repeated data to estimate the error in expres-

sion ratios for each gene sampled. In addition, as described

below and in [2], Resolver’s clustering algorithms use the

error estimates to weigh the similarity measures. This

results in lower weights for data points with lower confi-

dence in the cluster analysis. The net result of this treatment

(as we show below) is an improvement in both cluster accu-

racy and cluster stability.

Medvedovic et al. [18] have taken a different approach by

adopting the Bayesian infinite mixture model (IMM) to

incorporate repeated measurements in cluster analysis. They

postulated a probability model for gene-expression data that

incorporates repeated data, and estimated the posterior

pairwise probabilities of coexpression with a Gibbs sampler.

They showed that the estimated posterior pairwise distance

allowed for easy identification of unrelated objects. These

posterior pairwise distances can be clustered using average

linkage or complete linkage hierarchical algorithms. 

Our contributions 
We have implemented several approaches to take advantage

of repeated measurements in cluster analysis and performed

an empirical study evaluating clustering results using both

real and synthetic gene-expression datasets. We tested

several different clustering algorithms and similarity measure

combinations on the same datasets and evaluated the quality

of each approach using the same criteria. We also assessed

four different approaches to clustering repeated array data:

clustering the averaged expression levels over the repeated

measurements; using variability estimates in similarity mea-

sures (assigning low weights to noisy data points); clustering

the repeated measurements as individual data points and

assigning them to the same subtrees in agglomerative hierar-

chical algorithms; and an IMM-based approach with built-in

error models for repeated data. We use two assessment crite-

ria to evaluate clustering results: cluster accuracy (comparing
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clustering results to known external knowledge of the data);

and cluster stability (the consistency of objects clustered

together on synthetic remeasured data). In addition, we

extended the IMM-based approach and the variability-

weighted approach. We also created synthetic array datasets

with error distributions taken from real data. These synthetic

data in which the clusters are known are crucial for the devel-

opment and testing of novel clustering algorithms.

Over a variety of clustering algorithms, we showed that array

data with repeated measurements yield more accurate and

more stable clusters. When repeated measurements are

available, both the variability-weighted similarity approach

and the IMM-based approach improve cluster accuracy and

cluster stability to a greater extent than the simple approach

of averaging over the repeated measurements. The model-

based approaches (hierarchical model-based algorithm [8]

and the IMM approach [18]) consistently produce more

accurate and more stable clusters.

Results 
Overview of our empirical study 
In our empirical study, we compare the quality of clustering

results from a variety of algorithms on array data with

repeated measurements. We use two methods to assess

cluster quality: cluster accuracy and cluster stability. Exter-

nal validation compares clustering results to known inde-

pendent external knowledge of which objects (genes,

experiments or both) should cluster together [19]. A cluster-

ing result that agrees with the external knowledge is

assumed to be accurate. However, for most biological data,

there is little or no a priori knowledge of this type. We also

evaluate the stability of clusters with respect to synthetic

remeasured array data. That is, if one remeasures the array

data, how often are objects clustered together in the original

data assigned to the same clusters in the remeasured data? 

In this section, we discuss the clustering algorithms imple-

mented, approaches to clustering repeated measurements,

and the real and synthetic datasets used in our empirical

study. We will also discuss assessment of cluster quality in

greater detail. Finally, we present and discuss results of

our study.

Test algorithms and similarity measures 
We studied the performance of a wide variety of clustering

algorithms, including several agglomerative hierarchical

algorithms (average linkage, centroid linkage, complete

linkage and single linkage), a divisive hierarchical algorithm

called DIANA [20], k-means [7], a graph-theoretic algorithm

called CAST [21], a finite Gaussian mixture model-based hier-

archical clustering algorithm from MCLUST [8], and an

IMM-based approach [18]. Agglomerative hierarchical clus-

tering algorithms successively merge similar objects (or sub-

trees) to form a dendrogram. To evaluate cluster quality, we

obtain clusters from the dendrogram by stopping the merging

process when the desired number of clusters (subtrees) is pro-

duced. The objects in these subtrees form the resulting clus-

ters. Except for the two model-based approaches, all other

clustering algorithms require a pairwise similarity measure.

We used both correlation and Euclidean distance in our

empirical study.

How to cluster array data with repeated
measurements 
Average over repeated measurements 
The simplest approach is to compute the average expression

levels over all repeated measurements for each gene and each

experiment, and store these average expression levels in the

raw data matrix. The pairwise similarities (correlation or dis-

tance) can be computed using these average expression

values. This is the approach taken in the vast majority of pub-

lished reports for which repeated measurements areavailable.

Variability-weighted similarity measures 
The averaging approach does not take into account the vari-

ability in repeated measurements. Hughes et al. [2] pro-

posed an error-weighted clustering approach that uses error

estimates to weigh expression values in pairwise similarities

such that expression values with high error estimates are

down-weighted. These error-weighted pairwise similarities

are then used as inputs to clustering algorithms. Hughes et

al. [2] developed an error model that assigns relatively high

error estimates to genes that show greater variation in their

repeated expression levels than other genes at similar abun-

dance in their control experiments. In our empirical study,

we use variability estimates instead of error estimates in the

weighted similarity measures. Intuitively, gene expression

levels that show larger variations over the repeated measure-

ments should be assigned lower confidence (weights). We

use either the standard deviation (SD) or coefficient of varia-

tion (CV) as variability estimates. Let us illustrate this

approach with an example: suppose our goal is to compute

the variability-weighted correlation of two genes G1 and G2.

For each experiment, we compute the SD or CV over the

repeated measurements for these two genes. Experiments

with relatively high variability estimates (SD or CV) are

down-weighted in the variability-weighted correlation of G1

and G2 (see Materials and methods for mathematical defini-

tions of these weighted similarities).

Hierarchical clustering of repeated measurements 
An alternative idea is to cluster the repeated measurements

as individual objects in hierarchical clustering algorithms.

The idea is to initialize the agglomerative algorithm by

assigning repeated measurements of each object to the same

subtrees in the dendrogram. In each successive step, two

subtrees containing repeated measurements are merged.

This approach of forcing repeated measurements into the

same subtrees is abbreviated as FITSS (forcing into the same

subtrees). In addition to heuristically based hierarchical
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algorithms (such as average linkage, complete linkage, cen-

troid linkage and single linkage), we also investigate the per-

formance of clustering repeated data with MCLUST-HC,

which is a model-based hierarchical clustering algorithm

from MCLUST [8]. 

IMM-based approach 
Medvedovic et al. [18] postulated a probability model (an

infinite Gaussian mixture model) for gene-expression data

which incorporates repeated data. Each cluster is assumed

to follow a multivariate normal distribution, and the mea-

sured repeated expression levels follow another multivariate

normal distribution. They used a Gibbs sampler to estimate

the posterior pairwise probabilities of coexpression. These

posterior pairwise probabilities are treated as pairwise simi-

larities, which are used as inputs to clustering algorithms

such as average linkage or complete linkage hierarchical

algorithms. They showed that these posterior pairwise prob-

abilities led to easy identification of unrelated objects, and

hence are superior to other pairwise similarity measures

such as Euclidean distance. 

The model published in Medvedovic et al. [18] assumes that

the variance between repeated measurements of the same

genes is homogeneous across all experiments. We call this

model the spherical model. We extended the IMM approach

to include an elliptical model, in which repeated measure-

ments may have different variance across the experiments.

In other words, genes may have different noise levels in the

spherical model, while both genes and experiments may

have different noise levels in the elliptical model. 

Table 1 summarizes the clustering algorithms and similarity

measures implemented in our empirical study, and the cor-

responding methods to cluster repeated data.

Datasets 
Assessment of cluster accuracy requires datasets for which

there is independent knowledge of which objects should

cluster together. For most biological data, there is little or no

a priori knowledge of this type. In addition, to develop and

test clustering algorithms that incorporate repeated mea-

surements, we require datasets for which repeated measure-

ments or error estimates are available. Unfortunately, very

few publicly available datasets meet both criteria. Repeated

microarray measurements are, unfortunately, still rare in

published data. In addition, one rarely has a priori knowl-

edge of which objects should cluster together. This is espe-

cially the case when we are grouping in the gene dimension.

To overcome these limitations, we used both real and syn-

thetic datasets in our empirical study. Some of these data

will be described in the following sections (and see Materials

and methods for details).

Completely synthetic data 
Because independent external knowledge is often unavail-

able on real data, we created synthetic data that have error

distributions derived from real array data. We use a two-step

process to generate synthetic data. In the first step, data are

generated according to artificial patterns such that the true

class of each object is known. We created six equal-sized

classes, of which four are sine waves shifted in phase relative

to each other (a periodic pattern) and the remaining two

classes are represented by linear functions (non-periodic). In

the second step, error is added to the synthetic patterns

using an experimentally derived error distribution. The error

for each data point is randomly sampled (with replacement)

from the distribution of standard deviations of log ratios

over the repeated measurements on the yeast galactose data

(described below). The error-added data are generated from

a random normal distribution with mean equal to the value
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Table 1 

Summary of various clustering approaches used in our empirical study 

Clustering algorithms Similarity measures Approach to repeated data

Hierarchical agglomerative (average linkage, Correlation/distance Average over repeated measurements
centroid linkage, complete linkage, single linkage) variability-weighted similarity.

Force into the same subtree (FITSS)*

k-means Correlation/distance Average over repeated measurements
variability-weighted similarity

CAST Correlation/distance Average over repeated measurements
variability-weighted similarity

DIANA (hierarchical divisive) Correlation/distance Average over repeated measurements
variability-weighted similarity

MCLUST-HC† None Average over repeated measurements. 
Force into the same subtree (FITSS)*

IMM None Built-in error models (spherical, elliptical)

*FITSS refers to clustering the repeated measurements as individual objects and force the repeated measurements into the same subtrees. †MCLUST-HC
denotes a model-based hierarchical clustering algorithm as implemented in the hcVVV function in the 2002 version of MCLUST.



of the synthetic pattern (from the first step), and SD equal to

the sampled error. The signal-to-noise of the synthetic data

is adjusted by linearly scaling the error before adding it to

the pattern. We generate multiple synthetic datasets with

400 data points, 20 attributes, 1, 4 or 20 repeated measure-

ments and 2 different levels of signal-to-noise (low and high

noise levels). In our synthetic data, all genes in each class

have identical patterns (before error is added). The cluster

structure of real data will, in general, be less distinguishable

than that of these synthetic data. Hence, it is of interest to

study the performance of various clustering approaches as a

function of noise level in the synthetic data. Figure 1a,b

shows the expression profiles of the classes in typical

datasets with four repeated measurements at low and high

noise levels respectively.

Real data: yeast galactose data 
In the yeast galactose data of Ideker et al. [22], four replicate

hybridizations were performed for each cDNA array experi-

ment. We used a subset of 205 genes that are reproducibly

measured, whose expression patterns reflect four functional

categories in the Gene Ontology (GO) listings [23] and that

we expect to cluster together. On this data, our goal is to

cluster the genes, and the four functional categories are used

as our external knowledge. That is, we evaluate algorithm

performance by how closely the clusters reproduce these

four functional categories.

Synthetic remeasured data 
To generate synthetic remeasured array data to evaluate

cluster stability, we need an error model that describes

repeated measurements. Ideker et al. [24] proposed an error

model for repeated cDNA array data in which the measured

fluorescent intensity levels in each of the two channels are

related to their true intensities by additive, multiplicative and

random error parameters. The multiplicative error parame-

ters represent errors that are proportional to the true inten-

sity, while the additive error parameters represent errors that

are constant with respect to the true intensity. The measured

intensity levels in the two channels are correlated such that

genes at higher intensities have higher correlation. Ideker et

al. [24] estimated these parameters (additive, multiplicative

and correlation parameters) from repeated cDNA array data

using maximum likelihood, and showed that this model gives

reasonable estimates of the true expression intensities with

four repeated measurements. We used this error model to

estimate the true intensity for each gene, and the correlation,

additive and multiplicative error parameters on the yeast

galactose data. We generate synthetic remeasured data by

generating the random error components in the model from

the specified random distributions.

Assessment of cluster quality 
Cluster accuracy 
To assess algorithm performance, we need a statistic that

indicates the agreement between the external knowledge

and the clustering result. A clustering result can be consid-

ered as a partition of objects into groups. In all subsequent

discussion, the term ‘class’ is used to refer to the external

knowledge, while the term ‘cluster’ refers to the partitions

created by the algorithm. Assuming known categories

(classes) of objects are available, we can compare clustering

results by assessing the agreement of the clusters with the

classes. Unfortunately, the results of a given cluster analysis

may merge partitions that the external knowledge indicates

should be separate or may create additional partitions that

should not exist. Hence, comparison of clusters with classes

is not as simple as counting which objects are placed in

the ‘correct’ partitions. In fact, with some datasets and
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Figure 1
Expression profiles of the classes in typical completely synthetic datasets
with four repeated measurements. (a) Low noise level; (b) high noise
level. For each class, the log ratios are plotted against the experiment
numbers, and each class is shown in a different color. There are four sine
(periodic) classes with different phase shifts and two linear (non-periodic)
classes. Only four (out of six) classes are shown in (b) for clarity.
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algorithms, there is no obvious relationship between the

classes and the clusters.

The adjusted Rand index [25] is a statistic designed to assess

the degree of agreement between two partitions. On the

basis of an extensive empirical study, Milligan and Cooper

[26] recommended the adjusted Rand index as the measure

of agreement even when comparing partitions with different

numbers of clusters. The Rand index [27] is defined as the

fraction of agreement, that is, the number of pairs of objects

that are either in the same groups in both partitions or in

different groups in both partitions, divided by the total

number of pairs of objects. The Rand index lies between 0

and 1. When the two partitions agree perfectly, the Rand

index is 1. The adjusted Rand index [25] adjusts the score so

that its expected value in the case of random partitions is 0.

A high adjusted Rand index indicates a high level of agree-

ment between the classes and clusters. 

Cluster stability 
A few recent papers suggested that the quality of clusters

could be evaluated via cluster stability, that is, how consis-

tently objects are clustered together with respect to synthetic

remeasured data. The synthetic remeasured data is created

by randomly perturbing the original data using error parame-

ters derived from repeated measurements. For example,

Kerr and Churchill [17] and Li and Wong [28] generated ran-

domly perturbed data from cDNA and oligonucleotide arrays

respectively to identify objects that are consistently clustered.

In our empirical study, we assess the level of agreement of

clusters from the original data with clusters from the syn-

thetic remeasured data by computing the average adjusted

Rand index over all the synthetic datasets. We also compute

the average adjusted Rand index between all pairs of cluster-

ing results from the randomly remeasured data. A high

average adjusted Rand index implies that the clusters are

stable with respect to data perturbations and remeasure-

ments. The external knowledge is not used in computing

cluster stability.

Completely synthetic data at low noise level 
Table 2a,b shows selected results on cluster accuracy and

cluster stability on the completely synthetic datasets with

four simulated repeated measurements. Table 2a,b show

results from average linkage, complete linkage and centroid

linkage hierarchical algorithms, k-means, MCLUST-HC (a

hierarchical model-based clustering algorithm from

MCLUST) and IMM. Both single linkage and DIANA

produce very low-quality and unstable clusters and their

adjusted Rand indices are not shown. For each clustering

approach, we produced six clusters (which is the number of

classes). The results from CAST are not shown because the

input parameter cannot be tuned to produce exactly six clus-

ters in many cases. The FITSS column refers to the method

of forcing repeated measurements into the same subtrees.

Because k-means is not hierarchical, its results are not avail-

able (NA) under the FITSS column. Both centroid linkage

hierarchical algorithm and k-means algorithm require the

raw data matrix as input, so we cannot apply these two algo-

rithms to cluster the posterior pairwise probabilities from

the IMM approach. 

In terms of cluster accuracy, the elliptical model of IMM pro-

duced the highest level of agreement (adjusted Rand index =

0.957) with the six classes, and the hierarchical model-based

clustering algorithm (MCLUST-HC) also produced clusters

with high agreement (adjusted Rand index = 0.930) with the

six classes. Within the same clustering algorithm, different

similarity measures and different methods to deal with

repeated measurements yield different cluster accuracy. For

example, average linkage hierarchical algorithm produced

more accurate clusters with Euclidean distance (variability-

weighted or average over-repeated measurements) than

correlation. The variability-weighted similarity approach

produced more accurate clusters using SDs as the variability

estimates than using the CVs. It is also interesting to note

that SD-weighted correlation produced relatively low-quality

clusters, whereas SD-weighted distance produced relatively

accurate clusters. The FITSS approach of forcing repeated

measurements into the same subtrees in hierarchical clus-

tering algorithms does not yield high cluster accuracy.

In terms of cluster stability, most clustering approaches

yield stable clusters (with average adjusted Rand indices

above 0.900) except the spherical model of the IMM

approach. This is because the spherical model assumes

homogeneous variability for each gene across the experi-

ments (which is not true on this synthetic data).

Completely synthetic data at high noise level 
Tables 3a,b show the results on cluster accuracy and cluster

stability on the completely synthetic data with four repeated

measurements at high noise level. Even at a higher noise

level, the elliptical model of IMM produced much more

accurate clusters (average adjusted Rand index = 0.911 and

0.910 using average linkage or complete linkage) than all

other approaches (SD-weighted distance and k-means pro-

duced an average adjusted Rand index of 0.801). In general,

the relative rankings of various clustering approaches at high

noise level are similar to those at low noise level, except that

the model-based hierarchical approach (MCLUST-HC) pro-

duced less accurate clusters than the SD-weighted distance

approach using the heuristically based algorithms. 

At high noise level, the approach of averaging over the

repeated measurements produced relatively low-quality clus-

ters, especially when Euclidean distance is used (for example,

both average linkage and centroid linkage produced an

average adjusted Rand index of 0). In addition, the quality of

clusters produced using Euclidean distance deteriorates more

rapidly than correlation at high noise level. The SD-weighted



distance approach produced substantial improvement in

cluster quality over the approach of averaging over repeated

measurements using the same algorithms at high noise level.

In terms of cluster stability (see Table 3b), the following

three approaches yield average adjusted Rand index above

0.900: the elliptical model of the IMM approach; the
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Table 2 

Cluster accuracy and stability on the completely synthetic data with four repeated measurements at low noise level

(a) Cluster accuracy*

Similarity
Algorithm measure/model Average SD-weighted CV-weighted FITSS IMM

Average linkage Elliptical NA NA NA NA 0.957 (0.089)

Complete linkage Elliptical NA NA NA NA 0.957 (0.090)

MCLUST-HC NA 0.930 (0.100) NA NA 0.902 (0.123) NA

Average linkage Distance 0.877 (0.191) 0.927 (0.100) 0.876 (0.192) 0.804 (0.155) NA

Centroid linkage Distance 0.840 (0.178) 0.927 (0.100) 0.927 (0.100) 0.840 (0.178) NA

k-means Distance 0.877 (0.191) 0.927 (0.100) 0.876 (0.192) NA NA

Average linkage Spherical NA NA NA NA 0.926 (0.102)

Complete linkage Distance 0.925 (0.102) 0.876 (0.192) 0.925 (0.103) 0.840 (0.179) NA

Complete linkage Spherical NA NA NA NA 0.897 (0.088)

Centroid linkage Correlation 0.765 (0.115) 0.575 (0.179) 0.527 (0.141) 0.765 (0.115) NA

Average linkage Correlation 0.764 (0.114) 0.576 (0.201) 0.597 (0.210) 0.718 (0.222) NA

k-means Correlation 0.764 (0.114) 0.707 (0.140) 0.652 (0.116) NA NA

Complete linkage Correlation 0.755 (0.116) 0.584 (0.189) 0.599 (0.194) 0.609 (0.201) NA

(b) Cluster stability†

Similarity 
Algorithm measure/model Average SD-weighted CV-weighted FITSS IMM

Average linkage Distance 0.970 (0.055) 0.998 (0.003) 0.998 (0.002) 0.979 (0.018) NA

Centroid linkage Distance 0.984 (0.025) 0.998 (0.002) 0.986 (0.027) 0.984 (0.025) NA

k-means Distance 0.954 (0.062) 0.998 (0.003) 0.967 (0.070) NA NA

Average linkage Correlation 0.958 (0.054) 0.832 (0.095) 0.854 (0.060) 0.984 (0.025) NA

Complete linkage Distance 0.968 (0.041) 0.923 (0.131) 0.981 (0.037) 0.918 (0.055) NA

Average linkage Elliptical NA NA NA NA 0.961 (0.081)

Complete linkage Elliptical NA NA NA NA 0.960 (0.083)

Centroid linkage Correlation 0.959 (0.054) 0.861 (0.119) 0.866 (0.026) 0.959 (0.054) NA

k-means Correlation 0.958 (0.054) 0.693 (0.144) 0.634 (0.098) NA NA

Complete linkage Correlation 0.947 (0.067) 0.580 (0.140) 0.671 (0.100) 0.915 (0.049) NA

MCLUST-HC NA 0.935 (0.089) NA NA 0.916 (0.066) NA

Average linkage Spherical NA NA NA NA 0.852 (0.089)

Complete linkage Spherical NA NA NA NA 0.779 (0.091)

*Each entry shows the average adjusted Rand index of the corresponding clustering approach with the six classes. We ran our experiments on five
randomly generated synthetic datasets, and show the average results with the SD of the adjusted Rand index in brackets. A high average adjusted Rand
index represents close agreement with the classes on average. †Each entry shows the average adjusted Rand index of the original clustering result with
clusters from remeasured data. The SD of the average adjusted Rand indices over five sets of randomly generated synthetic remeasured data is shown in
brackets. A high average adjusted Rand index means that clusters from remeasured data are in close agreement with clusters from the original data. The
external knowledge is not used in evaluating cluster stability. For both parts of the table, the maximum average adjusted Rand index of each row is
shown in bold. The algorithms (rows) are sorted in descending order of the maximum average adjusted Rand index in each row.



SD-weighted distance using average linkage and centroid

linkage. It is interesting that the spherical model of the IMM

approach produces unstable clusters at both high and low

noise levels.

Yeast galactose data 
Table 4a,b show selected results on cluster accuracy and

cluster stability on real yeast galactose data. The true mean

column in Table 4a refers to clustering the true mean data
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Table 3 

Cluster accuracy and stability on the completely synthetic data with four repeated measurements at high noise level

(a) Cluster accuracy*

Similarity
Algorithm measure/model Average SD-weighted CV-weighted FITSS IMM

Average linkage Elliptical NA NA NA NA 0.911 (0.122)

Complete linkage Elliptical NA NA NA NA 0.910 (0.123)

k-means Distance 0.326 (0.136) 0.801 (0.037) 0.666 (0.098) NA NA

Complete linkage Distance 0.498 (0.113) 0.798 (0.144) 0.660 (0.098) 0.014 (0.030) NA

Centroid linkage Distance 0.000 (0.000) 0.762 (0.113) 0.315 (0.156) 0.000 (0.000) NA

Average linkage Distance 0.000 (0.000) 0.713 (0.217) 0.256 (0.071) 0.000 (0.000) NA

MCLUST-HC NA 0.608 (0.173) NA NA 0.480 (0.052) NA

Average linkage Spherical NA NA NA NA 0.589 (0.212)

Complete linkage Spherical NA NA NA NA 0.559 (0.358)

k-means Correlation 0.556 (0.121) 0.499 (0.130) 0.394 (0.194) NA NA

Average linkage Correlation 0.389 (0.151) 0.519 (0.159) 0.378 (0.081) 0.291 (0.130) NA

Complete linkage Correlation 0.450 (0.122) 0.518 (0.159) 0.484 (0.156) 0.341 (0.112) NA

Centroid linkage Correlation 0.358 (0.097) 0.261 (0.101) 0.215 (0.096) 0.358 (0.097) NA

(b) Cluster stability

Similarity 
Algorithm measure/model Average SD-weighted CV-weighted FITSS IMM

Average linkage Elliptical NA NA NA NA 0.948 (0.099)

Average linkage Distance 0.208 (0.075) 0.932 (0.049) 0.812 (0.138) 0.381 (0.103) NA

Centroid linkage Distance 0.211 (0.087) 0.920 (0.097) 0.779 (0.169) 0.211 (0.087) NA

Complete linkage Elliptical NA NA NA NA 0.912 (0.113)

k-means Distance 0.508 (0.153) 0.882 (0.165) 0.686 (0.147) NA NA

Average linkage Correlation 0.721 (0.060) 0.782 (0.083) 0.692 (0.103) 0.855 (0.015) NA

Complete linkage Distance 0.429 (0.105) 0.803 (0.159) 0.582 (0.083) 0.126 (0.025) NA

Centroid linkage Correlation 0.731 (0.130) 0.497 (0.109) 0.430 (0.099) 0.731 (0.130) NA

k-means Correlation 0.719 (0.070) 0.515 (0.046) 0.382 (0.132) NA NA

Average linkage Spherical NA NA NA NA 0.674 (0.094)

MCLUST-HC NA 0.584 (0.093) NA NA 0.527 (0.026) NA

Complete linkage Correlation 0.580 (0.044) 0.497 (0.094) 0.493 (0.057) 0.353 (0.046) NA

Complete linkage Spherical NA NA NA NA 0.472 (0.288)

*Each entry shows the average adjusted Rand index of the corresponding clustering approach with the six classes. We ran our experiments on five
randomly generated synthetic datasets, and show the average results with the standard deviation of the adjusted Rand index in brackets. A high average
adjusted Rand index represents close agreement with the classes on average. †Each entry shows the average adjusted Rand index of the original clustering
result with clusters from remeasured data. The standard deviation of the average adjusted Rand indices over five sets of randomly generated synthetic
remeasured data is shown in brackets. A high average adjusted Rand index means that clusters from remeasured data are in close agreement with clusters
from the original data. The external knowledge is not used in evaluating cluster stability. In both parts of the table, the maximum average adjusted Rand
index of each row is shown in bold. The algorithms (rows) are sorted in descending order of the maximum average adjusted Rand index in each row.



(estimated with the error model suggested by Ideker et al.

[24]) instead of clustering the repeated measurements. For

each clustering approach, we produced four clusters (which

is the number of functional categories).

The highest level of cluster accuracy (adjusted Rand index =

0.968 in Table 4a) was obtained with several algorithms:

centroid linkage hierarchical algorithm with Euclidean dis-

tance and averaging over the repeated measurements; hier-

archical model-based algorithm (MCLUST-HC); complete

linkage hierarchical algorithm with SD-weighted distance;

and IMM with complete linkage. Clustering with repeated

measurements produced more accurate clusters than clus-

tering with the estimated true mean data in most cases.

Table 4b shows that different clustering approaches lead to

different cluster stability with respect to remeasured data.

Similar to the results from the completely synthetic data,

Euclidean distance tends to produce more stable clusters

than correlation (both variability-weighted and average over

repeated measurements). Clustering results using FITSS

were less stable than the variability-weighted approach and

the averaging over repeated measurements approach. 

SD produced more accurate and more stable clusters than

CV in the variability-weighted similarity approach, especially

when Euclidean distance is used. In addition, the model-

based approaches (MCLUST-HC and IMM) produced rela-

tively accurate and stable clusters on this data.

Effect of different numbers of repeated measurements 
To study the effect of different numbers of repeated measure-

ments on the performance of various clustering approaches,

we generated completely synthetic data with different

numbers of simulated repeated measurements for each data

point. Specifically, we generated 1, 4, or 20 repeated measure-

ments at both the low and high noise levels. The quality of

clustering results on datasets with higher numbers of repeated

measurements is usually higher (Table 5). For example, using

the same algorithms and same similarity measures cluster

accuracy is considerably improved with synthetic datasets of

four repeated measurements relative to datasets with no

repeated measurement. With 20 repeated measurements,

Euclidean distance is less sensitive to noise, and the SD-

weighted distance approach produces comparable cluster

accuracy to IMM. This is probably because the variability esti-

mates computed over 20 repeated measurements are much

more robust than those with four repeated measurements.

Nevertheless, the elliptical model of IMM consistently pro-

duced the most accurate clusters over different numbers of

simulated repeated measurements and different noise levels.

Discussion 
We showed that different approaches to clustering array

data produce clusters of varying accuracy and stability. We

also showed that the incorporation of error estimates esti-

mated from repeated measurements improves cluster

quality. We also show that the elliptical model of IMM con-

sistently produced more accurate clustering results than

other approaches using both real and synthetic datasets,

especially at high noise levels. The variability-weighted

approach tends to produce more accurate and more stable

clusters when used with Euclidean distance than the simple

approach of averaging over the repeated measurements. In

addition, the SD-weighted distance usually produces more

accurate and more stable clusters than the CV-weighted dis-

tance. In general, the results are consistent across both real

and synthetic datasets.

Limitations 
In all the above results, we produced clustering results in

which the number of clusters was set equal to the number of

classes. In agglomerative hierarchical clustering algorithms

(for example, average linkage), we successively merged clus-

ters until the desired number of clusters, K, is reached, and

considered the K subtrees as our K clusters, whereas in other

algorithms the number of clusters was provided as input. A

concern is that using a fixed number of clusters will force

different classes into the same cluster owing to one or more

outliers occupying a cluster. In such cases, the adjusted

Rand index might improve with a larger number of clusters. 

However, we chose to use a fixed number of clusters for

several reasons. First, with the exception of the model-based

algorithms, all other clustering algorithms (directly or indi-

rectly) require the number of clusters as input. Even with the

model-based algorithms, the number of clusters can only be

estimated. In MCLUST-HC, the number of clusters can be

estimated using a statistical score (see [29]). In the IMM

approach, the number of clusters can be estimated from the

posterior distribution of clustering results (see [18]). Second,

it is very difficult, if not impossible, to compare cluster

quality over a range of different clustering algorithms when

the number of clusters is not fixed. Finally, increasing the

number of clusters does not always yield better clusters or

higher Rand indices (data not shown). 

There are also some limitations with the external criteria for

the real datasets used in our empirical study. With the yeast

galactose data, we used a subset of 205 genes, which contains

many genes previously shown to be strongly co-regulated and

which reflect four functional categories in the GO listings

[23]. This subset of genes may be biased in the sense that

they are not chosen entirely independently of their expres-

sion patterns. In addition, there may be good biological

reasons why some genes in the chosen set of 205 should not

cluster into groups segregated by the GO classifications.

Distributions of variability-weighted similarity measures 
The essence of the variability-weighted similarity approach is

that the pairwise similarities take into account the variability
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in repeated measurements. In an attempt to understand the

effect of variability between repeated measurements on these

similarity measures, we computed the correlation coeffi-

cients between all pairs of genes in the yeast galactose data

and plotted the distribution of the fraction of gene pairs

against correlation coefficient by averaging over repeated

measurements and against SD-weighted correlation in

Figure 2. The distribution of CV-weighted correlation is

similar to that of SD-weighted.

Figure 2 shows that when SD is used in variability-weighted

correlation, there are more gene pairs with correlation
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Table 4 

Cluster accuracy and stability on yeast galactose data

(a) Cluster accuracy*

Similarity 
Algorithm measure/model Average SD-weighted CV-weighted FITSS True mean IMM

Centroid linkage Distance 0.968 0.849 0.802 0.968 0.159 NA

MCLUST-HC NA 0.968 NA NA 0.968 0.806 NA

Complete linkage Distance 0.957 0.968 0.957 0.643 0.695 NA

Complete linkage Spherical NA NA NA NA NA 0.968

Complete linkage Elliptical NA NA NA NA NA 0.968

Centroid linkage Correlation 0.942 0.807 0.753 0.942 0.942 NA

k-means Correlation 0.871 0.640 0.827 NA 0.897 NA

Average linkage Spherical NA NA NA NA NA 0.897

Average linkage Elliptical NA NA NA NA NA 0.897

Average linkage Distance 0.858 0.858 0.847 0.869 0.159 NA

Average linkage Correlation 0.866 0.817 0.841 0.865 0.857 NA

k-means Distance 0.857 0.857 0.767 NA 0.159 NA

Complete linkage Correlation 0.677 0.724 0.730 0.503 0.744 NA

(b) Cluster stability†

Similarity
Algorithm measure/model Average SD-weighted CV-weighted FITSS IMM

Complete linkage Elliptical NA NA NA NA 0.998

Complete linkage Spherical NA NA NA NA 0.991

Average linkage Distance 0.820 0.985 0.914 0.650 NA

MCLUST-HC NA 0.963 NA NA 0.916 NA

Complete linkage Distance 0.927 0.937 0.830 0.441 NA

Centroid linkage Distance 0.893 0.924 0.841 0.893 NA

Average linkage Spherical NA NA NA NA 0.923

k-means Distance 0.905 0.867 0.798 NA NA

Average linkage Elliptical NA NA NA NA 0.895

Centroid linkage Correlation 0.889 0.758 0.644 0.889 NA

Average linkage Correlation 0.842 0.842 0.855 0.828 NA

k-means Correlation 0.799 0.709 0.781 NA NA

Complete linkage Correlation 0.655 0.700 0.666 0.577 NA

*Each entry shows the adjusted Rand index of the corresponding clustering approach with the four functional categories. A high adjusted Rand index
represents close agreement with the external knowledge. †Each entry shows the average adjusted Rand index of the original clustering result with
clusters from ten synthetic re-measured datasets. A high average adjusted Rand index means that clusters from synthetic remeasured data are in close
agreement with clusters from the original dataset. For both parts of the table, the maximum adjusted Rand index of each row is shown in bold. The
algorithms (rows) are sorted in descending order of the maximum average adjusted Rand index in each row. The external knowledge is not used in
evaluating cluster stability.



coefficients around 0 and fewer gene pairs with correlation

coefficients near 1. Figure 3 shows the distribution of Euclid-

ean distance by averaging over the repeated measurements

and the SD-weighted distance on the same data. There are

more gene pairs with distance close to zero when variability

estimates are used to weigh distance. This shows that weigh-

ing similarity measures with variability estimates produces

more conservative estimates of pairwise similarities.

Moreover, we showed that on average, variability-weighted

similarity measures (both correlation and distance) computed

from repeated measurements produced pairwise similarities

closer to the true similarity than similarity measures

computed from data with no repeated measurement. In our

simulation experiment, we computed the true pairwise cor-

relation and distance between all pairs of genes on the esti-

mated true mean yeast galactose data (using the error model

in Ideker et al. [24]). We also computed the variability-

weighted correlation and distance between all pairs of genes
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Table 5 

Cluster accuracy on the completely synthetic datasets with
different numbers of repeated measurements

Number Similarity
of repeated measure/ SD-
measurements Noise model Average weighted IMM

1 Low Correlation 0.680 NA NA

1 Low Distance 0.789 NA NA

1 Low Spherical NA NA 0.804

1 Low Elliptical NA NA 0.804

1 High Correlation 0.259 NA NA

1 High Distance 0.000 NA NA

1 High Spherical NA NA 0.395

1 High Elliptical NA NA 0.395

4 Low Correlation 0.764 0.576 NA

4 Low Distance 0.877 0.927 NA

4 Low Spherical NA NA 0.926

4 Low Elliptical NA NA 0.957

4 High Correlation 0.389 0.519 NA

4 High Distance 0.000 0.713 NA

4 High Spherical NA NA 0.589

4 High Elliptical NA NA 0.911

20 Low Correlation 0.854 0.701 NA

20 Low Distance 0.891 0.964 NA

20 Low Spherical NA NA 0.962

20 Low Elliptical NA NA 0.957

20 High Correlation 0.602 0.651 NA

20 High Distance 0.590 0.819 NA

20 High Spherical NA NA 0.688

20 High Elliptical NA NA 0.953

Cluster accuracy on the completely synthetic data with different numbers
of repeated measurements and different noise levels using average linkage
hierarchical clustering algorithm. For each number of repeated
measurements and noise level, the highest average adjusted Rand index is
shown in bold. As we generated five random synthetic datasets, the
results shown are averaged over five synthetic datasets.

Figure 2
Distribution of the fraction of gene pairs against correlation coefficient.
Correlation coefficients are computed from averaging over repeated
measurements and using SD over repeated measurements as weights on
the yeast galactose data. There are more gene pairs with correlation
coefficients around 0 and fewer gene pairs with correlation coefficients
near 1 when SD-weighted correlation is used.
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Figure 3
Distribution of the fraction of gene pairs against Euclidean distance.
Euclidean distances are computed from averaging over repeated
measurements and using SD over repeated measurements as weights on
the yeast galactose data. There are more gene pairs with Euclidean
distances near 0 when SD-weighted distance is used.
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on the synthetic remeasured data generated from the same

error parameters and mean intensities as the yeast galactose

data. In addition, we computed correlation and distance

using only one of the repeated measurements in the remea-

sured data. Then, we compared the average deviation of the

variability-weighted similarity measures from the truth, and

the average deviation of the similarity measures on the data

with no repeated measurements to the truth (see Materials

and methods for detailed results).

Modified variability-weighted approach 
One of the drawbacks of the current definitions of the variabil-

ity-weighted similarity approach is that only noisy experi-

ments are down-weighted, whereas noisy genes are not.

Suppose we have a dataset in which some genes are noisier

than others, but the noise levels across the experiments stay

relatively constant. In this scenario, the variability-weighted

approach would not improve cluster quality. Genes expressed

at low levels are frequently expressed at low levels across all

experiments and usually have higher variability (see Figure 4).

Hence, unless we filter out low-intensity genes, the weighting

methods developed by Hughes et al. ([2] and see Materials

and methods) will not down-weight these genes. We

attempted to correct for this effect by removing the normaliz-

ing factor in the definition of variability-weighted distance

(see Materials and methods for mathematical definitions).

This improved the clustering accuracy when Euclidean dis-

tance was used. However, we did not see improvement using

this method with correlation as the similarity measure.

Conclusions 
Our work shows that clustering array data with repeated

measurements can significantly improve cluster quality,

especially when the appropriate clustering approach is

applied. Different clustering algorithms and different

methods to take advantage of repeated measurements (not

surprisingly) yield different clusters with different quality. In

practice, many clustering algorithms are frequently run on the

same dataset and the results most consistent with previous

beliefs are published. A better approach would be to use a

clustering algorithm shown to be the most accurate and stable

when applied to data with similar signal-to-noise and other

characteristics as the data of interest. In this work, we ana-

lyzed both real and completely synthetic data with many algo-

rithms to assess cluster accuracy and stability. In general, the

model-based clustering approaches produce higher-quality

clusters, especially the elliptical model of the IMM. In particu-

lar, the higher the noise level, the greater the performance dif-

ference between the IMM approach and other methods. 

For the heuristically based approaches, average linkage hier-

archical clustering algorithm combined with SD-weighted

Euclidean distance also produces relatively stable and accu-

rate clusters. On the completely synthetic data, we showed

that the infinite mixture approach works amazingly well with

only four repeated measurements, even at high noise levels.

The variability-weighted approach works almost as well as

the IMM with 20 repeated measurements. From our results

on the synthetic data, we showed that there is significant

improvement in cluster accuracy from one to four repeated

measurements using IMM at both low and high noise levels

(Table 5). However, there is no substantial improvement in

cluster accuracy from 4 to 20 repeated measurements with

the IMM approach (Table 5). 

There are many possible directions of future work, both

methodological and experimental. Because the elliptical

model of IMM produces very high-quality clusters, it would

be interesting to develop a similar error model in the finite

model-based framework on MCLUST and to compare the

performance of the finite versus infinite mixture approaches.

Another practical methodological development would be to

incorporate the estimation of missing data values into the

model-based approaches. It would also be interesting to

develop other variability-weighted similarity measures that

would down-weight both noisy genes and noisy experiments.

In terms of future experimental work, we would like to eval-

uate the performance of various clustering algorithms on

array data with repeated measurements on more real

datasets. One of the difficulties we encountered is that there

are very few public datasets that have both repeated mea-

surements and external criteria available. We would greatly

appreciate it if readers would provide us with access to such

datasets as they become available.

Materials and methods 
Datasets 
Yeast galactose data 
Ideker et al. [22] studied galactose utilization in yeast using

cDNA arrays by deleting nine genes on the galactose utilization
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Figure 4
Distribution of error plotted against intensity. The SDs over the log ratios
from repeated measurements are plotted against the average intensities
over repeated measurements in a typical experiment on the yeast
galactose data.
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pathway in the presence or absence of galactose and raffi-

nose. There are a total of 20 experiments (nine single-gene

deletions and one wild-type experiment with galactose and

raffinose, nine deletions and one wild-type without galactose

and raffinose). Four replicate hybridizations were performed

for each experiment. We used a subset of 205 genes from

this data, whose expression patterns reflect four functional

categories in the GO [23]. 

Synthetic remeasured cDNA data 
Let xijr and yijr be the fluorescent intensities of the two chan-

nels (fluorescent dyes) for gene i, experiment j and repeated

measurement r, where i =1, …, G, j =1, .., E, r =1, .., R. For

the yeast galactose data, G is approximately 6,000, E is 20

and R is 4. Ideker et al. [24] proposed an error model for

replicated cDNA array data in which the observed fluores-

cent intensity levels are related to their true expression levels

by the following model: 

xijr = �xij + �xij�xijr + �xijr

yijr = �yij + �yij�yijr + �yijr

where (�xij, �yij) are the true mean intensity levels for gene i

under experiment j in the two channels. The multiplicative

error parameters in the two channels (�xijr, �yijr) are assumed

to follow the bivariate normal distribution with mean 0, SDs

��xj, ��yj and correlation ��j. Similarly, the additive error

parameters (�xijr, �yijr) are assumed to follow the bivariate

normal distribution with mean 0, SDs ��xj, ��yj and correla-

tion ��j. The gene-independent parameters (��xj, ��yj, ��j, ��xj,

��yj, ��j) and the gene-dependent parameters (�xij, �yij),

where i = 1, …, G and j =1, …, E, are estimated by maximum

likelihood [24]. 

Using this error model, we estimate the true expression

intensities for each gene and the gene-independent parame-

ters for each of the 20 experiments in the yeast galactose

data. From the gene independent parameters (��xj, ��yj, ��j,

��xj, ��yj, ��j), we generate random (�xijr, �yijr) and (�xijr, �yijr)

from the bivariate normal distributions. Hence, we can gen-

erate random remeasured data (and log ratios) using the

estimated true mean intensities (�xij, �yij). 

Completely synthetic data 
The completely synthetic datasets consist of 400 data points

(genes), 20 attributes (experiments) and 6 classes. Let �(i,j)

be the artificial pattern of gene i and experiment j before error

is added, and suppose gene i belongs to class k. Four of the six

classes follow the periodic sine function (�(i,j) = sin (2�j/10 –

wk)), and the remaining two classes follow the non-periodic

linear function (�(i,j) = j/20 or �(i,j) = -j/20), where i = 1, 2, 3,

…, 400, j = 1, 2, 3, …, 20, k = 1, 2, 3, 4 and wk is a random

phase shift between 0 and 2�. Let X(i,j,r) be the error-added

value for gene i, experiment j and repeated measurement

r. Let the randomly sampled error be �ij for gene i and

experiment j, and X(i,j,r) is generated from a random normal

distribution with mean equal to �(i,j), and SD equal to �ij. 

We define the signal-to-noise ratio of a synthetic dataset to

be the ratio of the range of signals (in our case, 1-(-1) = 2) to

the average sampled error. For the completely synthetic data

shown in Figure 1a,b, the signal-to-noise ratios are 14.3 and

2.5 respectively.

Missing data 
The yeast galactose dataset [22] contains approximately 8%

of missing data values. There are many possible sources of

missing data values, for example, low signal-to-noise ratios,

dust or scratches on slides. As the current versions of

MCLUST [30] and the IMM implementation [18] do not

handle missing data values, we impute the missing data

values. We experimented with two imputation methods,

namely model-based multiple imputation [31] as imple-

mented in Splus, and weighted k-nearest neighbors (KNNim-

pute) [32]. We found that data after KNNimpute produce

higher-quality clusters than data after model-based multiple

imputation. Therefore, we applied KNNimpute to the yeast

galactose data before applying the model-based approaches. 

Notations and similarity measures 
Suppose there are G genes, E experiments, and R repeated

measurements. Denote the measured expression level from

repeated measurement r of gene g under experiment e as

Xger, where g =1, …, G, e = 1, …, E and r = 1, …, R. Let D be

the raw data matrix such that D(g,e) represents the average

expression level over R repeated measurements for gene g

under experiment e, that is, 

�
R

r=1
Xger / R,

where g = 1, …, G, e = 1, …, E. The correlation coefficient

between a pair of genes i and j (i,j = 1, .., G) is defined as 

�
E

e=1
(D(i,e) - �i)(D(j,e) - �j)

�ij = ——————————————————————
———————————————————��
E

e=1
(D(i,e) - �i)

2
�
E

e=1
(D(j,e) - �j)

2

where
�i = �

E

e=1     E
————
D(i,e)

is the average expression level of gene i over all E experi-

ments. The Euclidean distance between a pair of genes i and

j (i,j = 1, .., G) is defined as 

————————————–—

dij =� 1—
E �

E

e=1 
(D(i,e) - (D(j,e))

2
. 
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Similarly, we can define correlation and Euclidean distance

between a pair of experiments by swapping the positions of

the gene and experiment indices. 

Variability-weighted similarity measures 
Hughes et al. [2] defined error-weighted similarity measures

that weight expression values with error estimates such that

expression values with relatively high errors are down-

weighted. Let �ge be the error estimate of the expression

level of gene g under experiment e, where g = 1, …, G and e = 1,

…, E. The error-weighted correlation between a pair of genes

i and j is defined as 

(D(i,e) - �~i)    (D(j,e) - �~j)�
E

e=1  

—————–——    —————–——
�ie �je

�~ij = ————————————————————————————
——————————————————————————

D(i,e) - �~i

2
D(j,e) - �~i���

E

e=1

—————–— � ��
E

e=1

—————–——�
2

�ie �je

where 

�~i = �
E

e=1  
�ie

———
D(i,e)

/ �
E

e=1  
�ie

———
1

is the weighted average expression level of gene i. Similarly,

the error-weighted Euclidean distance [2] is defined as

———————————————————————
(D(i,e) - D(j,e))

2 1
d
~

ij =��
E

e=1  
–––––––––––––––/�

E

e=1  
––––––––         . 

�ie
2 + �je

2 �ie
2 + �je

2

In our empirical study, variability estimates are used instead

of error estimates. In particular, we use either the SD or CV

over the R repeated measurements as �ge. These variability-

weighted similarity measures serve as inputs to many clus-

tering algorithms.

Modified variability-weighted distance 
The above definitions of variability-weighted correlation and

distance down-weight noisy experiments in computing the

pairwise similarity, but would not work in the case of noisy

genes. Consider two pairs of genes, (X, Y) and (W, Z), such

that D(X,e) = D(W,e) and D(Y,e) = D(Z,e) and �Xe =

�Ye<<�We = �Ze for all experiments e. In other words, the

expression patterns of gene X and gene W are identical, so

are the patterns of gene Y and gene Z. The levels of noise (or

variability) are constant across all the experiments for each

pair of genes, but genes (W,Z) are much more noisy than

genes (X,Y). Using the above definitions of variability-

weighted similarity, �~XY = �~WZ and d
~

XY = d
~

WZ. Intuitively,

one would expect the pairwise similarity between genes

(W,Z) to be lower than that of genes (X,Y) because genes

(W,Z) are more noisy. We experimented with a modified def-

inition of variability-weighted distance by removing the

scaling factor in the denominator: 

————————————————
(D(i,e) - D(j,e))

2

d
~

ij �=��
E

e=1  
––––––––––––––– /E

�ie
2 + �je

2

This modified definition tends to give slightly better clusters

(see Additional data files and [33]).

Clustering algorithms 
Agglomerative hierarchical algorithms 
In agglomerative hierarchical clustering algorithms [5],

each object is initially assigned to its own cluster (subtree),

and the number of initial clusters is equal to the number of

objects. Similar clusters (subtrees) are successively merged

to form a dendrogram. In each merging step, the number of

clusters (subtrees) is reduced by one. This merging process

is repeated until the desired number of clusters, K, is pro-

duced. The objects in these K subtrees form the resulting K

clusters, and the hierarchical structures of the subtrees

are ignored.

Different definitions of cluster similarity yield different clus-

tering algorithms. In a single linkage hierarchical algorithm,

the cluster similarity of two clusters is the maximum similar-

ity between a pair of genes, one from each of the two clus-

ters. In a complete linkage hierarchical algorithm, the

cluster similarity is defined as the minimum similarity

between a pair of genes, one from each of the two clusters. In

an average linkage hierarchical algorithm, the cluster simi-

larity of two clusters is the average pairwise similarity

between genes in the two clusters. In a centroid linkage hier-

archical algorithm, clusters (subtrees) are represented by the

mean vectors of the clusters, and cluster similarity is defined

as the similarity between the mean vectors.

k-means 
K-means [7] is a classic iterative clustering algorithm, in

which the number of clusters is an input to the algorithm.

Clusters are represented by centroids, which are cluster

centers. The goal of k-means is to minimize the sum of dis-

tances from each object to its corresponding centroid. In

each iteration, each gene is assigned to its closest centroid.

After the gene reassignment, new centroids are computed.

The steps of assigning genes to centroids and computing

new centroids are repeated until no genes are moved

between clusters. In our implementation, we use the clusters

from average linkage hierarchical algorithm to compute

initial centroids to start k-means. 

MCLUST 
The finite Gaussian mixture model-based approach assumes

that each cluster follows the multivariate normal distribution

with model parameters that specify the location and shape of

each cluster. MCLUST [8] implements the expectation-maxi-

mization (EM) algorithm for clustering via finite Gaussian

mixture models, as well as model-based hierarchical cluster-

ing algorithms, with optional cross-cluster constraints.
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MCLUST also includes a clustering function (hcVVV) that

uses model-based hierarchical clustering to initialize the EM

algorithm. Because the current version of MCLUST does not

have any mechanism to incorporate repeated measure-

ments, but does allow initializations at nontrivial partitions,

we initialize the hierarchical model-based algorithm with

subtrees containing repeated measurements. We use the

most general model (unconstrained) for hierarchical cluster-

ing, which allows each cluster to have different volume, ori-

entation and shape. This approach is abbreviated as

MCLUST-HC.

IMM 
The IMM approach uses a Gibbs sampler to estimate the

posterior pairwise probabilities. The Gibbs sampler requires

two sets of parameters for input: initialization parameters

(random seed and the initial number of mixture compo-

nents) and convergence parameters (initial annealing coeffi-

cient, the rate of ‘cooling’ and the ‘burn-in’ period). A

posterior distribution with multiple peaks could result in

Gibbs samplers’ inability to escape from a suboptimal peak.

The role of the annealing coefficient [34] is to flatten the

posterior distribution of clustering results and thus alleviate

the difficulty in transitioning between high-probability

regions that are separated by regions of low probability,

which is a common problem of Gibbs samplers in general

[35]. Burn-in corresponds to the number of initial iterations

that the Gibbs sampler takes to converge to the posterior dis-

tribution, and the burn-in iterations are not used in calculat-

ing posterior pairwise probabilities. We tuned the

convergence parameters by running independent samplers

with different initialization parameters, and chose the set of

convergence parameters that yielded the highest correlation

between pairwise probabilities over different runs and over

different random perturbations of the data. Using this

simple principle, we identified a single combination of the

annealing parameters that resulted in excellent convergence

in all datasets we analyzed, including some not reported in

this paper. This combination consisted of the initial anneal-

ing coefficient of 0.01, rate of cooling of 0.999 and the burn-

in of 10,000 iterations. For investigators analyzing their own

data, we suggest that they run at least five independent

Gibbs samplers with this combination of parameters from

five different initial numbers of clusters and establish that all

five converge to the same posterior distribution. This can be

done by calculating correlation between posterior pairwise

probabilities from different runs. Alternatively, the adjusted

Rand index can be used for comparing clustering results

generated by different runs of the Gibbs sampler. If the cor-

relations or adjusted Rand indices suggest that all five sam-

plers did not converge to the same solution, investigators

should try increasing the annealing coefficient (to say

0.9995) and the burn-in number of iterations (to say

20,000), and repeat the process. The Readme.txt file that

accompanies the IMM software describes these parameters

in detail.

CAST 
The cluster affinity search technique (CAST) [21] is an itera-

tive algorithm, in which objects are added to or removed

from the current cluster until there are no more similar

objects to be added and no more dissimilar objects to be

removed. At this point, the current cluster is assumed to be

done. A new cluster is started and the iterative process of

adding and removing objects is repeated until all objects are

assigned to clusters. The inputs to the algorithm include the

pairwise similarities and a parameter that indirectly controls

the number of clusters.

DIANA 
DIANA [20] is a hierarchical divisive clustering algorithm, in

which we start with all objects in one cluster. In each step,

clusters are successively split to form two clusters until the

desired number of clusters is reached. The cluster with

maximum diameter (maximum pairwise dissimilarity) is

split in each step. Let us call this the current cluster. The

most dissimilar element in the current cluster is identified to

start a new cluster. An object in the current cluster is moved

to the new cluster if the average similarity with the new

cluster is higher than that with the current cluster.

Completely synthetic data with different numbers of
repeated measurements 
Table 5 shows some selected results produced using average

linkage hierarchical algorithm on the completely synthetic

data over varying numbers of repeated measurements and

different noise levels. In general, increasing the number of

repeated measurements increases cluster accuracy (average

adjusted Rand index with respect to the six classes). The

elliptical model of IMM produced superior quality of clus-

ters, especially at high noise levels.

Simulation experiment: variability-weighted similarity 
We computed the true pairwise correlation and Euclidean dis-

tance between all pairs of genes on the estimated true mean

yeast galactose data. Denote the correlation between esti-

mated true means for gene i and gene j as �ij
true. We generated

synthetic re-measured datasets using the same error parame-

ters and true mean intensities of the yeast galactose data. Let

the variability-weighted correlation for gene i and gene j be

�~ij
k, and the correlation computed using only one of the

repeated measurements, r (no repeated data) be �ij
kr, where k

is one of the randomly generated synthetic remeasured data.

The column | �~ - �true| in Table 6 shows the average of |�~ij
k -

�ij
true| over all pairs of genes i, j, and all randomly remeasured

datasets k, while the column | �r - �true| shows the average of

|�ij
kr - �ij

true|over all pairs of genes i, j, all randomly remea-

sured datasets k, and all repeated measurements r. The cor-

responding results using distance are also shown in Table 6,

which shows that on average the variability-weighted simi-

larities are closer to the ‘truth’ than similarities computed

from data with no repeated measurement.
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Additional data files
Datasets (both real and synthetic) and the software (executa-

bles and documentation) used in this work are available as

additional files with the online version of this paper and from

our website [33]. They comprise additional results (Additional

data file 1), documentation (Additional data file 2), bytecode

files for hierarchical agglomerative algorithms (Additional

data file 3), bytecode files for k-means (Additional data file 4),

bytecode files for hierarchical agglomerative algorithms using

FITSS (Additional data file 5), subset of 205 genes from yeast

data (Additional data files 6, 7, 8), and the completely syn-

thetic datasets (Additional data files 9, 10, 11, 12, 13, 14). Our

website [33] also has external links to publicly available soft-

ware, yeast galactose data and lung cancer data.
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