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Abstract

We have developed a unique methodology for the combined analysis of histomorphometric and
gene-expression profiles amenable to intensive data mining and multisample comparison for a
comprehensive approach to toxicology. This hybrid technology, termed extensible morphometric
relational gene-expression analysis (EMeRGE), is applied in a toxicological study of time-varied
vehicle- and carbon-tetrachloride (CCl4)-treated rats, and demonstrates correlations between
specific genes and tissue structures that can augment interpretation of biological observations
and diagnosis. 
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Background 
Recent reports describe the use of gene-expression profiling

for the identification of molecular markers of toxicity [1-3].

This technique alone does not account for morphological

changes in tissues that have traditionally been used by

pathologists to discriminate between types and severity of

toxicological responses [4-6]. For a comprehensive approach

to toxicological evaluation, we developed a unique method-

ology that uses histomorphometric profiles, derived from

machine vision, in conjunction with gene-expression pro-

files, termed extensible morphometric relational gene-

expression analysis (EMeRGE). This novel method was

evaluated on an established, extreme model of liver toxicity

using carbon tetrachloride (CCl4) in rats that were dosed for

3 days and allowed to recover. Liver is relevant in toxicology

as the primary organ of metabolism and detoxification; it is a

recurrent target of chronic drug toxicity. 

A fully automated analytical microscope equipped with

machine-vision hardware and software was used to generate

quantitative information about the structure and hetero-

geneity of liver. The histomorphometric profiles could be

used to evaluate tissue heterogeneity across the tissue

including regions of hepatocellular necrosis. Representative

images of tissue sections from control and treated tissues are

shown in Figure 1. Examples of processed sample image tiles

are shown in Figure 2, where a control liver (Figure 2a) can

be compared to a treated liver (Figure 2b), illustrating the

significant structural damage induced by treatment with

CCl4. Gene-expression profiles were generated from the same

livers using DNA microarrays. The microarrays measured

mRNA transcription levels of genes important in adsorption,

distribution, metabolism and excretion (ADME). Previous

studies of these genes, including markers of toxic stress,

apoptosis, growth regulation and repair, were consistent with
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documented toxicologic responses to CCl4, where expression

of components of cytochrome P450 and other metabolic

enzymes (Cyp2C, Cyp3A18, Cyp3A9, SCS and Fmo1) were

found to decrease, whereas certain genes involved in the

inflammatory response and signal transduction were

increased (CD44 and Lgals3) [7]. 

Previous studies relating gene expression to pathologic or

tissue data have evaluated qualitative tissue information only

[8,9], or focused on visually identified tissue subareas or spe-

cific cells isolated by laser microdissection (LMD) [10-12]. In

LMD, specific cells from a sample are collected by interac-

tively defining areas of interest in a microscope image, which

are excised by a laser for subsequent gene-expression analy-

sis. LMD is subjective and destructive to the specimen and

has limited ability to account for tissue heterogeneity.

Progress in digital microscopy has allowed quantitative image

analysis to generate data that objectively and completely

describe tissue phenotype, free of observer disagreement

[13], and with the potential to detect subtle changes that are

undetectable to the human eye [14]. Tissue histomorphomet-

ric profiles in EMeRGE are correlated statistically with gene-

expression profiles, characterizing each sample through both

top-down phenotypic information and complementary

bottom-up genomic data. Spearman’s rank order correlation

determined significant monotonic relationships that illumi-

nate important connections between structural features in

tissue elements and genes that have been reported as signifi-

cantly up- or downregulated by CCl4 treatment in previous

studies [7]. Principal component analysis (PCA), as described

in Materials and methods, was carried out to reduce the com-

plexity of the data [15] and then to relate individual animals

to specific phenotypic groups. A quadratic regression classi-

fier was used to develop a scheme that defined treated and

control groups in three datasets: gene expression, tissue

feature and the combination of both. This method required

no pre-selection or filtering of invariantly expressing genes to

classify groups as previously published. Although the classifi-

cation ability was not improved when tissue features were

added to gene expression, analysis of the combined data

revealed different outlier animals for each dataset, presenting

a more complete picture of the damage and regeneration.

Results and discussion 
Liver tissues from animals treated for three days with CCl4

or corn oil vehicle were harvested 4, 7 and 14 days after

administration of the first dose. Treated livers showed

various degrees of hydropic degeneration, individual hepato-

cyte necrosis, hepatocellular fatty change, along with other

less significant structural changes compared to control

animals. Structural changes induced by CCl4 were accompa-

nied by the glycogenation of cells caused by the corn oil

vehicle. An overall decrease in vacuoles and glycogenation at

day 7 in livers from CCl4-treated animals suggested decreased

metabolism and toxin depletion over time. Increased vari-

ance in hepatocyte size was observed in livers from CCl4-

treated animals, suggesting cellular proliferation, a marker

for recovery from the hepatic injury that approached nor-

mality by day 14.

Correlation between tissue features and gene
expression 
Relationships between gene expression and tissue features

can be a deep source of information about toxin mechanism.

Using Spearman’s rank order correlation (see Materials and

methods), we tested for monotonic functional relationships

between gene-expression values and tissue features. The

numbers of significant correlations were determined at the

following levels: 0.05, 0.01 and 0.001 (Table 1). These levels

represent the cutoff probability of making a type I error, for

example, the probability of determining that there exists a

true correlation when in reality there is none.

Genes that correlated with tissue features with a p-value of

0.01 or lower were chosen for additional inspection (see

Additional data files). This analysis highlighted known

markers of toxicity as well as many genes identified in previ-

ous CCl4 studies, most notably that for LRF-1 (M63282), a

known regulator of proliferation during liver regeneration
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Figure 2
Microscopic comparison of control and treated livers. Image tiles of
(a) the control liver treated with corn oil and (b) a CCl4-treated liver
analyzed by an automated microscope system. Identified structures
including hepatocyte nuclei (blue), other nuclei (black), clear space
(yellow) and vacuoles (green) are indicated by the overlay on the right
side of each panel.

 

(a) (b)

Figure 1
Comparison of control and treated livers. Image montages based on
image tiles of (a) control and (b) treated liver.

(a) (b)



following injury, as well as the genes for vitronectin

(U44845) and � glutathione-S-transferase Mu isoform

(U86635) [7,16,17]. 

A number of genes correlating with tissue features were dis-

tinct from those found by a twofold ratio analysis [7]. Assess-

ment of these genes revealed an association with the known

or suspected genes involved in the biology of CCl4 toxicity.

Correlations with three structural metrics were chosen for

examination, providing a substantial number of genes: ‘%

clear space’, ‘area % vacuoles’ and ‘vacuoles/mm2’. The

tissue metrics % clear space and area % vacuoles were nega-

tively correlated with at least one isoform of cytochrome

P450 (3A9:U46118, 2B12:X63545 and 2B3:M20406), this

may be a hallmark of recovery. One gene common to clear-

space-related metrics (non-stained tissue, including vac-

uoles and hydrophic degeneration) was �-tubulin (V01227).

Tubulin levels do not change during the acute phase of CCl4

poisoning, but have been shown to decrease in association

with the development of fatty liver tissue as a result of

chronic CCl4 exposure [18,19]. In the present study, tubulin

was positively correlated with the three components of clear

space, perhaps indicating cellular reorganization. Also

strongly correlated with all three clear-space metrics was

S-adenosylmethionine synthetase (X60822) (AdoMet syn-

thetase). A suppression of AdoMet synthetase activity has

been observed in a model of acetaminophen toxicity [20].

The negative correlation of AdoMet synthetase mRNA

observed in the present study suggests that CCl4 toxicity

suppresses message as well, as AdoMet synthetase was most

significantly correlated with % clear space. 

Expression of distintegrin metalloprotease (Z48444) was

positively correlated with the two vacuole-related metrics.

This is an ADAM10-homolog known to be a tumor necrosis

factor-� (TNF�) convertase [21], TNF� produced by Kupffer

cells in the liver stimulates production of TNF�, a mitogen

for hepatocytes helping to generate new cells needed to

rebuild damaged areas of the liver [22]. Kupffer cells have a

significant role as mediators of acute inflammation after

CCl4 treatment; however, they also produce factors that can

cause secondary injury in the liver through fibrogenic

responses. An increase in a TNF� convertase would ensure

that any residual cytokine present would be in the active

stimulatory form. TNF� and its receptor, along with inter-

leukin-6 (IL-6) and its receptor, were both upregulated in

the present study, but neither was correlated with a tissue

metric below the 0.01 p-value threshold.

Different spectra of cytokines are associated with toxicity or

inflammation compared to tissue repair. In the present

study, genes encoding many different cytokines were

affected; however, not all were significantly correlated with

the tissue metrics examined in this analysis. A striking

exception was the family of vascular endothelial growth

factors (VEGF). The role of VEGF in the recovery of necrotic

liver following CCl4 treatment has been well established

[23,24]. Here, several VEGF isoforms were found to corre-

late with clear-space-related metrics. Isoforms B and D

(AF022952 and AF014827) were positively correlated with

% clear space itself, whereas isoform C (AF010302) was

negatively correlated with both area % vacuoles and vac-

uoles/mm2. VEGF Ch was reported to be involved in cancer

metastasis and tumor-cell invasion [25,26], whereas iso-

forms B and D are believed to have roles in proliferation and

tissue remodeling [27-30], highlighting the diverse roles of

these cytokines. VEGF mRNA peaks at 72 hours after CCl4

treatment in Kupffer cells, whereas it peaks at 7 days in

hepatocytes, well after necrosis has resolved and when vas-

cular and sinusoidal endothelial cells are reappearing in the

tissue [23,31]. Correlation of VEGF isoforms with specific

tissue metrics suggests they have different roles in the regen-

eration and revascularization of severely damaged areas of

the treated livers.

Both the heat-stable enterotoxin receptor (M55636) and con-

trapsin-like protease inhibitor CPi-26 (D00753) correlated

with % clear space and area % vacuoles. The enterotoxin

receptor, which is a marker for regeneration in both partial

hepatectomy and CCl4 toxicity [32], was positively correlated

with these tissue metrics, whereas CP1-26 was negatively cor-

related. SPI-3 has been shown to be a downstream target of

both the inflammatory acute-phase regulators TNF� and IL-6

[33]. Positive correlation with an intermediate conductance

calcium-activated potassium channel SMIK (AF190458) was
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Table 1

Number of genes correlated with tissue metrics at three levels
of confidence ranked by the number of significant correlations
for alpha = 0.01

Confidence level 

Rank Tissue metric 0.05 0.01 0.001

1 % Clear space (non-stained 241 74 10
tissue and cellular elements)

2 Area % vacuoles 155 36 1

3 Vacuoles/mm2 167 28 1

4 % H&E stained elements 106 19 0

5 Area % sinusoids 74 10 0

6 Area % other nuclei 51 7 0

7 Hepatocyte nuclei/mm2 44 7 1

8 Other nuclei/mm2 46 5 0

9 Total nuclei/mm2 39 4 1

10 Area % hepatocyte nuclei 55 2 0

11 Cytoplasmic texture 19 2 0

Expected false positives 52 10 1

Number determined significant 997 194 14

For details see Additional data files.



common to the metrics related to vacuole density, area %

vacuoles and vacuoles/mm2. CCl4 treatment perturbs the

balance of many serum electrolytes [34], and an increase in

the SMIK channel might help re-establish normal potassium

homeostasis as the liver recovers from the toxic stress.

Correlations between genes and tissue metrics may reveal

interesting differences similar to histomorphometric find-

ings. For example, the vacuolar metrics (area % vacuoles and

vacuoles/mm2) have genes uniquely correlated with each,

demonstrating a potential genetic basis for the difference

between the number and size of vacuoles and their density,

or packing. Vacuole density was linked to the expression of

wee1 tyrosine kinase (D31838) and a nuclear co-repressor

(AF059311) as well as IL-5 and -12 (AJ011299 and

AF083329), all involved in cell-cycle regulation and signal-

ing. In contrast, area % vacuoles was linked to expression of

interferon regulatory factor 1 (IRF-1; M34253). IRF-1 has

been reported to be upregulated by TNF� during sepsis [35].

The correlation between this cytokine and area % vacuoles

but not with vacuoles/mm2 shows the dynamic balance

between the primary response to injury and tissue prolifera-

tion and repair. This illustrates how genes associated with

each metric could help define molecular factors behind

complex cellular mechanisms.

In this study, the toxic injury visible on day 4 was subse-

quently reversed by days 7 and 14, with decreasing impair-

ment indicated by the levels of expression of metabolic

genes. By day 14, there was a decrease in % clear space in

livers from treated animals whereas the other metrics - area

% vacuoles and vacuoles/mm2 - remained consistent over

time (data not shown). These findings hint at the important

role of genes correlated with % clear space in the balance

between toxicity, repair and proliferation occurring in

treated livers. 

PCA and classification
PCA was used to reduce the complexity in the gene, tissue

and combined profiles of each rat liver. From these analyses,

we determined the principal component that identified the

day-4-treated animals. The second principal component of

the gene-expression data separated the day-4-treated

animals from all others, including the remaining CCl4-

treated days 7 and 14 (Figure 3a). The first principal compo-

nent separates the two groups for the tissue-only data

(Figure 3b), and both the first and second principal compo-

nents track the differences between the two groups in the

combined datasets (Figure 3c).

Using the first two principal components, we classified the

animals in treated day-4 versus control and other groups

using a quadratic regression classifier for all three datasets.

A cross-validation estimate of the probability of successful

classification of the animals was used to determine the diag-

nostic strength of each type of dataset. Each step of the

cross-validation calculated the appropriate principal compo-

nents for all but one animal to determine the parameters of

the quadratic regression classifier, and then the remaining

animal was classified. This was repeated so that every

observed animal was left out and classified. The resulting

schema can identify which animals were correctly classified

or misclassified. With this method we were able to estimate

the accuracy of developing a well-defined classification

method. In practice, the discrimination rule would be

created on a training set of data and applied to an unknown

set; therefore a high cross-validation probability of success-

ful classification for developing a well-defined discrimina-

tion rule is important.

This analysis was carried out on gene expression and tissue

features separately and on the combined dataset. Using

gene-expression data only, the correct classification proba-

bility was 96.43%. Using the tissue-feature data, correct

classification was 92.86%. Finally, using the combined data,

accuracy for correct classification was 96.43%. The strong

correlations between tissue features and genes allowed for

the prediction of the tissue metrics from the gene dataset but

not the genes from the tissue-feature data; note that this is

due to the fact that it is easier to predict 11 tissue metrics

from 1,040 genes than vice versa. Therefore, inclusion of

tissue data in the combined set did not necessarily improve

the classification using just the gene-expression data. Com-

paring the misclassified animals from both sets, however,

revealed differences for genes compared to tissue features.

These differences can be used for diagnostic purposes by

comparing the classification of outlier animals, and to

examine more closely the underlying components in both

the molecular and phenotypic response to a toxin.

The introduction of robust machine-vision techniques that

can consistently discern the histomorphology of tissues in a

comprehensive fashion will support pathologic assessments

allowing a more quantitative evaluation of phenotypic

responses to compounds. Investigations can be carried out

in an automated, unsupervised fashion necessary for high-

throughput analyses. The EMeRGE method demonstrated

correlations between specific genes and tissue structures

that can augment interpretation of biological observations

and diagnosis. These correlations illustrate a new paradigm

that phenotypically anchors changes in gene expression to

structural features in tissue. Improved outlier detection may

be attained with a combination of gene-expression and

tissue phenotypic data. The improved objectivity and repro-

ducibility of phenotypic assessments correlated with gene-

expression data is a step forward in tissue analysis that will

impact on the definition of therapeutic margins and help

refine dose levels, as well as improve identification of atypi-

cal responses. Other covariants such as clinical chemistry

parameters can be added to this analysis for an even deeper

view [1]. Combined analyses, such as EMeRGE, can be

applied to any experimental or pathologic conditions where
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gene expression and tissue histology are integral to the inter-

pretation of toxic or pharmacologic events as well as to the

pathophysiology of disease. 

Materials and methods 
Experimental protocol 
Six groups of five male, age- and weight-matched, Sprague-

Dawley rats were separated into three groups of vehicle con-

trols and three groups of CCl4-treated animals. Each rat was

dosed once daily on days 1, 2 and 3 by intraperitoneal injec-

tions of either pure corn-oil vehicle or CCl4 dissolved in corn

oil (approximately 15% v/v) at a dose of 1,000 mg/kg/day

[1]. Animals were euthanized by CO2 asphyxiation and

exsanguination following a 24 h fast on either day 4, 7, or 14,

and tissues were harvested for analysis. The central lobe of

each liver was harvested at necropsy, and approximately 1 g

was flash frozen in liquid nitrogen. RNA was extracted using

TRIzol reagent according to the protocol from Gibco-BRL.

The remaining liver fraction was fixed in 10% formalin. 

Sample preparation, hybridization and scanning 
Total RNA was quantified and assessed for quality on a Bio-

analyzer RNA chip (Agilent, Palo Alto, CA). Each chip con-

tains a set of interconnected gel-filled channels that enables

molecular sieving of nucleic acids. Pin-electrodes in the chip

create electrokinetic forces that drive molecules through

these microchannels and carry out electrophoretic separa-

tions. Ribosomal RNA peaks are measured by fluorescence

signal and displayed in an electropherogram. A successful

total RNA sample featured two distinct ribosomal peaks (18S

and 28S rRNA). First-strand cDNA was prepared, labeled

and processed as described in the Motorola CodeLink

system protocols. Processed arrays were scanned using an

GenePix Scanner (Axon Instruments, Foster City, CA); array

images were acquired using the Motorola CodeLink™ Analy-

sis Software (Amersham Biosciences, Piscataway, NJ). 

ADME rat bioarray system and data preparation 
The Motorola CodeLinkTM ADME Rat Bioarray consists of

1,137 oligonucleotide probes corresponding to 1,040 unique

clusters and 97 control probes, selected from GenBank

Rodent and RefSeq build number 122. Each 30 base-pair
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Figure 3
Principal component analysis. (a) First principal component versus the
second principal component of the gene-expression data. The first
principal component describes variance that tracks a single outlier rat in
the control day-14 group. The second principal component captures the
variance between the day-4 CCl4-treated group and the remaining
animals. (b) First principal component versus the second principal
component of the tissue data. The first principal component primarily
captures the variability within the CCl4-treated day-4 group discretely
from the other treatment or vehicle control groups. The second principal
component describes variance between individual animals in all groups.
(c) First principal component versus the second principal component of
the combined data. Both the first and the second principal components
capture the difference between the day-4 CCl4-treatment group and all
other animals in the complete set. The treated day-7 and -14 animals
completely overlap the control animals, demonstrating that the tissue
appears to have returned to a nearly normal state.



(bp) probe is was spotted in triplicate. All samples were

hybridized to two microarrays resulting in six data points

per probe.

The Motorola CodeLinkTM Analysis Software gives an inte-

grated optical density (IOD) value for every spot; a unique

background value for that spot is subtracted, resulting in

‘raw’ data points. 

Histomorphometric profiling 
The remaining portion of the central lobe was fixed in for-

malin, embedded in paraffin, sectioned (5 �m) and stained

with hematoxylin and eosin (H&E). An automated analytical

microscope system (ARTISTM, TissueInformatics) was used

to scan the entire slide at a low resolution to identify tissue

locations. The smallest possible rectangular region fully

encompassing each tissue section was captured at a high res-

olution at 0.64 �m/pixel on a tile-by-tile basis, generating

100-400 individual digital image tiles per slide. Each indi-

vidual image tile was automatically focused, captured, digi-

tized, corrected for shading and analyzed. 

The methodology was developed for image segmentation

and trained for object classification using a representative

set of images from controls and treated rat liver specimen

from various studies, before the system was applied the

specimen of this study. As a precursor to any segmentation

operation the input 24-bit RGB images of H&E-prepared

tissue were converted using a stain space conversion, based

on PCA. This technique effectively allowed each pixel in the

image to be mapped to its respective stain-absorption value

to give an invariant representation of the histologic proper-

ties of the image. Once the stain value at each pixel was

determined, a generalized grouping was used to account for

regional features, such as nuclei, which bind the stain.

Similar high-level segmentation accounted for other object

types within the tissue - namely clear space, vacuoles, sinu-

soids and cytoplasmic material - that generally tend to

absorb (or not absorb) one type of stain.

Hepatic cells comprise approximately 80% of the volume of the

liver and 60% of the cell count. They vary in shape and texture

(both in nuclei and cytoplasm) from one liver zone to another.

Conditions such as hyperplasia and hypertrophy and other

metabolic conditions may affect the appearance of nuclei

and the surrounding cytoplasm as a result of tissue injury. 

Definition of the invariant characteristics of hepatic nuclei

made a robust segmentation possible and included the follow-

ing features. Hepatic nuclei have a dark-blue appearance as a

result of the absorption of hematoxylin. They may contain

nucleoli, or chromatin figures internal to the nuclei. This will

be exhibited as a conic boundary with a clear internal struc-

ture highlighted by dark annotations. They are generally

round or polyhedral in shape. They will have a general size

boundary (correlated to the image capture magnification);

variance will exist between each layer of the liver. They are

highlighted from the background tissue by the differential

stain properties of hematoxylin, offsetting nuclear material

from the surrounding cytoplasm.

For classification, a probability model was used where each

pixel expressing hematoxylin stain contains a vector of

attributes that denotes the probability of the pixel belonging

to a nucleus object. Candidate objects can be readily found

by locating local maxima in the hematoxylin-stained image

(expressed as a ratio of hematoxylin and eosin with a spatial

filter applied to reduce noise). The vector is composed of ele-

ments such as stain-value deviation, size, shape, and texture

measurements of internally visible chromatin and/or nucle-

oli. Proper values for these vectors were learned by a simple

neural network model and used to classify objects into

appropriate categories (for example, hepatic nucleus or non-

hepatic nucleus). At times, representative elements of this

vector were misleading, because of artifacts in histology

preparation and sectioning. These errors were resolved by

applying pre-filtering to each vector element before compar-

ison with the neural network. For example, nuclei with a

‘half-moon’ silhouette caused by the sectioning process will

be misleading. In this case, fitting a polygon to the boundary

and extracting hull-properties for the classification can make

a solid differentiation. 

Once the non-hepatic nuclei objects were separated from the

surrounding tissue, they were differentiated further by

applying spatial characteristics derived from the architecture

of the liver. Both size and eccentricity acted as a differentia-

tor, as well as encapsulation by or nearness to sinusoids

(clear space). These rules were fairly invariant and had

proved robust in validation protocols graded by pathologists

on how well a feature was discriminated. The cellular archi-

tecture of the liver allowed for robust training data to be

automatically characterized by the system. Objects were

assigned ‘rankings’ of their probability of belonging to a

given class plotted against spatial relationships, allowing for

quick identification and correction of errors; for example, an

object classified as a Kupffer nucleus (other nucleus) should

not exist outside of a certain proximity to a sinusoid. 

Other elements in the liver could be derived with similar mor-

phometric comparisons utilizing simple pattern-recognition

classifiers for optimal performance. Micro- and macrovesicu-

lar change were detected by thresholding the resultant clear-

space image (derived by calculating tissue pixels that do not

contain stain) in the saturation plane and locating ‘round’

objects. Similarly, performance was improved by localizing

red blood cells, identified by strong eosin stain band expres-

sion, to oblong white objects, as they are typically found in

intrasinusoidal space.

All nuclei were then masked out of the original tissue mask, and

clear-space areas were identified by performing an automatic

R32.6 Genome Biology 2003, Volume 4, Issue 5, Article R32 Kriete et al. http://genomebiology.com/2003/4/5/R32

Genome Biology 2003, 4:R32



threshold in the intensity band of the masked image. Binary

clear space areas were classified as vacuoles or as general

white space objects based on circularity and size. A texture

measure was developed, based on a gradient-filtered image,

as an indicator of fine spatial changes in the cytoplasm [36].

The cytoplasm of control livers had a smooth and uniform

appearance, compared to that of treated animals, which

exhibits more roughness, mainly caused by vacuoles. 

After training, the system was applied to the specimen of this

study and all analytical steps were executed fully automati-

cally and without further user interaction. The derived tissue

metrics included hepatocyte and other nuclei, sinusoids,

vacuoles including conglomerates of microvesicular change,

counts of each feature per mm2, % area of each feature

respective to the total tissue area of each section, total %

clear space (non-stained cellular and tissue elements), and %

hematoxylin stained objects (nuclei) and a texture feature. A

reference set of 24 images was selected for validation. Two

images from two animals from all groups, control and

treated, were randomly selected. The system used in this

study was validated for the detection of basic tissue elements

including hepatocyte nuclei, other nuclei, vacuoles and sinu-

soids. Two pathologists independently inspected the classi-

fied objects indicated by colored overlays on the digital

images. Typically, there are about 250-450 hepatocyte nuclei,

20-130 non-hepatocyte nuclei, 50-300 vacuoles and 70-200

sinusoids in any one image. False-positive ‘hits’ and missed

false-negative identifications of nuclei were counted. Results

for hepatocytes nuclei were less than 3% false negative and

less than 2% false positive; for other nuclei, less than 7%

false negative and less than 15% false positive. The percent-

age of correctly detected vacuoles including conglomerates

of microvesicular change and sinusoids were determined by

an estimation of correct identification. The result for vac-

uoles and conglomerates of microvesicular change were in

the range of less than 40% false negative and less than 10%

false positive. Smaller vacuoles could not be correctly identi-

fied because of resolution limits, but the heterogeneity in the

cytoplasm could be detected by the texture analysis. Esti-

mate for sinusoids was in the range of less than 5% false neg-

ative and less than 20% false positive. 

The field-specific features clear space, hematoxylin-stained

areas and texture have no direct quantifiable visual correla-

tion; this also applies to geometric and density features that

are derived from the basic tissue elements and therefore

cannot be validated by human observation.

Statistical data analysis 
The ‘raw’ microarray data, consisting of six readouts per gene,

were prepared for analysis by removing outliers and undergo-

ing normalization. Generally, outliers result in expression

values that are much larger than expected. To minimize the

effects of the outliers, an outlier detection filter was applied to

the data. First, the median of each set of six data points was

calculated, then the absolute value of the difference between

each data point and the median of the set to which it

belonged was calculated. The median absolute deviation was

then determined. A modified z-score for each original gene-

expression value was derived as the absolute difference

between the original data point and the median of the set to

which it belonged, multiplied by 0.6745 and divided by the

median absolute difference for the set [37]. Then, if the

largest gene-expression value in a given set of six values had

a modified z-score larger than 8.7, it was labeled an outlier

and removed from the raw dataset. Only 0.3% of all raw data

points were determined to be outliers using this method.

After outlier removal, the resulting datasets were normalized

with respect to the median value of all raw data points on a

given microarray to adjust for array-to-array variability. The

medians of the remaining gene-expression values for each

probe on the microarray were then calculated and used for

further analysis. This data preparation resulted in one gene-

expression value per gene per animal and is referred to as

the ‘normalized’ dataset.

Spearman’s rank order correlation is a rank-based adjust-

ment to Pearson’s correlation, which checks for strength of a

linear relationship between two variables [38]. Spearman’s

rank order correlation ranks the data in each variable and

then calculates Pearson’s correlation with the paired ranked

data, hence checking for the strength of a monotone rela-

tionship; p-values are based on permutation methods. 

PCA is a statistical technique to reduce the dimensionality of

a dataset while retaining as much of the variability as possi-

ble [15]. Each principal component captures as much vari-

ability as possible with a linear combination of the data and

is uncorrelated with all other principal components. The

resulting data points represent a projection of the dataset.

PCA was conducted on all three datasets and hence there

were three different input variables. With the gene-expres-

sion-only dataset, we used the ‘normalized’ gene expression

data, 1,040 genes, for all rats. With the tissue-only dataset,

we used the data from all 11 tissue metrics for all rats. Finally

for the combined dataset for each rat, we combined the

tissue metrics, 11 metrics, and ‘normalized’ gene-expression

data (1,040 expression values) to give a total of 1,051 mea-

surements, and conducted PCA on the resulting dataset.

The quadratic regression classifier [39] is given by

y = �0 + �1(e1 - –e1) + �2(e2 - –e2) + �3(e2 - –e2)
2

+  �4(e2 - –e2)
2

+

�5(e1 - –e1)(e2 - –e2) + �

where e1 and e2 are the first and second principal compo-

nents respectively and � is assumed to be independently and

identically normally distributed with mean 0 and variance

�2. Also note that  –e1 and  –e2 are the arithmetic means of all

of the first and second principal components. The model was

estimated using the usual least-squares assumptions, where
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the dependent variable, y, was an indicator variable for

CCl4 toxicity. 

The cross-validation probability is estimated by first calculat-

ing the first two principal components of the ‘normalized’

data, except for one rat. Using the two principal components

and the CCl4-toxicity classification, the quadratic regression

classifier was fit to estimate the coefficients �0 through � 5.

Then the same eigenvectors, or projection estimated in the

PCA, were applied to the left-out observation to estimate the

first two principal components; note that this side-steps any

potential prediction bias. The principal components are then

plugged into the estimated quadratic regression classifier. If

the resulting prediction, y, was above 0.5, then the sample

was classified as suffering from CCl4 toxicity; if the value was

below 0.5, then it was classified as not suffering from CCl4

toxicity. To estimate the accuracy of the classification, this

was repeated so that every rat was left out and then predicted. 

PCA, Spearman’s rank correlations, quadratic regression

classification and cross-validation were programmed in

MatLab release 12. Scripts are freely available from the

authors upon request.

Additional data files 
An Excel spreadsheet showing genes correlating with tissue

features is available with the online version of this paper

(Additional data file 1), also represented in 4 pdf files that

contain tables of genes correlating with % clear space (Addi-

tional data file 2), area % vacuoles (Additional data file 3),

vacuoles/mm2 (Additional data file 4), and all other metrices

(Additional data file 5). These tables include gene descrip-

tions for the ADME chip [40], updated with descriptions

provided by GenBank. Genes found to be associated with the

biology of CCl4 toxicity are highlighted.
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