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Expressionview: visualization of quantitative trait loci and gene-expression data in EnsemblWe present here a software tool for combined visualization of gene-expression data and quantitative trait loci (QTL). The application is implemented as an extension to the Ensembl project and caters for a direct transition from microarray experiments of gene or protein expression levels to the genomic context of individual genes and QTL. It supports the visualization of gene clusters and the selection of func-tional candidate genes in the context of research on complex traits.

Abstract

We present here a software tool for combined visualization of gene-expression data and
quantitative trait loci (QTL). The application is implemented as an extension to the Ensembl project
and caters for a direct transition from microarray experiments of gene or protein expression levels
to the genomic context of individual genes and QTL. It supports the visualization of gene clusters
and the selection of functional candidate genes in the context of research on complex traits.

Rationale
A quantitative trait locus (QTL) [1] describes a chromosomal
region containing one or more genes involved in the expres-
sion of a polygenic trait. Public sources for QTLs are, among
others, the National Center for Biotechnology Information
(NCBI) LocusLink [2], the Ensembl database [3] and the spe-
cies-specific Rat Genome Database [4]. QTLs are identified by
the association between a set of genetic markers and the seg-
regation of the studied trait. The strength of the association is
measured as a linkage score. Significant peak values reveal
the most likely position of the QTL, and its limits are set with
the help of confidence intervals [5].

Global approaches to genetic analyses, such as large-scale
sequencing or gene-expression profiling using cDNA and oli-
gonucleotide microarrays, are considerably accelerating the
process of reducing the number of positional candidate genes
in QTL regions [6]. Global gene-expression profiling at the
RNA and protein levels is emerging as a new methodological

approach to identify molecules that are involved in particular
biological processes such as disease pathogenesis. Whole-
genome cDNA and oligonucleotide microarrays allow the
simultaneous evaluation of many thousands of genes [7].
Similarly, protein microarrays, two-dimensional gel electro-
phoresis and mass spectrometry allow the simultaneous pro-
filing of a large number of proteins [8-10].

For polygenic diseases, differential gene-expression data is
commonly derived from comparative transcriptomics or pro-
teomics experiments of diseased and control tissue or cells.
Such studies yield lists of genes beyond those within QTL
regions that are potentially involved in the onset and/or
development of the disease [11]. Databases and software tools
assist with an in silico analysis of these sets of candidate
genes, for example, specifying subsets of candidates by clus-
tering [12]. Other tools, such as a database of interacting pro-
teins [13-15], may help elucidate functional dependencies of
genes within QTL regions.
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The analysis of candidate genes in the laboratory is very labo-
rious as it may include determination of RNA splicing and
stability, DNA methylation and nucleotide polymorphisms,
comparison of RNA and protein expression levels, and iden-
tification of post-translational modifications. Hence, soft-
ware tools that reduce the initial candidate genes, or that set
a preference for a subset of genes, save time and investment
[16,17].

Software that caters for the simultaneous presentation of
gene-expression and genomic linkage data is still not availa-
ble. Here we introduce Expressionview, a software tool for
visualizing microarray-generated expression data combined
with QTLs, as a local extension of a mirror of the Ensembl
project [3,18].

Expressionview
Expressionview is a Perl script derived from the Ensembl pro-
gram blastview. It is freely available (see Availability) and can
be added to local installations of the Ensembl project. The
user submits data via a web interface in two possible formats.
The following is an example of the specification of a QTL:

QTL group = EXP1 chr = 1 cMpos = 36 cMmin = 25 cMmax =
51 trait = body weight name = Bw5 col = green

Attributes of the QTL are tab-delimited. The 'group'-attribute
specifies a tag to a set of entries (such as experiment 1, exper-
iment 2) that may be used for the determination of consen-
suses between QTLs. 'cMmin' and 'cMmax' determine the
lower and upper borders of the confidence interval of the
QTL. The position may alternatively be expressed in base-
pairs or by flanking markers of the QTL. Optionally, 'cMpos'
specifies the position of the maximum of the test statistic (for
example, LOD score). The 'trait' references the phenotype
characteristic of the QTL effect, and 'name' is the QTL symbol
to be displayed as identifier. 'col' determines the display color
of the QTL.

The following is an example of the specification of a gene and
its expression level:

EMBL name = AA003244 exp = -1 col = green 

SWALL name = P02340 exp = 1 

ENSEMBL name = ENSMUSG00000026827 exp = 0 

AFFY name = 98984_f_at exp = 1

As in the previous case, the line starts with an identifier of the
type of data; for gene products this is the corresponding data
source (for example, the name of a public database). The
'name' attribute specifies the accession number of the gene
responsible for the gene product as provided by the selected

database. 'exp' gives the level of the expression (-1 for
decreased, +1 for increased, 0 for unchanged) and, optionally,
'col' the color. If not declared in the submission form, the
color is set automatically depending on the expression level of
the gene. Internal references of Ensembl are used to link
Affymetrix ProbeSet IDs with Ensembl genes. These do not
refer to the UniGene annotation of Affymetrix [19], but
require sequence identity of the Affymetrix oligos with
Ensembl transcripts.

Submitted genes are displayed as arrows alongside the chro-
mosome. The arrows are colored according to the expression
level of the gene ('upregulated', 'downregulated' or 'invari-
ant') and named by the Ensembl gene ID or a linked external
ID. Optionally, a link to a custom URL may be provided.
Besides the graphical presentation, the link between QTL
regions and gene locations is also summarized in a table (not
included).

QTL regions are displayed as vertical bars to the right side of
the chromosome and are identified by their names. Different
colors represent different traits. While moving with the com-
puter mouse over the image, context menus pop up; these
show additional information and link to further methods of
computational analysis of the genome as provided by
Ensembl. In some situations, researchers are particularly
interested in the overlapping regions of some QTLs (see
Application examples). The web interface includes the option
to highlight such intersections for submitted QTLs sharing a
given characteristic (selectable from the list of features). The
user may also select the characteristics of the conversion
between genetic and physical maps, as the QTL data are usu-
ally expressed in genetic linkage units. Such characteristics
are described below in detail.

Map conversion tool
The recombinant nature of the genome and the directed
selection criteria of researchers lead to remarkable differ-
ences in the chromosome maps of single strains within the
same species. Because the mapping data for QTL regions is
derived from experiments with different strains and per-
formed in different laboratories, such data should be used
with caution. This is particularly necessary for the conversion
of units of one map type to another [20], as required to stand-
ardize units derived from heterogeneous data sources. A con-
version of genetic positions into a base-pair standard is
necessary to represent the data under Ensembl as provided by
the foregoing tool, and it allows further analysis in Ensembl
(for example, synteny analysis, search for genes, expression
profiler). Therefore, an additional tool was developed to cal-
culate the most likely physical location for a given genetic
position in the mouse genome. 

The conversion is implemented as a regression curve based
on a sliding window of selectable size. The result is a curve
Genome Biology 2003, 4:R77
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whose tangents stand for the linear regression at each point
centred within the current window. The window size deter-
mines the start and end points of the regression curve. For
conversions at the telomeres, outside the calculated curve, the
algorithm interpolates the result linearly. The window size
also affects the shape of the regression curve and its confi-
dence intervals: with a decreasing window size, the accuracy
of the fitting increases but the confidence intervals widen,
and vice versa. 

The regression curve is calculated on a data sample of DNA
sequences that are cataloged both in physical maps (by the
Ensembl database) and in genetic linkage maps (by the NCBI
LocusLink database). The graphical interface for the conver-
sion between genetic and physical positions allows the user to
select the initial dataset (genetic markers and/or genes with
known locations in the genetic and physical maps) from
which all inferences are made, and further parameters like
the size of the sliding window, the tolerance threshold for out-
liers, and optionally the additional plot of the regression line
for the whole dataset for control. The display assists the user
in deciding on the reliability of the numerical estimate, as he
or she may be confronted with sparse data in the region of
interest.

The map conversion tool is of major importance for the com-
bined display of genetic data and gene positions. The pres-
ence of outliers in the database used for the map conversion
tool may force the confidence intervals for the location of the
marker to extend to almost the whole chromosome (for exam-
ple, at the end of the chromosome 16 of the mouse). These
problems were addressed in advance by the option to set a
threshold for the tolerance towards outliers. Nevertheless,
even without outliers, there is no perfect linear relationship
between the physical and the genetic linkage maps, because
the probability of a crossing-over is not homogeneously dis-
tributed across the chromosome [21].

The shape of the curves that describe the relationship
between genetic linkage and physical maps resemble a stair
with smooth steps rather than a linear model. This is exempli-
fied by chromosome 1 of the mouse (Figure 1), for which the
deviation of the calculated regression curve from the global
linear regression line partially exceeds the limits of the confi-
dence interval. The information loss due to the conversion
can thus be remarkably minimized with the map conversion
tool as compared with the linear regression model.

Display of the map conversion tool for mouse chromosome 1Figure 1
Display of the map conversion tool for mouse chromosome 1. Genes and markers, known both in terms of their physical position (Mbp; y-axis) and 
genetic linkage units (cM; x-axis), are plotted as black crosses and triangles. The regression curve, based on sliding windows of 20 points size, is plotted in 
red and flanked by its confidence intervals plotted in green. The regression line for the whole dataset is shown as a solid orange line. A potential QTL (red 
and blue lines) described in genetic linkage units (21-28 cM) is converted to physical positions using either the calculated centroids on the regression line 
(red brace: 40.8-54.6 Mbp) or their confidence intervals (blue brace: 35.3-61.5 Mbp).
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The inclusion of gene positions as additional genetic markers
may resolve some consistent ambiguities - not simple outliers
- in the data distribution (for example in the second half of the
chromosome 2 of the mouse). The map conversion tool
addresses the problem of the heterogeneity of the data by
adjusting the confidence intervals locally to the data. The pos-
sibility of an erroneous assignment is reduced and expressed
in terms of probability. The general options of the map con-
version tool are integrated as a subroutine of Expressionview
(default settings are: complete initial data set, 20 points of
window size and 20% deviation tolerance for outliers). The
user may customize the conversion parameters in order to
improve either the reliability or the accuracy of the conver-
sion, as they are inversely related.

Application examples
The different features of Expressionview can be combined in
several ways, depending on the particular requirements of the
researcher. Some examples are given below. 

QTL versus QTL
QTLs can be reduced in size by combining data for the same
trait in parallel experiments [22,23]. The intersection
between similar QTLs measured in different strains shrinks

progressively with increasing sample size. Expressionview
provides a comfortable display of these intersections and an
overview of the relative sizes and positions of the different
regions being analyzed (Figure 2).

QTL versus gene-expression profile
Gene-expression data from patients affected by a polygenic
disease may point to particular genes among the candidate set
constituting the QTLs associated with the same disease [24].
Expressionview displays these data globally on the karyotype,
assisting the researcher with an overview of the distribution
of the differentially expressed genes and their particular inci-
dence within QTLs accounting for the same trait (Figure 3).

Combinations
The foregoing examples can be extended for exploring possi-
ble relationships between heterogeneous data sharing a
higher-order trait. For example, one may combine QTLs
accounting for different autoimmune diseases in order to
search for common associations. In this case we may simply
display the intersections between these different QTLs. Fur-
thermore, one may also combine this result with the gene-
expression profiles characteristic of one, some, or all complex
traits analyzed. This may help to establish new hypotheses to
be put to the test in the lab.

Simultaneous display of overlapping QTLsFigure 2
Simultaneous display of overlapping QTLs. QTLs measured for the same trait but in different mouse crosses (annotated with different colors) are 
represented as vertical bars beside the chromosome. The consensus QTL regions (in black) represent the overlap common to all crosses they were 
measured in.
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Discussion
Expressionview assists scientists in keeping an overview of
their data. This is particularly supportive for huge datasets
distributed over the whole karyotype. However, this tool may
also be helpful for proposing new hypotheses. For example,
the data visualization may suggest to the biologist the pres-
ence of unknown QTLs in regions of high density of differen-
tially expressed genes not matching any known QTL. Also, the
bioinformatician is invited to search the gene databases for
other possibly relevant genes in that particular region. And, of
course, both are asked to direct their efforts towards genes
located inside the known QTLs. Such a display, together with
the functionality of Ensembl (for example, sequence similar-
ity tools, syntenic regions relevant for a certain disease),
makes the tool very supportive in the combined analysis of
gene expression and QTL data. 

Availability
Expressionview [25,26] and the map conversion tool [27] are
freely available. 
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Simultaneous display of QTL and gene-expression dataFigure 3
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