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Abstract

Background: Previous studies have suggested that recent segmental duplications, which are
often involved in chromosome rearrangements underlying genomic disease, account for some 5%
of the human genome. We have developed rapid computational heuristics based on BLAST
analysis to detect segmental duplications, as well as regions containing potential sequence
misassignments in the human genome assemblies.

Results: Our analysis of the June 2002 public human genome assembly revealed that 107.4 of
3,043.1 megabases (Mb) (3.53%) of sequence contained segmental duplications, each with size
equal or more than 5 kb and 90% identity. We have also detected that 38.9 Mb (1.28%) of
sequence within this assembly is likely to be involved in sequence misassignment errors.
Furthermore, we have identified a significant subset (199,965 of 2,327,473 or 8.6%) of single-
nucleotide polymorphisms (SNPs) in the public databases that are not true SNPs but are potential
paralogous sequence variants. 

Conclusion: Using two distinct computational approaches, we have identified most of the
sequences in the human genome that have undergone recent segmental duplications. Near-
identical segmental duplications present a major challenge to the completion of the human
genome sequence. Potential sequence misassignments detected in this study would require
additional efforts to resolve.
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Background 
Segments of DNA with near-identical sequence (segmental

duplications or duplicons) in the human genome can be hot

spots or predisposition sites for the occurrence of non-allelic

homologous recombination or unequal crossing-over

leading to genomic mutations such as deletion [1], duplica-

tion [1], inversion [2] or translocation [3,4]. These structural

alterations, in turn, can cause dosage imbalance of genetic

material or lead to the generation of new gene products

resulting in diseases defined as genomic disorders [5]. 

Previous studies to identify segmental duplications in the

human genome have analyzed older versions of the genome

assembly, which contained higher amounts of unfinished
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sequence and incorrectly mapped regions, and have used

different computational approaches all performed by the

same group [6-8]. With the human genome sequence now

nearing completion, we have examined its content for seg-

mental duplications using two distinct computational

methods. In the first, we utilized the rapid BLAST2 [9] algo-

rithms that allow direct chromosomal-wide sequence com-

parisons to be made. All BLAST results reported in table

formats can be subsequently grouped, parsed and analyzed

for the detection of duplicated sequences. In addition, we

have shown previously that there is a strong correlation

between ambiguously mapped SNPs (ambSNPs), as well as

the density of SNPs, and segmental duplications [10].

AmbSNPs are SNPs that were annotated to map to two loca-

tions on a particular chromosome in the NCBI dbSNP. A

subset of these ambSNPs are not true SNPs but are likely to

be computer-generated nucleotide mismatches from paralo-

gous copies of duplicated sequences and should be more

appropriately labeled as paralogous sequence variants

(PSVs) [10]. Another subset is likely to be false ambSNPs of

genomic sequences that have been misassigned in genome

assemblies. Here, we report our analysis of all potential

PSVs in the human genome and their correlation with seg-

mental duplications as detected by our BLAST analysis. Fur-

thermore, we provide a critical assessment on the three

latest human genome assemblies from our analysis of

sequence misassignments as identified from this study. 

Results and discussion 
Human genome segmental duplication content 
On the basis of the June 2002 (NCBI Build 30) human

genome assembly, a total of 107.4 Mb (3.53%) of the human

genome content (3,043.1 Mb) were found to be involved in

recent segmental duplications by our BLAST analysis criteria

(Table 1). This content is composed of more than 1,530 dis-

tinct intrachromosomal segmental duplications (80.3 Mb or

2.64% of the total genome, Figure 1) and 1,637 distinct inter-

chromosomal duplications (43.8 Mb or 1.44% of the total

genome). In addition, 29% of all duplications are located in

unfinished regions of the current genome assembly. Our

results are shown using the Generic Genome Browser [11,12].

We have also found that 38% of the duplications (52.3 Mb)

can be considered as tandem duplications - defined here as

two related duplicons separated by less than 200 kb.

In this study, we only analyzed large (size � 5 kb) and recent

(sequence identity � 90%) duplications because we can

achieve higher confidence and to prioritize those regions for

their potential involvement in diseases. Previously, Bailey

and colleagues [8] reported a total of 5.2% of the human

genome involved in recent segmental duplications. The 1.6%

discrepancy between our findings could be due to the differ-

ence in our detection criteria (size cutoff of 5 kb used in this

study versus 1 kb used in Bailey et al. [8]). Moreover, we

have identified 38.9 Mb of sequences (1.28% of the June

2002 genome assembly) likely to be artifactual duplications

resulting from sequence misassignment errors present in the

assembly. By comparing our results with those published

previously [8], we found that 482/2579 clones that we iden-

tified to be involved in duplication were novel.

The molecular mechanism by which segmental duplications

are created is still unclear at the moment. A recent report

has suggested that Alu repeat clusters had a role as media-

tors of recurrent chromosomal rearrangements [13]. We

have examined whether elevated amounts of repetitive ele-

ments could be found in duplicon junctions. We inspected

all duplication borders from our results and calculated the

occurrence of different repeat types within the 500 bp

window outside each duplicon junction. The whole-genome

average frequencies were determined by sampling random

500 bp windows across the genome (excluding gap regions).

Overall, we found that there are significant enrichment (or

relative fold increase) for the presence of small ribonucleo-

protein RNA (srpRNA), satellite, long terminal (LTR) and

SINE/Alu repeats (see Additional data file). In addition, our

data also showed that for some chromosomes the amount of

duplicated sequence is higher in the pericentromeric and

subtelomeric regions of chromosomes (Figure 1), supporting

the hypothesis that these repeat-dense regions have made an

important contribution to the evolution of the human

genome [14].

Regions containing recently occurring segmental duplica-

tions can harbor rapidly evolving hominoid-specific genes,

as well as novel gene families that are unique to primates

[15,16]. Using the National Center for Biotechnology Infor-

mation RefSeq annotation, we identified 1,152 human genes

that were mapped to duplicated regions. Of these, 475 genes

were fully contained within duplicated regions and were best

candidates for recent whole-gene duplication. We have

carried out functional analysis of these 475 genes using the

Gene Ontology Consortium database [17] and found that

there is a significant increase in gene duplications for genes

involved in immune defense (antibodies, blood-group anti-

gens) and reproduction (pregnancy, sex differentiation) (see

Additional data file).

Sequence misassignment errors in the human
genome sequence assembly 
We were aware that in silico detection methods, such as the

ones used in this study, would not allow us to distinguish

completely true duplications from artifactual duplications

arising from misassigned sequences, especially in cases

where sequence identity between two detected duplications

exceeded 99.5% over a substantial length (> 5 kb) in regions

composed of draft sequences. Although a small proportion of

such results (duplications with > 99.5% identity) might rep-

resent unfinished regions of the genome that contain true

duplications that have arisen very recently in the evolution

of the human genome (such as the large and nearly perfect

R25.2 Genome Biology 2003, Volume 4, Issue 4, Article R25 Cheung et al. http://genomebiology.com/2003/4/4/R25

Genome Biology 2003, 4:R25



palindromic repeats located in the AZFc region on chromo-

some Yq11.223 involved in male infertility [18]), we suspect

that most of the duplications (> 99.5% identity and contain

draft sequences) are in fact sequence misassignment errors

in the genome assembly. An explanation for such errors

would be when two identical sequences belonging to the

same genomic location were misassigned to distinct regions

in the genome assembly.

We have used the NCBI e-PCR [19] to evaluate our results

(potential sequence misassignment errors) from the June

2002 human genome assembly. Using some of the largest

interchromosomal misassignment errors detected in our

study, we found that none of the STS markers located within

these misassigned sequences maps to their incorrectly

assigned chromosomes. For example, AC121339 is incor-

rectly mapped to 3q13.13 in the June 2002 genome assem-

bly, as supported by a consensus number of chromosome X

sequence-tagged site (STS) markers (Figure 2, Table 2). 

From this genome assembly, we identified that a total of

38.9 Mb of sequences, representing 1.28% of the total

sequence content, are involved in such potential errors (a

full list of potentially misassigned sequences can be obtained

from [12]) that would require additional effort and further

sequencing to achieve resolutions. We also analyzed an
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Table 1

Segmental duplication content of the human genome

Intra- % Inter- % Total % 
Chromo- Size (bp) chromosomal chromosome chromosomal chromosome duplications chromosome Errors† % 
some duplication (bp) (previous)* duplication (bp) (previous)* (bp) (previous)* (bp) chromosomes

1 246,874,334 5,278,549 2.1 (4.4) 2,854,898 1.2 (2.3) 7,056,274 2.9 (5.7) 4,369,406 1.8

2 240,681,600 4,917,160 2.0 (2.4) 3,298,723 1.4 (1.6) 6,892,585 2.9 (3.2) 2,311,522 1.0

3 194,908,136 2,128,493 1.1 (2.3) 1,654,201 0.8 (2.0) 3,146,570 1.6 (3.2) 3,979,610 2.0

4 192,019,378 2,599,650 1.4 (2.3) 2,164,382 1.1 (2.2) 4,061,432 2.1 (3.4) 2,482,740 1.3

5 180,966,400 3,519,480 1.9 (2.0) 1,464,945 0.8 (1.3) 4,530,406 2.5 (2.8) 2,297,998 1.3

6 170,309,517 2,358,252 1.4 (2.3) 743,875 0.4 (1.3) 2,877,392 1.7 (3.4) 569,918 0.3

7 157,432,793 8,636,434 5.5 (6.3) 2,614,326 1.7 (2.9) 10,139,669 6.4 (7.8) 205,130 0.1

8 143,874,322 2,318,984 1.6 (2.2) 1,125,241 0.8 (2.0) 2,612,280 1.8 (3.0) 3,956,756 2.8

9 132,438,756 7,248,232 5.5 (7.1) 4,801,871 3.6 (4.7) 8,341,767 6.3 (8.2) 1,589,734 1.2

10 134,416,750 5,279,301 3.9 (4.3) 1,375,341 1.0 (1.9) 6,334,458 4.7 (5.7) 1,250,157 0.9

11 137,442,545 3,622,080 2.6 (3.3) 1,670,412 1.2 (1.8) 4,363,619 3.2 (4.4) 2,028,875 1.5

12 131,300,572 1,894,547 1.4 (2.3) 971,490 0.7 (1.2) 2,816,187 2.1 (3.3) 3,383,730 2.6

13 113,446,104 918,255 0.8 (1.9) 1,202,102 1.1 (2.3) 1,855,806 1.6 (3.4) 146,198 0.1

14 104,324,908 531,219 0.5 (0.7) 820,880 0.8 (1.6) 1,335,177 1.3 (2.1) 13,814 0.0

15 99,217,355 4,593,233 4.6 (6.2) 2,344,618 2.4 (3.9) 5,634,201 5.7 (8.2) 1,739,894 1.8

16 81,671,585 4,917,218 6.0 (8.3) 2,228,116 2.7 (3.9) 6,012,178 7.4 (9.8) 2,113,843 2.6

17 80,052,782 4,775,137 6.0 (7.1) 646,968 0.8 (2.5) 5,274,195 6.6 (8.5) 2,145,614 2.7

18 77,516,809 525,636 0.7 (1.2) 700,654 0.9 (1.9) 1,226,290 1.6 (3.1) 1,443,775 1.9

19 60,013,307 2,700,984 4.5 (6.8) 704,757 1.2 (2.6) 3,156,687 5.3 (8.1) 335,190 0.6

20 62,842,997 592,441 0.9 (1.1) 873,152 1.4 (1.8) 1,052,248 1.7 (2.1) 147,940 0.2

21 44,626,493 481,879 1.1 (1.4) 1,303,776 2.9 (5.1) 1,504,333 3.4 (5.2) 0 0.0

22 47,748,585 1,741,766 3.6 (6.7) 1,374,363 2.9 (7.4) 2,770,386 5.8 (10.9) 0 0.0

X 14,924,9818 2,625,206 1.8 (3.6) 2,927,714 2.0 (2.3) 5,518,712 3.7 (5.5) 2,185,046 1.5

Y 58,368,225 5,959,836 10.2 (28.4) 3,524,276 6.0 (25.0) 8,461,355 14.5 (40.7) 56,204 0.1

Un‡ 1,391,854 179,709 12.9 (20.4) 378,110 27.2 (32.6) 407,013 29.2 (36.5) 116,923 8.4

Total 3,043,135,925 80,343,681 2.6 (3.8) 43,769,191 1.4 (2.6) 107,381,220 3.5 (5.2) 38,870,017 1.3

*Previous data on segmental duplications distributed by chromosomes as reported in [8]. †Errors represent data that were detected as potential
sequence misassignments. ‡Un, unmapped chromosome sequence.
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Figure 1 (see legend on the following page)
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additional two previous versions of the human genome

assemblies, December 2001 and April 2002, and our results

showed that there has been a dramatic reduction in potential

errors in the latest human genome assembly compared to

the two previous genome assemblies (Table 3). Furthermore,

we examined the distribution of the amount of duplications

in five different categories on the basis of their level of

sequence identity to each other (Table 3). We observed a

large reduction in duplications that fall within the 98-100%

category, supporting the fact that the genome assemblies

continue to improve and correct errors made. In addition,

our data showed that there have been major improvements

for chromosomes 5, 6, 7, 13, 14 and 19 over the last three

genome assemblies. And for chromosomes that had reached

finished status, such as chromosomes 20, 21 and 22, the

number of errors was negligible. 

Paralogous sequence variants in the human genome 
We have previously shown a strong correlation between

ambSNPs with segmental duplications [10]. AmbSNPs are

SNPs that were annotated to map to two locations on a par-

ticular chromosome in the NCBI dbSNP. Here we show on a

genome scale that ambSNPs most specifically correlate with

intrachromosomal segmental duplications, suggesting they

are paralogous sequence variants (PSVs) (Figure 1). These

PSVs were perhaps mistakenly introduced into dbSNP by

automated in silico-generated analysis, arising from

nucleotide mismatches in paralogous copies of duplicated

sequences. Overall, a surprisingly high proportion, 8.6%

(199,965 of 2,327,473), of the refSNPs were annotated as

ambSNPs from dbSNP (Build 108). A significant number of

the ambSNPs (139,974 of 199,965 or 70.0%) are located

within duplicated regions as identified by BLAST and should

be regarded as PSVs (see Additional data file).

The non-identification by BLAST analysis of regions that

contain ambSNPs could be due to one of three possibilities.

First, the duplicated copy(s) could have been removed from

the sequence assembly or the two have been conflated, that

is, mistakenly thought to be the same sequence owing to

their high sequence similarity. A second possibility is that

the duplication is smaller than 5 kb and was excluded in our

BLAST analysis. A third possibility is that a collection of

ambSNPs could have been generated from misassigned

sequences (identical sequences but misassigned to two dif-

ference locations in the genome) in older assembly builds

due to sequencing errors or true SNPs (with high polymor-

phism rate) in the sequence. We also observed that the

density of ambSNPs generally correlates with the size of the

putative duplication, although this might be affected by the

level of sequence identity between duplications. For

example, two duplicated sequences sharing 98% sequence

identity compared to 95% over the same length might

contain fewer PSVs as the number of base-pair mismatches
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Figure 1 (see figure on the previous page)
Intrachromosomal segmental duplications identified in the human genome. Three panels of results are displayed for each chromosome. Left, graphical
views of the paralogous relationships between recent segmental duplications (graphics produced using GenomePixelizer [29,30]; each line represents a
duplicated module; coloring scheme, red = 99% to 100% sequence identity, purple = 96% to 98%, green = 93% to 95%, and blue = 90% to 92%). Middle
panel: segmental duplications as detected by BLAST analysis (size of duplication in kb plotted against the length of chromosome in Mb). Right panel:
ambSNPs density plot (number of ambSNPs plotted against the length of chromosome in Mb). All analyses were done using the June 2002 human
genome sequence assembly.

Figure 2
An example of sequence misassignment error as indicated by e-PCR
analysis. AC121339 is incorrectly mapped to 3q13.13 in the June 2002
human genome assembly as shown by a consensus number of
chromosome X STS markers.



would be fewer in the former. In addition, we observed that

regions identified by our BLAST method but do not contain

ambSNPs often correspond to artifactual duplications gener-

ated from assembly errors. 

Duplicons related to genomic disorders 
The size, orientation, and contents of segmental duplications

are highly variable and most of them show great organiza-

tional complexity. This is perhaps due to successive transpo-

sition and rearrangement events leading to the creation of

segmental duplications [14]. In many cases, a contiguous

duplicon is organized into multiple modules with different

orientations and sizes. For example, one of the largest seg-

mental duplicons detected in this study was 359 kb in size at

the Williams-Beuren locus on 7q11.23 [20,21]. In this case,

the two duplicons are separated by 1.6 Mb of intervening

sequence with the telomeric duplicon comprising several

separate smaller modules as compared to the primary dupli-

con. The results presented in our study (provided in tables

available at [12]) would also allow rapid identification of new

duplicons that are potentially responsible for chromosome

rearrangements and genomic disorders. For example, the

location of the duplicons on chromosomes 9q34/22q11 that

have been suggested to mediate recombination leading to

the Philadelphia chromosome [4] was identified in our

analysis, as were other medically relevant chromosomal

regions (Table 4) [22,23].

The characterization of most large segmental duplications is

complicated by the fact that many of them (29% of all dupli-

cations) are only represented as draft sequences from the

current genome assembly. Despite the fact that both BLAST

and PSVs analyses allowed us to identify most segmental

duplications involved in known genomic disorder mutations

(Table 4), estimations of the size of rearranged regions were

different from those previously reported [23]. In fact, with

the exception of several small duplications and the segmental

duplications on chromosome 22 [24], other regions contain-

ing duplications involved in genomic disorders were often

erroneously assembled and misplaced. Furthermore, we have

searched the Celera human genome C3 (publicly released

version [25]) and C4 (subscription-based version) sequence

assemblies for large duplications found on chromosome 7.

We observed that most of them were not represented in large

scaffolds, but instead were located in their sequence gaps, or

only partially found at ends of scaffolds leading into gaps (see

Table 4) [26]. This suggests that the whole-genome assembly

approach [25] alone might not be able to finish such dupli-

cated regions in mammalian genomes. 

Conclusions 
We have used two different computational approaches to

identify the locations of all recent segmental duplications in

the current human genome draft sequence. The fidelity of the

results reflects the quality of the assembly examined and the

parameters used. In addition, our approach has detected

numerous potential sequence misassignment errors in the

current genome annotation, allowing rapid error detection in

future sequence assemblies. The segmental duplication map

of the human genome should serve as a guide for investiga-

tion of the role of duplications in genomic disorders, as well

as their contributions to normal human genomic variability

[2,3,27]. It is clear that genomic regions containing segmen-

tal duplications present a major challenge to the completion

of the human genome sequence by April 2003. Focused

efforts including targeted sequencing of allele-specific clones,

high-resolution fluorescence in situ hybridization, and expert

curation would be required to validate the actual (or pro-

posed) organization of these complex regions as well as to

complete the human genome reference sequence. 

Materials and methods 
Genome sequence and chromosome-wide BLAST 
We obtained the December 2001, April 2002, and June 2002

(NCBI Build 28, 29 and 30 respectively) human genome

assemblies through the University of California, Santa Cruz
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Table 2

Examples of sequence misassignment errors

Clone* Location Size of region e-PCR results
involved (bp) 

AC121339† 3q13.13 193,190 chrX

AC016003 17q21.31 181,582 chr9

AC119723 3q22.1 159,924 chr6

AC093007 3q12.1 169,882 chr6

AC110578 8p23.2 160,554 chr15

AC108862 11p15.3 156,150 chr18

AC113009 8q23.1 155,171 chr11

AC104765 8q12.1 150,029 chr18

AC105412 2p13.1 144,924 chr5

AC092744 12p12.3 144,009 chr4

AC099061 1p21.3 140,516 chr15

AC108735 3p24.3 136,005 chr16

AC122689 3q23 120,057 chr12

AC017027 1q32.1 116,265 chr5

AC013530 3q26.1 99,768 chr8

AC115093 11p15.4 98,715 chr1

AC112921 Xp22.22 96,272 chr3

AC108094 16q21 94,953 chr17

AC079186 8q12.1 78,771 chr7

AC024573 Unmapped 56,016 chr2

AC115093 11p15.4 53,858 chr1

*A full list can be obtained from [12]. †See Figure 2 for e-PCR results
supporting sequence misassignment.



Human Genome Browser [28]. All chromosome sequences

were lower-case masked for highly repetitive elements by

RepeatMasker (A.F.A. Smit and P. Green, unpublished). For

each assembly build, each of the 25 masked chromosome

sequences (including one unmapped chromosome sequence

‘ChrUn’) was compared against itself by chromosome-wide

BLAST2 [9] to detect intrachromosomal segmental duplica-

tions (25 comparisons made), as well as pairwise compari-

sons to each of the other 24 chromosomes to detect

interchromosomal segmental duplications (600 compari-

sons made). All BLAST results were subsequently parsed to

eliminate low-quality and fragmented alignments under the
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Table 3

Comparison of duplications and potential sequence misassignment errors in genome assemblies

December 2001 April 2002 June 2002

Length Duplications Errors Length Duplications Errors Length Duplications Errors

Chr1 2,564 99 115 2,459 68 60 2,469 71 44

Chr2 2,413 70 45 2,468 79 57 2,407 69 23

Chr3 2,048 49 90 2,047 29 73 1,949 31 40

Chr4 1,914 39 44 1,970 51 49 1,920 41 25

Chr5 1,848 55 90 1896 55 112 1,810 45 23

Chr6 1,783 58 56 1,828 43 153 1,703 29 6

Chr7 1,638 130 48 1,605 119 27 1,574 101 2

Chr8 1,457 35 66 1,484 33 43 1,439 26 40

Chr9 1,330 83 38 1,291 75 27 1,324 83 16

Chr10 1,421 74 51 1,385 72 39 1,344 63 13

Chr11 1,414 51 84 1,341 43 36 1,374 44 20

Chr12 1,396 30 83 1,342 24 32 1,313 28 34

Chr13 1,151 29 21 1,136 22 15 1,134 19 1

Chr14 1,065 27 8 1,054 23 10 1,043 13 0

Chr15 991 62 30 1,000 54 20 992 56 17

Chr16 938 65 44 932 67 32 817 60 21

Chr17 839 66 46 811 46 29 801 53 21

Chr18 818 16 59 809 12 32 775 12 14

Chr19 769 45 28 730 34 12 600 32 3

Chr20 630 10 5 628 12 4 628 11 1

Chr21 446 18 3 446 16 2 446 15 0

Chr22 478 28 0 477 29 1 477 28 0

ChrX 1,517 54 40 1,518 61 23 1,492 55 22

ChrY 584 86 2 584 95 2 584 85 1

ChrUn 74 10 1 125 11 43 14 4 1

Total 31,526 1,290 1,097 31,366 1,175 932 30,431 1,074 389

% range* Duplication Error Duplication Error Duplication Error

90-92% 135 0 137 0 117 0

92-94% 334 0 334 0 311 0

94-96% 391 0 382 0 367 0

96-98% 451 0 444 0 418 0

98-100% 884 1,097 724 932 665 389

All numbers shown in the table are x 100 kb. *Sequence similarity between duplication by five levels of percent identity. 



following criteria: BLAST results having � 90% sequence

identity, � 80 bp in length, and with expected value � 10-30.

BLAST results parsing and duplication detection 
Each BLAST report was sorted by chromosomal coordi-

nates. All identical hits (same coordinate alignments),
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Table 4

Segmental duplications involved in known genomic disorders and chromosome rearrangements identified by BLAST and ambSNP
analyses

First copy Second copy(s)

Disorders Band Start* Size* ambSNPs† Start* Size* ambSNPs† Identity Celera C4‡

Gaucher disease 1q22 148108965 10,649 7 152776301 -10,479 10 95.19 S

Spinal muscular atrophy 5p14/5q13 21621854 79,183 1,032 69175603 -79,149 1,190 98.22 M

Williams-Beuren syndrome 7q11.23 70970126 359,416 380 72927299 111,773 56 99.60 P
73383317 -227,260 355 99.20 P

t(4;8)(p16;p23) 4p16/8p23 8769778 99,609 3† 7156209 -51,677 18 95.65 P
Wolf-Hirschhorn syndrome 7470072 -82,189 387 95.81 P

inv dup(8p) 8p23.1 7084847 138,560 123 7756853 -126,769 229 99.16 M
der(8)(8p23.1::p23.2-pter) 7651975 54,807 463 96.93 M
del(8)(p23.1p23.2)

Prader-Willi syndrome and 15q11/15q13 19709020 75,325 102 19961243 34,902 55 98.70 P
Angelman syndrome 20029574 41,965 83 98.79 P

19802418 251,245 548 20064937 74,780 65 99.01 P

Polycystic kidney disease 1 16p13 2164789 38,034 136 16249164 24,076 243 98.32 P

Charcot-Marie-Tooth 17p12/17p12 14440158 23,599 272 15837032 23,585 286 98.42 P
1A/Hereditary neuropathy 
with pressure palsies

Smith-Magenis syndrome/ 17p12 18524425 152,700 547 20492073 -147,255 539 99.06 M
dup(17)(p11.2-p11.2) 25811482 28,239 24 99.20 M

Neurofibromatosis type 1 17q11.2 28686414 63,356 163 28952984 -32,619 129 98.65 P

DiGeorge syndrome and 22q11.21 15662253 155,811 471 18221385 155,996 322 99.42 P
velocardiofacial syndrome 17742343 9,740 62 97.84 P

18164371 -39,696 21 99.37 P

Chronic myeloid leukemia 9q34/ 22q11 123263651 36,956 NA 20552124 26,424 NA 91.81 S
t(9;22)(pq34;q11)

Emery-Dreifuss muscular Xq28 147627873 11,030 2 147676529 11,034 2 99.61 S
dystrophy

Shwachman-Diamond 7q11.21 65091051 325,140 665 70647188 302,881 652 97.43 P
syndrome

Red green color blindness Xq28 148439480 21,144 61 148476598 21,834 58 99.82 S

BRCA1 duplication 17q21 40983970 43,221 66 62252214 431,52 66 99.85 P

Male infertility AZFc Yq11.22 23322362 190,336 391§ 23680552 -185,149 393§ 99.88 P
microdeletion region 2 Yq11.22 23908727 94,194 282§ 24794944 -93,690 284§ 99.92 P

Yq11.22 24794944 93,690 247§ 27460935 -94,218 248§ 99.93 P

This table represents a partial list of all known genomic disorders and chromosome rearrangements. *Only the start coordinates (based on June 2002
assembly) for duplicons are shown. Results from BLAST analysis with chromosome coordinates and size of duplicon. For several genomic mutations
(Williams-Beuren syndrome, Prader-Willi syndrome and Angelman syndromes, and DiGeorge syndrome) the duplicons shown are incomplete, most of
which are composed of several duplication modules. The ‘-’ sign indicates that the second duplicon is in the inverse orientation. †The number of
ambSNPs (ambiguously mapped single-nucleotide polymorphisms) found within the genomic segment. NA, not applicable. The ambSNP analysis defines
regions containing high densities of contiguous ambSNPs. For some of the segmental duplications involved in genomic disorders, the contiguous lengths
of ambSNPs are much larger than those detected by BLAST. The specific sizes of the segmental duplications have to be resolved by detailed
characterization of the different modules. ‡Celera representation: S, both copies found in large (> 500 kb) sequence scaffolds; P, partially hit, single copy
found, or less than perfect alignments; M, missing from large sequence scaffolds, hitting numerous fragments. §SNPs with multiple locations were used for
evaluating the density of ambSNPs. 



including suboptimal BLAST alignments recognized by mul-

tiple, overlapping alignments, as well as mirror hits (reverse

coordinate alignments) from the BLAST results of the intra-

chromosomal set were removed. Contiguous alignments

separated by a distance of less than 3 kb, then 5 kb, and sub-

sequently 9 kb were joined (stepwise) into modules in order

to traverse masked repetitive sequences and to overcome

breaks in the BLAST alignments caused by insertions/dele-

tions and sequence gaps. Such contiguous sequence align-

ment modules represent sequence similarity between the

subject and query chromosome sequence in question (at

their respective positional coordinates). This pairwise

sequence comparison procedure serves as a rapid and

robust way to detect duplication relationships. However,

because of the use of masked sequences, our method would

only yield a poor (on average 0.1-0.5 kb) resolution for the

determination of the precise duplication alignment bound-

aries. Results were classified as either duplications or ‘ques-

tionable’ results based on sequencing status of the region

and the percent sequence similarity between the detected

alignments. Questionable duplications are results that fall

within regions containing draft sequences with > 99.5 %

detected sequence identity with another region. We con-

sider these questionable duplications to be involved in

potential sequence misassignment errors in the human

genome assembly and would require further effort to

achieve resolution. 

Fine mapping of segmental duplications 
Detailed information regarding segmental duplications as

well as potential sequence misassignment errors identified

by our analysis were presented using the Generic Genome

Browser [11,12]. We have also summarized our results in

table formats [12] that include information on size of dupli-

cations, chromosomal band locations, level of identity

between duplicated copies, sequenced clones (accession

numbers) and their sequencing status, as well as genes

mapped to these regions. In addition, we have plotted the

size of each intrachromosomal duplication (y-axis) against

its chromosome position (x-axis) along each chromosome to

indicate the intrachromosomal segmental duplication

content of each chromosome (Figure 1) using the publicly

available visualization tool GenomePixelizer [29,30]. Results

generated from the detection of segmental duplications were

subsequently converted into coordinate files as input for

display using GenomePixelizer.

Paralogous sequence variants (PSV) density map 
SNP mapping data from dbSNP were obtained through the

NCBI ftp site [31]. Each chromosome SNP table, containing

annotation regarding ambSNPs that have appeared twice in

a particular chromosome, were extracted and sorted along

with their corresponding chromosomal positions. The

number of ambSNPs was tabulated along a 10-kb window to

produce density plots of ambSNPs along the length of each

chromosome (Figure 1).

Additional data file
An additional data file with tables describing the relative fre-

quency increase of repeat types at duplicon junctions and

the number of ambiguousgly mapped SNPs within segmen-

tal duplications (number of PSVs), respectively, as well as a

figure showing functional profiling of genes involved in

recent whole-gene duplication vs human genome average is

available with the online version of this article. 
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