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Abstract

Background: In birds and some lizards, females are heterogametic with a ZW karyotype, while
males are ZZ homogametes. The molecular basis for sexual differentiation in birds is unknown:
arguments exist for doses of Z masculinizing chicks and for W information feminizing. ASW was
identified as a tandemly repeated gene conserved on avian W chromosomes that is expressed in
early female development and appears to be an inactive form of avian Z-encoded HINT. Hint is a
dimeric enzyme that hydrolyzes AMP linked to lysine, whose enzyme activity is required for
regulation of the Cdk7 homologous Kin28 kinase in yeast. Of 16 residues most conserved across
all life forms for AMP interactions, 15 are sexually dimorphic in birds, that is, altered in the
female-specific Asw protein. Genomic and expression data suggest that Asw may feminize chicks,
dominantly interfering with Hint function by heterodimerization.

Results: We consider whether positive cooperativity could explain how Hint heterodimerization
with an inert enzyme might reduce specific activity by more than 50% and provide data sufficient
to reject this model. Instead, we hypothesize that Asw carries a signal for mislocalization and/or
proteolysis, and/or dominantly suppresses the remaining Hint active site to function as a
dominant negative. 

Conclusions: Molecular modeling suggests that Asw and Hint can heterodimerize and that
Gln127, an Asw-specific alteration for Trp123, dominantly interferes with the Hint active site. An
extra dose of HINT in ZZW chicks, and thus more Hint homodimer, may partially overcome the
feminizing influence of ASW and lead to the observed intersexual characteristics of ZZW triploids.
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Background 
Dimorphic sexes are the norm in animals, although there are

rotifer species that consist solely of parthenogenetic females

[1], corals that produce long-lived clones that reproduce by

fragmentation [2], and some lizards and fish that spin-off

parthenogenetic lines that survive for multiple generations

[3]. Among the vast number of animal species that

reproduce with males and females, sexual differentiation is

controlled either chromosomally or environmentally. Flies

and worms are among the invertebrates that determine sex

by doses of X-chromosomal information. Within the verte-

brates, there are several mechanisms that account for sexu-

ally dimorphic development. Because temperature controls

sexual development in crocodiles, many turtles and some
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lizards, environmental sex determination (ESD) has been

proposed to be the primordial vertebrate mechanism for

sexual differentiation [4]. Some reptiles and most birds and

mammals have chromosomal sex determination (CSD)

systems and these systems involve remarkably different

chromosomes and genes [4]. CSD strategies, then, may have

evolved to program genetically the developmental routines

that occur in response to temperature in the vertebrates that

use ESD. The natural history of vertebrates suggests that

there were multiple solutions to the problem of CSD.

Nearly all mammals have the XX female and XY male

system, with XXY individuals being male and X0 individuals

female. These observations led to a search for the testis-

determining factor on the Y chromosome culminating in iso-

lation of the SRY gene [5], which is sex-determining in

humans [6,7] and mice [8]. Beyond SRY, there are several

autosomal genes including the SRY-related SOX9 gene

[9,10], MIS [11,12], SF1 [13], WT1 [14] and DMRT1 [15] that

contribute to sexual organ formation, alterations of which

can cause male-to-female sex reversal in XY males. Because

there are rodent species with no SRY gene and no Y chromo-

some [16], any of these genes or the X-linked DAX1 gene [17]

might be considered candidates for a sex-determining gene

in the XX rodents such as mole voles whose body plan is not

so different from that of mice.

In birds, males are the homogametic sex, with two Z chromo-

somes, and females the heterogametic sex, with one Z and

one W chromosome. Z and W are not related to mammalian

X or Y chromosomes and, furthermore, it is not known if the

W chromosome confers femininity and/or if doses of the Z

chromosome confer masculinity [18]. In mammals and inver-

tebrates, diploid animals of genotype X0 and XXY were

crucial in establishing that doses of X confer femininity in

invertebrates and that presence of Y confers masculinity in

mammals. Diploid birds with one or three sex chromosomes

were last reported 70 years ago [19], but triploid birds with

ZZZ and ZZW karyotypes have been observed. While ZZZ

triploids seemed like normal males that produced abnormal

sperm, ZZW animals appeared female on hatching and then

developed some male gonadal and behavioral characteristics

as they matured [20]. These studies suggest that the dosage

versus determining factor argument is a false dichotomy in

birds: doses of Z chromosome appear to masculinize while

presence of the W appears to feminize.

According to theory, a pair of autosomes can evolve into sex

chromosomes by mutation of a control gene [4]. If a control

gene confers sexual development by dosage, it might become

lost from the alternative sex chromosome. DMRT1 is a candi-

date dosage-dependent gene for masculinity in birds and alli-

gators on the basis of Z-linkage [21], conservation, and

gene-expression patterns [22]. Alternatively, if a control gene

confers sexual development as a dominant determining factor,

it may have evolved as an allele of a gene on the opposite sex

chromosome. This latter mechanism is thought to relate SRY

to the X-linked SOX3 gene in mammals [23].

Histidine triad (HIT) enzymes are a superfamily of

nucleotide hydrolases and transferases that contain a cat-

alytic motif related to the sequence His�His�His�� (where

� represents a hydrophobic amino acid) and act on sub-

strates containing a nucleoside monophosphate [24]. Branch

1 of the HIT superfamily includes the ubiquitous Hint

enzymes [25] plus two enzymes with a more phylogenetically

resstricted distribution, namely Aprataxin, which is lost in

humans with ataxia-oculomotor apraxia [26,27] and the

scavenger mRNA decapping enzyme Dcps [28,29]. While

Dcps enzymes are specific for hydrolysis of cap structures

such as 7meGpppG [28,29], prototypical Hint enzymes such

as rabbit Hint and yeast Hnt1 hydrolyze adenosine

5�-monophosphoramide substrates such as AMP-lysine to

AMP plus lysine [30]. Loss of this enzymatic activity renders

yeast cells temperature-sensitive for growth on galactose

medium and hypersensitive to mild mutations in the yeast

homolog of mammalian Cdk7, that is, Kin28, the kinase

component of general transcription factor TFIIH [30]. Loss

of Hnt1 enzymatic activity also renders cells hypersensitive

to mutations in the cyclin H homolog Ccl1, the MAT1

homolog Tfb3, and to Cak1, the activating kinase for Kin28,

all of which lead to destabilized Kin28 complexes and a

likely increase in concentration of Kin28 monomers [30].

Consequently, it was suggested that a Kin28 monomer is the

likely target of Hint regulation, potentially because it is post-

translationally adenylylated and is a protein substrate of the

lysine-deadenylylating activity of Hint [24]. Indeed, two-

dimensional electrophoretic analysis of Kin28 is consistent

with Kin28 being subject to a post-translational modifica-

tion in addition to phosphorylation [31,32] that appears to

be controlled by HNT1 genotype (A. Krakowiak and C.B.,

unpublished results). Finally, it is important to note that

Hint is a dimer with two identical purine nucleoside-

monophosphate-binding sites per dimer [25]. The amino-

acid residues that have remained most constant throughout

evolution are those that form the dimer interface and make

direct contact with AMP [25].

Chickens and many other orders of birds are dimorphic for

HINT-related genes on their sex chromosomes. The chicken

Z chromosome contains the locus for a typical HINT gene,

predicted to encode a polypeptide 83% identical to rabbit

Hint [33]. However, on the gene-poor, female-specific W

chromosome, the ASW (avian sex-specific W-linked) gene

was identified [33,34], encoding a predicted Asw protein

with striking similarity to Hint with the specific exception of

residues involved in AMP recognition. As shown in Figure 1,

the degree to which the nucleotide-binding site was altered

is remarkable. Although human biochemists can depress

activity more than 105-fold in Fhit [35,36] and Hint [30]

with a single active-site His mutation, hens apparently

continued to peck at the sequence of Hint, altering all four of
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the absolutely conserved His residues. In all, 15 of 16 nor-

mally conserved residues identified in immediate proximity

to the adenine base, the ribose and the 5� phosphate [25] are

altered in Asw.

ASW is absent in the ratites, emu and ostrich [34], which

have indistinguishable sex chromosomes, but is tandemly

repeated approximately 40 times on the W chromosome of all

the non-ratite birds examined [33]. Confirming the subtrac-

tive manner in which ASW was cloned, both groups found

that ASW mRNA is highly expressed in the female urogenital

ridge at the stages preceding and during sexual differentia-

tion [33,34]. Additionally, HINT mRNA is expressed at levels

about two-fold greater in males than in females, in develop-

ing chicks more than in adult chickens, and at a message level

one-seventh to one-tenth the level of ASW in stage-29

females [33]. ASW was cloned a third time as a message that

is increased in cells lacking the splicing factor ASF/SF2 [37].

Surprisingly, ASF/SF2 did not affect splicing of the ASW

message but rather destabilized the mRNA [37]. Involvement

of ASF/SF2 in the regulation of ASW mRNA is interesting

because sex-specific splicing of doublesex mRNA in

Drosophila, a sex-determining gene for which the mam-

malian DMRT genes were named, is mediated in part by

ASF/SF2 [38]. Although the initial cloning of ASW pre-dated

knowledge that Hint is an enzyme, both groups suggested

that Asw might function by a dominant-negative mechanism

through heterodimerization with Hint, thereby inducing

female development [33,34]. Heterodimerization was also

discussed in the review literature [18], also without aware-

ness that Hint function depends on enzymatic activity [30].

Results and discussion 
Genomic and expression data suggest that the purpose of

Asw is titration of Hint function. How might this work? In

the simplest case, a normally dimeric enzyme with two active

sites that is produced as a heterodimer with one good and

one bad active site would be expected to have 50% of the

specific activity of the homodimer. This is not a scenario for

dominant negativity and, in fact, such a scenario does not

explain why Asw is produced at all. If Asw were simply an

inert dimerization partner for Hint, a 50% reduction in Hint

cellular specific activity could be obtained if there were no

ASW genes on the W chromosome. Males would have two

doses of HINT and females one dose, such that twice as

much Hint dimer could be made in males as in females. Fur-

thermore, if ASW were simply a loss-of-function allele, given

the paucity of genes on the W chromosome, sex-chromo-

some theory [4] suggests that such a gene would be lost. The

repeated and highly expressed nature of the gene suggests

that it has evolved to be dominantly interfering - the chal-

lenge is to determine the mechanism of dominance over the

Z-encoded HINT.

One might expect a Hint-Asw heterodimer to have substan-

tially less than 50% of the activity of a Hint homodimer if

Hint homodimers showed cooperativity with respect to sub-

strate binding and/or hydrolysis. For example, if the first

nucleotide substrate were to bind weakly but the presence of

the first bound substrate promoted efficient binding of a

second substrate, then a heterodimer containing one func-

tional and one nonfunctional active site would retain only

one low-affinity binding site and be severely defective. This

mechanism can be largely excluded, however, because sig-

moidal substrate saturation kinetics were not observed with

AMP-NH2 [30]. The data for both rabbit and yeast Hint

enzymes indicate that the dimer’s two crystallographically

defined nucleotide-binding sites [25] bind nucleotide inde-

pendently and fit well to a single submicromolar Km for each

enzyme (Figure 2) [30].

As cooperativity is difficult to invoke in this system, we

consider that for Asw to titrate Hint enzyme activity by
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Figure 1
Sequence alignment of Hint and Asw. Secondary structural elements are from the crystal structure of rabbit Hint [25]. The primary sequences of rabbit
[40] and chicken [33] Hint are aligned with chicken [34] and quail [33] Asw. Green denotes identity among all sequences. Blue denotes identity between
Hint sequences at residues not identical in Asw. Pink denotes identity between Asw sequences at residues not identical in Hint. Sixteen residues involved
in AMP interactions, including 14 identified from Hint-nucleotide co-crystal structures [25] plus His110 and Trp123, are boxed. Note that 15 of 16
nucleotide-interacting (boxed) residues are chromosomally dimorphic (pink/blue) and that the dimer interface, which is located primarily in helix �2 and
strand �4, is highly conserved.
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heterodimerization, Asw must carry a signal for mislocalization

and/or proteolysis, and/or somehow alter the Hint active

site. We therefore constructed a molecular model of the

proposed Hint-Asw heterodimer by superimposing the

chicken Hint sequence on the determined X-ray structure of

rabbit Hint, and threading and minimizing the Asw

sequence on the opposing monomer. This analysis sug-

gested: first, that Hint and Asw do retain sufficient

sequence identity at the dimer interface to form a hetero-

dimer; second, that Asw has an insertion sequence at the

bottom of the dimer that could be a site of alternative local-

ization or proteolysis; and third, that Gln127, a residue that

Asw has substituted for Trp123 of Hint, may interfere with

the function of His114 in Hint across the dimer interface.

Although altered specificity of a putative Hint-Asw hetero-

dimer is conceivable, the simplest enzymatic mechanism for

dominant interference is that Gln127 from Asw depresses

activity from the Hint active site.

The dimer interface of Hint is formed by antiparallel interac-

tions between helix �2 and its symmetry mate and strand �4

and its symmetry mate [25]. These sequences are contiguous

in the primary sequence of Hint and form the region of
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Figure 2
Hint hydrolases are not cooperative for AMP-NH2 hydrolysis. Substrate
concentration-dependent hydrolytic rates (per monomer) for rabbit Hint
(filled circles) and yeast Hnt1 (open triangles) indicate that Hint
hydrolases, although dimeric, have a single Km for substrate. Reproduced
with permission from [30].
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Figure 3
Proposed structural basis for dominant negativity by Asw. (a) Hint dimer with conformations of His114 and Trp123 as determined crystallographically [25]
and a model of adenosine 5�-monophosphoramide substrates in ball-and-stick representation. (b) Proposed structure of an Asw (pink)-Hint (blue)
heterodimer with predicted conformation of Asw Gln127 extending into the vicinity of Hint His114 and the bound Hint substrate. (c) Stereo view of a
close-up superposition of the Hint homodimer (green) depicted in (a) with the Asw-Hint heterodimer (pink and blue) depicted in (b). The amino acids in
green are in the active Hint homodimer conformation. Note that Asw Gln127 (in pink) is proposed to alter the conformation of Hint His114 (in blue)
such that catalysis from the Hint active site is depressed.
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greatest identity with Asw (Figure 1). Apart from the curious

substitution of 15 of 16 nucleotide-proximal residues in Asw,

the most dissimilar region of Asw consists of a five amino-

acid insertion between strands �1 and �2 and substitution of

Gly-Ala-Pro (Asw) for Asp-Glu-Ser (Hint) at the amino-ter-

minal end of helix �2. Both these changes are located on the

bottom surface of the dimer [25]. The bulky amino acids in

the Asw insertion (Pro-Leu-Trp-Thr-Arg), which in Hint is

an extremely tight � turn, may be a handle for altered local-

ization or proteolysis. Cellular localization of green fluores-

cent protein (GFP) fusions to Hint and Asw was investigated

in male chick embryo fibroblasts [33]. GFP-Hint was found

to be distributed in the cytoplasm and the nuclei, though

somewhat concentrated in the nuclei with respect to the GFP

control [33]. GFP-Asw was found to be essentially confined

to nuclei [33]. Though localization of Hint in Asw-overex-

pressing cells was not examined, if Hint has extranuclear

(that is, Cdk7-exclusive) functions, then excluding Hint from

the cytoplasm may be an important function of Asw.

The crystal structure of nucleotide-bound forms of rabbit

Hint showed that the carboxy-terminal amino acids of each

Hint monomer extend across the dimer interface and are

buried near the opposing nucleotide. The Trp residue in the

extreme carboxy-terminal Trp-Pro-Pro-Gly motif is buried

near His114, the final His of the HIT motif, of the opposing

monomer [25]. His114 corresponds to His98 of Fhit, which

was localized in low barrier hydrogen-bonding distance to

the �-� bridging oxygen of a bound ApppA analog in co-

crystal structure with Fhit His96Asn [35]. On the basis of

mutagenesis of the conserved His residues in Fhit [39] and

the location of these His residues in crystal structures of

Hint and Fhit [25,35], a catalytic role was proposed for

His114 [24]. The structures show that His51 is in the same

plane as His114, with the �N of His 51 positioned to accept a

hydrogen bond from the �N of His114. This geometry was

considered critical for the enzymatic activity of Hint and

Fhit. As shown in Figure 1, Asw sequences contain a substi-

tution of Gln127 for Trp123 of Hint. As shown in Figure 3,

Gln127 of Asw is predicted to alter the conformation of Hint

His114 such that His114 is not positioned for productive

hydrogen bonding, dominantly depressing hydrolase activity

from the Hint active site. In short, loss of the AMP-binding

site is predicted to account for negativity of Asw. Gln127 and

possibly insertion sequences that may have a role in stability

or localization are predicted to make Asw dominant.

Conclusions 
Identification of sex-linked ASW and HINT genes in birds

has raised new experimental questions. It will be interesting

to learn whether Asw and Hint heteromultimerize and what

the in vitro and in vivo stabilities of heterooligomers are with

respect to the homodimers. It will be interesting to determine

whether Asw homodimers display any binding to Hint sub-

strates, what degree of Hint enzyme activity is retained by the

putative Hint-Asw heterodimer, and whether Gln127 is

required for depression of Hint enzymatic activity in Hint-

Asw heterodimers. Turning to genetic analysis, if ASW has a

significant role in feminization of birds, then viruses that

increase expression of Asw may promote female development

in ZZ eggs, potentially in a manner that requires Gln127. If

HINT is part of the Z chromosome that works by gene

dosage, then viruses that direct expression of Hint may

promote male or intersexual development in ZW eggs as was

seen with ZZW triploids [20]. Finally, if it is true that Hint

enzyme activity is important in making ZZ chicks male or if

Hint inhibition is important in making ZW chicks female,

then it will be interesting to learn whether Hint is involved in

establishment or maintenance of sex in other animals. 
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