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Abstract

Background: The recent completion of the Drosophila melanogaster genomic sequence to high
quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78%
of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve
genomic annotations. We made the annotation process more rigorous by inspecting each gene
visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene
model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.

Results: Although the number of predicted protein-coding genes in Drosophila remains essentially
unchanged, the revised annotation significantly improves gene models, resulting in structural
changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable
elements and non-protein-coding RNAs as new features, and extended the annotation of
untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of
genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts,
neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced
genes that encode distinct, non-overlapping peptides, and numerous nested genes.

Conclusions: Identification of so many unusual gene models not only suggests that some
mechanisms for gene regulation are more prevalent than previously believed, but also
underscores the complex challenges of eukaryotic gene prediction. At present, experimental data
and human curation remain essential to generate high-quality genome annotations.
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Background 
In the lexicon of genomics, an annotation is any feature tied to

the genomic DNA sequence, for example, a protein-coding

gene model, a transposon, or a non-protein-coding RNA gene.

Adding such annotations to the sequence of a genome in a rig-

orous and consistent way is a prerequisite for the efficient use

of that sequence in biological research. Learning how to iden-

tify, display, query, and interpret genome features in well-

characterized model organisms like the fruit fly, Drosophila

melanogaster, is crucial to understanding the genomes of

more complex organisms, including Homo sapiens.

A major long-term goal of the FlyBase [1,2] annotation

project is to overlay the Drosophila melanogaster genomic

sequence with all available biological information and to

provide traceable evidence for every annotation in a publicly

accessible database. In this paper, we provide a description

of our most recent step toward these goals.

In March 2000, a collaborative group including Celera

Genomics, the Berkeley and European Drosophila Genome

Projects (BDGP and EDGP), and a number of additional

Drosophila experts published the annotated, nearly finished

genomic sequence of the fruit fly [3,4]. This annotated

sequence was called Release 1, in anticipation of future

changes to the sequence and annotations. At that time, the

annotation of genes relied heavily on computational gene-

prediction algorithms with only limited human curation. The

BDGP provided approximately 80,000 expressed sequence

tags (ESTs), mostly from the 5� ends of genes, which were

used in the computational analyses of the genome [5].

Because these ESTs were derived from non-normalized

cDNA libraries and were limited in number, they corre-

sponded to only about 40% of all genes in the genome [5].

Complete or nearly complete sequences for an overlapping

set of approximately 2,500 known Drosophila genes in

GenBank/EMBL/DDBJ were also available [3]. Owing to the

nature of whole-genome shotgun (WGS) assembly, the 1,630

gaps present in the genome tended to occur at the sites of

repetitive sequence [3]; gaps corresponding to transposable

elements were filled with composite sequences (reflecting

sequence reads from throughout the genome) rather than

the actual sequence. Release 1 predicted 13,601 protein-

coding genes, encoding 14,080 transcripts; each gene was

assigned a unique CG identifier. The coordinates and pre-

dicted sequences of the annotations, although not the evi-

dence for the predictions, were made available to

GenBank/EMBL/DDBJ [6-11] and FlyBase, the public data-

bases charged with making these annotations accessible to

the research community. In FlyBase, the annotations were

made available as part of the genome annotation database,

Gadfly [12].

Release 2, a collaborative effort between Celera Genomics

and the BDGP, was submitted to GenBank/EMBL/DDBJ

and FlyBase in October 2000, after approximately 330 of the

gaps in the Release 1 sequence had been filled. Changes to

the annotations were based largely on approximately 6,000

new 3� ESTs sequenced by the BDGP, which increased the

number of genes with 3� UTRs and allowed further refine-

ment in gene structures. Sequences of transposable elements

remained inaccurate, being based on composite sequences.

In all, 748 transcripts were modified, 114 transcripts were

deleted, and 336 transcripts were added. Release 2 predicted

13,474 protein-coding genes, encoding 14,335 polypeptides,

of which 13,218 (92%) were unchanged relative to Release 1.

Thus, the change from Release 1 to Release 2 was minimal. 

Inaccuracies in the Release 1 and 2 predicted gene structures

resulted mainly from computationally predicted annotations

which lacked supporting cDNA data. In addition, the anno-

tation was carried out rapidly by a large and diverse group of

curators. Mistakes in the annotation of more than 1,000

genes were reported to FlyBase in error reports from the

community, and over 1,000 discrepancies between the

translated annotations and those in the curated protein

database SWISS-PROT [13] were reported by Karlin et al.

[14]. Finally, a report of 1,042 new predicted annotations

that did not match any of the original 13,601 predicted genes

[15], and another based on analysis of testes cDNA

sequences [16], suggested that the initial annotation may

have missed a substantial number of genes. 

The D. melanogaster 116.8 megabase (Mb) euchromatic

genomic sequence has now been finished to high quality

[17]. Here we report the results of the re-evaluation of previ-

ous annotations in light of the finished euchromatic genome

and considerable additional experimental data. We call this

sequence and new annotation set Release 3.

To support this re-annotation effort, a computational

‘pipeline’ was created, and the results were stored in a new

Gadfly database, so that evidence for the annotations can be

tracked and queried by the public [12]. To identify new fea-

tures in the genome, we utilized prediction software and

annotated alignments of non-protein-coding genes, trans-

posons [18], and pseudogenes. To improve the extent and

consistency of human curation, a small group of expert

FlyBase curators visually inspected each gene in the entire

euchromatic sequence, using defined rules to integrate com-

putational analyses, cDNA data and protein alignments into

updated annotations. To assess the accuracy of the exon-

intron structures, we compared the resulting annotations to

the subset of curated peptides in SWISS-PROT and TrEMBL

that are based on experimental evidence [12].

The annotations in Release 3 alter the majority (85%) of

gene models, yet confirm that previous releases accurately

reflected the number of protein-coding genes. The gene

models have been enhanced in a number of ways. The

number of genes with annotated untranslated regions

(UTRs) and alternative transcripts has increased as a direct
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result of the increase in EST and complete cDNA sequences,

and the fine details of the exon-intron structure are signifi-

cantly improved. Numerous genes have been merged and/or

split - that is, the partitioning of adjacent exons into individ-

ual gene models has changed - based on cDNA and protein

sequence alignments. Overall, the improved annotations

result in changes in more than 40% of the predicted pro-

teins; however, more than 85% of the exons in the originally

predicted genes contain sequences that are present in pre-

dicted exons in Release 3. We describe these changes under

the headings ‘Genome statistics: how is Release 3 different?’,

‘New and deleted annotations’, and ‘Structural changes to

gene models’ in Results and discussion.

The new annotations reveal a surprising number of genes

that fall outside the typical definition of a protein-coding

gene model with a 5� UTR, coding sequence (CDS), and

3� UTR distinct from neighboring genes. We found genes

containing 3� UTR sequences that overlap the 5� UTR of the

gene immediately downstream, examples of dicistronic tran-

scripts (two or more distinct and non-overlapping coding

regions contained on a single processed mRNA), and genes

that, by means of alternative splicing, encode two completely

distinct non-overlapping peptides. These atypical gene

models illustrate the complexity of detailed annotation and

pose new challenges for the computational annotation of

genomic sequence. We describe these unusual genes, as well

as assessment of and access to the data, under the headings

‘Complex gene models’, ‘Assessment of Release 3 quality’,

‘Accessing data and reporting errors’, and ‘Future updates’.

Results and discussion 
We developed a set of rules for annotation to help curators

using the Apollo annotation tool [19] to move quickly

through the computational results for each gene, and to

annotate gene models as consistently as possible (see Mat-

erials and methods). Curators predicted transcripts sup-

ported by some combination of: computational gene

structure predictions made by the Genie [20] and GENSCAN

[21] programs; sequence similarities to proteins in flies and

other species detected with BLASTX protein similarities, or

TBLASTX similarities to virtually translated cDNA

sequences [22,23]; and alignments of Drosophila ESTs and

full-insert cDNA sequences generated by Sim4 [24] (see

Materials and methods). Computational results overlapping

transposon annotations were ignored when annotating

protein-coding genes and RNAs; transposable elements were

annotated separately [18].

We report here the re-annotation and analysis of the euchro-

matic portion of the D. melanogaster genome. There is no

universally accepted definition of heterochromatin versus

euchromatin; hence any declared boundary is somewhat

arbitrary. We have adopted the following operational dis-

tinction: the 116.8 Mb sequence in the Release 3 large

chromosome arm contigs constitutes euchromatin and is the

subject of this report. The 20.7 Mb of sequence in the whole-

genome shotgun-3 (WGS3) assembly [17] that is not repre-

sented in the large chromosome-arm contigs constitutes

heterochromatin; analysis of these sequences is reported in

an accompanying paper [25]. However, we note that this is

an oversimplification, as the proximal portions of the large

chromosome arm sequences extend into what is defined as

heterochromatin by cytological criteria (see [25] for a

detailed description). The chromosome arm contigs are

essentially finished, high-quality sequences, whereas the

WGS3 non-redundant contigs are draft quality [17]. The

euchromatic regions contain 98% of known genes and the

statistics provided in Tables 1-4 refer only to these genes.

The 2% of genes found in heterochromatin cannot be anno-

tated with sufficient confidence to provide this detailed

information, because the WGS3 is still draft sequence.

However, the addition of these genes is unlikely to apprecia-

bly change the results of our analysis. 

Genome statistics: how is Release 3 different? 
Increase in the number of exons and transcripts, but not genes 
Although the re-annotation process changed the majority of

gene models, the number of protein-coding genes changed

minimally, from 13,601 genes in Release 1 to 13,474 genes in

Release 2 to 13,676 in Release 3, of which 13,379 are in the

euchromatin (Table 1) and 297 in the heterochromatin [25].

However, the Release 3 gene structures have changed to

contain more exons. The total number of unique exons in

euchromatin, defined as having unique sequence coordinate

termini, has increased 11% from 54,793 in Release 2 to

60,897 in Release 3 (see Table 1). The number of protein-

coding exons has increased as well, from 50,667 to 54,934

(we define a protein-coding exon here as any exon contain-

ing CDS, even if the majority of the exon is UTR). The conse-

quence is that the average number of exons per gene has

increased from 4.1 in Release 2 to 4.6 in Release 3, which is

very similar to C. elegans (4.5 [26]) and Arabidopsis (4.6

[27]) but significantly lower than H. sapiens (8.9, see, for

example [28]).

A major contributor to the increase in exons is the increase

in the number of protein-coding genes with identified

5� UTRs. One limitation of ab initio gene prediction pro-

grams is that they predict only open reading frames (ORFs):

EST and full-length cDNA data are absolutely essential to

identify UTRs. The expanded set of available EST/cDNA

data led to a significant increase in the number of annotated

genes and transcripts with 5� UTRs (from 57% of the genes

in Release 2 to 76% in Release 3) and 3� UTRs (from 36% of

the genes in Release 2 to 72% in Release 3; Table 1). These

numbers reflect data availability: sequences from cDNA

clones representing at least one transcript from approxi-

mately 78% of the genes in Drosophila were supplemented

by a large number of additional 5� ESTs [29,30]. The length

of the UTRs also increased with these new data (Table 1):



the average 5� UTR length per transcript (for genes with

annotated UTRs) increased by 30%, to 265 nucleotides, and

the average 3� UTR length (for genes with UTRs) by 19%, to

442 nucleotides.

Four times as many genes in Release 3 (20%) as compared to

Release 2 (5%) show alternative transcripts (Table 1). The

vast majority of these are due to alternative splicing (an

introduced bias; see Materials and methods), but 13% are

due to alternative promoters and 6% to alternative

polyadenylation sites. Alternative splicing results in the 26%

increase in the number of protein-coding transcripts, and is

largely responsible for a 14% increase in the number of

unique protein species: from 13,922 in Release 2 to 15,848 in

Release 3.

Forty-five percent of predicted proteins differ from Release 2 
The changes in gene models also result in larger proteins.

Proteins in Release 3 have a mean length of 552 amino acids

and a median of 421 amino acids. This is an increase com-

pared to Release 2, where the mean was 503 amino acids

and the median 385 amino acids. The longest transcript and

protein are encoded by dumpy (dp), which encodes a

massive 69.7 kilobase (kb) mRNA and a 23,054 amino-acid

polypeptide. The Dp protein is a component of the extracel-

lular matrix, and appears to serve as an elastic adhesion

molecule at cuticle-cell junctions, such as the epidermal-

cuticle interface [31].

The vast majority (94%) of the Release 3 annotations contain

sequences that are present in exons from Release 2;

however, only 63% of the unique peptides in Release 2 are

unchanged in Release 3 (Table 1). Of the 15,848 unique

Release 3 peptides, 8,769 (55%) are exact matches to Release

2 peptides. Reciprocally, 45% of the peptides are different

from Release 2, emphasizing that, although the overall

picture of the number and distribution of transcription units

in the D. melanogaster genome remains largely the same,

the new annotations include many changes to the protein

products encoded by the genome.

New and deleted annotations 
The re-annotated genome now includes non-protein-coding

genes (tRNAs, microRNAs, snRNAs, and snoRNAs) and

transposable elements. Although some of these features

were reported in the publication of the first release [3], the

coordinates of these features were not included in data sent

to public databases. 
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Table 2

Types of annotations in Release 3 euchromatin

Description Release 2 Release 3 

Protein-coding genes 13,474 13,379

tRNA genes 0 290

microRNA genes 0 23

snRNA genes 0 28

snoRNA genes 0 28

Pseudogenes 0 17

Miscellaneous non-coding RNA 0 38

Transposons 0 1,572

Total annotations 13,474 15,375

Table 1

Comparison of Release 2 and 3 genome statistics

Release 3
Release 2 euchromatin†

Description* (% of total) (% of total)

Total protein-coding genes 13,474 13,379

Total length of euchromatin 116.2 Mb 116.8 Mb

Exons 54,793 60,897

Protein-coding exons‡ 50,667 54,934

Length of genome in exons 23.3 Mb (20%) 27.8 Mb (24%)

Introns 41,381 48,257

Genes with 5�� UTR 7,680 (57%) 10,227 (76%)

Transcripts with 5��UTR 8,499 (59%) 14,707 (81%)

Average 5�� UTR length 204 nucleotides 265 nucleotides

Genes with 3�� UTR 4,824 (36%) 9,646 (72%)

Transcripts with 3�� UTR 5,381 (38%) 14,012 (77%)

Average 3�� UTR length 370 nucleotides 442 nucleotides

Average ratio of length of 0.86 0.75
CDS/transcript§

Total protein-coding transcripts 14,335 18,106

Genes with alternative transcripts 689 (5%) 2,729 (20%)

Average number of transcripts per 2.25 2.75
alternatively spliced gene

Total number alternative transcripts 861 4,743

Number of introns contained in 2,977 6,787
5��UTRs

Number of introns contained in 1,004 1,088
3�� UTRs

Unique peptides¶ 13,922 15,848

Unique peptides unchanged 8,769 (63%) 8,769 (55%)
from R2 to R3

Genes deleted from R2 to R3 345 NA

New protein-coding genes in R3 NA 802

*Abbreviations: UTR, untranslated region; CDS, (protein)-coding
sequence; R2, Release 2; R3, Release 3; NA, not applicable. All statistics
are for protein-coding genes only. †Based on the annotation of protein-
coding genes in the euchromatin (long chromosome arms); another 297
protein-coding genes are annotated in the heterochromatin (non-
redundant WGS3 [25]). In this and Tables 2-4, the numbers are based on
a version of the annotation database frozen on November 25, 2002. ‡Any
exon containing CDS, even if the majority of the exon is UTR. §The
length of the coding region divided by the length of the entire protein-
coding transcript, averaged over all protein-coding transcripts.
¶Determined because many alternative transcripts encoded the identical
CDS and differed only in the UTR.



Transposable elements 
The sequences of the vast majority of transposons in

Releases 1 and 2 were composites derived from a number of

copies of that transposon type. In Release 3, these composite

sequences are replaced with the actual sequences present in

the sequenced y1; cn1 bw1 sp1 strain for each individual

element [17,18]. In all, 1,572 transposons are annotated in

the euchromatic Release 3 genome (Table 2): 682 long ter-

minal repeat (LTR) transposons, 486 LINE transposons, 372

terminal inverted repeat (TIR) transposons, and 32 foldback

(FB) elements. These data include both full-length and

partial elements. Details of these analyses are reported in an

accompanying article [18]. 

Non-protein-coding RNA genes 
Small, non-protein-coding RNAs are also included in this re-

annotation. We searched for new tRNA genes using the

program tRNAscan-SE [32] and Sim4 alignments to known

tRNAs: 290 are annotated in the euchromatin (Table 2).

Release 1 reported 292 tRNAs [3]; two tRNA genes were

deleted as a result of sequence finishing resolving repeated

regions of the genome.

Other non-protein-coding RNAs are limited, in general, to

those already curated in the FlyBase database [1,2]. All 23 of

the known microRNAs in Drosophila are located precisely in

the Release 3 genome. We annotated the majority of the 45

small nuclear RNAs (snRNAs) involved in splicing, with the

exception of the four snRNAs, K2a, K2b, K8, and K9 [33], for

which there were no sequence or cytological data available.

Of the 41 snRNAs supported by such data, we found that

nine were redundant entries, and another five could not be

identified at the previously specified cytological locations,

possibly due to strain variation and/or inaccuracy in previ-

ous localization experiments. Thus, we precisely located by

sequence alignment 28 snRNAs in the genome, including a

new copy of the snRNA:U4atac gene in the 83A region.

All nine of the small nucleolar RNA (snoRNA) genes in

FlyBase were identified by Sim4 alignment of sequence

obtained from the literature. In addition, we incorporated data

from Tycowski and Steitz [34] and located 19 more snoRNAs.

Identification of other snoRNAs should be possible in the

future with the use of algorithms like Snoscan, which looks for

2�-O-ribose methylation guide snoRNAs [35]; however, the

program will have to be customized for Drosophila.

The longer non-protein-coding RNA genes ��-element, bft,

RNaseP:RNA, Hsr-omega, 7SLRNA, pgc, roX1, roX2, and

iab-4, are annotated in the genome. 27 new ‘miscellaneous

non-coding RNA’ genes were detected by alignment of

spliced DGC cDNAs that did not appear to contain an ORF of

significant length. In some cases these appear to be candi-

date antisense genes, which have also been reported in other

organisms [36]. Further experiments will be necessary to

verify the existence of these interesting genes and to deter-

mine their function.

Pseudogenes 
The number of pseudogenes reported in Drosophila is sub-

stantially smaller than that in Caenorhabditis elegans

[37,38]. We annotated the 12 pseudogenes in FlyBase that

map to the euchromatic sequence and correspond to

protein-coding paralogs (see Supplementary Table 1 in the

additional data files). We identified five new pseudogenes:

four histones and one lectin (CR31541) (Supplementary
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Table 3

Evidence supporting the euchromatic protein-coding gene
models*

Data category Number of % of   
Release 3 Release 3

protein-coding protein-coding
genes genes

Total 13,379 100

Release 2 annotations 12,549 94

Gene-prediction data only 815 6

Genie gene predictions 12,427 93

GENSCAN gene predictions 12,853 96

BLASTX/TBLASTX homologies 10,996 82

ESTs and DGC cDNA sequencing 10,406 78
reads

GenBank accessions† 3,104 23

ARGS (RefSeq)‡ 795 6

Error report submissions 825 6

Full-insert DGC cDNAs§ 9,297 69

*Determined by assessment of alignment overlap of data category versus
gene model. †Not including those contributed by the BDGP (not mutually
exclusive categories: many of these genes also have representative cDNA
clones in the DGC). ‡ARGS, annotated reference gene sequence; high-
quality FlyBase gene-level annotations that include data from the
published literature; contributed to the NCBI reference sequence
(RefSeq) project. §For a rigorous assessment of the quality of the DGC
cDNAs, see [30].

Table 4

Classification of euchromatic transcript and gene confidence
values

Confidence value* Number of transcripts (%) Number of genes† (%)

1 1,227 (7%) 1,201 (9%)

2 2,098 (12%) 1,975 (15%)

3 3,122 (17%) 2,437 (18%)

4 11,659 (64%) 7,766 (58%)

Total 18,106 13,379

*Confidence values reflect number of types of supporting data, from 1
(lowest) to 4 (highest); see Materials and methods. †Genes were assigned
the confidence value of the highest-scoring transcript.



Table 1). Of these 17 pseudogenes, 15 are recombinationally

derived (with introns, in tandem to their functional par-

alogs), one (Mgstl-Psi) is retrotransposed (with a poly(A)

tail, lacking introns which its functional paralog possesses),

and one is too degenerate to classify definitively. We did not

make any attempt to comprehensively survey for new retro-

transposed pseudogenes or annotate pseudogenes identified

by Echols et al. [37]. WormBase [39,40] currently reports

392 pseudogenes in C. elegans. It is very likely that a subset

of the genes identified as protein-coding genes in Release 3

are actually pseudogenes. In particular, 19 protein-coding

genes were noted as containing a ‘probable mutation in the

sequenced strain’ and more than 400 were marked ‘prob-

lematic’ because of inconsistencies with the experimental

evidence and the predicted ORFs.

New protein-coding genes 
Release 3 contains a total of 802 new protein-coding genes

(Table 1), that is, gene models that show no overlap with

exons in Release 2. Of these, 55 (7%) are based solely on

gene-prediction data, and 20 of these 55 are based on

GENSCAN predictions alone. Unlike Releases 1 and 2,

which relied heavily on Genie [3], Release 3 annotations

did utilize GENSCAN predictions (with at least one exon

with a score > 45) in the absence of other data. The major-

ity of the new genes show matches to EST (573; 71%) or

full-insert cDNA sequences (273; 34%), indicating the

importance of these alignments in identifying new genes

missed by the ab initio gene prediction programs. An addi-

tional set of new genes was identified by the community in

error reports (52; 7%) or in GenBank/EMBL/DDBJ sub-

missions (58; 7%). Finally, we created 338 (42%) new

annotations in Release 3 using protein homology data from

BLASTX analysis, arising from the comparison of trans-

lated Release 3 sequence with sequence of other proteins in

Drosophila or other model organisms, in the absence of

other supporting data.

Release 3 sequence ‘finishing’ had the largest impact on

areas of repetitive sequence, because the Release 2 WGS

sequence assembly often collapsed these regions [17]. Dupli-

cated sequences present assembly challenges to genome

sequencing efforts; tandemly duplicated genes tend to col-

lapse in sequence assembly and cannot be annotated until

the duplications are resolved. Whole-genome analysis of the

Release 2 sequence suggested that Drosophila has fewer

newly duplicated genes than nematodes or yeast [41]. We

investigated whether sequence finishing might have uncov-

ered previously undiscovered duplicated genes in

Drosophila. From this analysis, we found that the number of

newly duplicated genes is more similar to C. elegans and

Saccharomyces cerevisiae than previously believed. 

We measured the frequency of newly annotated duplicated

genes by comparing each of the transcripts encoded by the

802 new genes in Release 3 to all Release 3 transcripts using

the BLASTN program. Of the new genes, 124 (15%) have

duplicate genes (75% identity, probability = 1 x e-25) some-

where in the genome (whereas 10% of a random sample of

Drosophila genes have duplicates by this measure). Thirty-

six new genes are in repeat regions that were collapsed in

Release 2 and have now been resolved. For example, in the

previously annotated ten-gene trypsin cluster on chromo-

some arm 2R, three new trypsin genes (CG30025, CG30028,

CG30031) have been added ([17] and Figure 1). 

Deleted protein-coding genes 
We rejected a total of 345 Release 2 genes during the Release

3 re-annotation (Table 1), primarily on the basis of a lack of

supporting computational or experimental evidence (see

Materials and methods). Nineteen Release 2 genes were

deleted because they were contained within transposable

elements. If based solely on computational gene-prediction

evidence, genes that were less than an arbitrary length of

100 amino acids were deleted. We required an arbitrary

length of 50 amino acids for all annotations not specifically

supported by literature references (for example, the DIRG

genes [42]), and 42 of the deleted Release 2 annotations

were removed because they failed to meet this criterion

(Figure 2a, inset). 

The sizes of the predicted protein products in Release 2 and

Release 3 were compared (Figure 2a), along with the protein

sizes of Release 2 annotations deleted in Release 3, and sizes

of proteins newly added in Release 3 (Figure 2b). When

examining the size range of 0-50 amino acids, there is a

marked decrease in Release 3 annotations compared to

Release 2, due to the more stringent data requirements for

small annotations in Release 3 (Figure 2b, inset).

Structural changes to gene models 
There were several major categories of changes to gene

models: adjustment of exon boundaries, especially at the 5�

and 3� ends of genes; deletion or addition of exons; merges

of two or more genes; splitting of genes; and gene

splits/merges, in which neighboring or nested gene models

were split and the exons from the original gene models were

redistributed between the updated models.

The majority of changed gene models fall into the first two

categories: adjusted exon boundaries or deleted or added

exons. Many of these changes affect only UTR sequences,

leaving the CDS unchanged. A small but significant number

of gene models were more complicated and involved exon

redistribution. When these genes were merged and/or split,

new CG identifiers were assigned to indicate a substantial

change to the gene models.

Gene merges 
Evidence supporting the merger of gene models came

mainly from the alignment of full-length cDNA sequences

and, to a lesser extent, from protein homology evidence.

6 Genome Biology Vol 3 No 12 Misra et al.



Merges based solely on BLASTX similarity were more diffi-

cult, as the exact exon-intron structure of the merged model

was not experimentally indicated. A total of 1,351 Release 2

genes were merged to form 602 (5% of total) Release 3

genes. Sometimes the original predictions were spaced quite

far apart in the genome, a probable reason that the gene pre-

diction algorithm(s) separated the exons. For example, mul-

tiple ESTs support a merge of CG14409 and the Flotillin-2

gene (Flo-2 or CG11547), adding two 5� exons almost 80 kb

away from the Release 2 annotation of the Flo-2 gene

(Figure 3). The new Flo-2 transcript encodes a protein with

an additional 50 amino acids at its amino terminus.

Gene splits 
Gene model splits were often necessitated by the facts that

gene-prediction programs such as Genie and GENSCAN can

string together genes that lie close to each other and do not

resolve nested genes. Of the Release 2 genes, 322 were split

to form 675 (5% of total) Release 3 genes. For example,

the annotated gene CG6645, with 5 exons in Release 2

(Figure 4), appears to have been based on a Genie prediction

(note that GENSCAN had predicted two separate genes).

EST evidence and BLASTX homology to other fly proteins

indicated that this gene should be split into two three-exon

genes, CG32054 and CG32053. One 5� UTR exon and one

protein-coding exon in CG32053 were missed by both Genie

and GENSCAN. Thus, neither Genie nor GENSCAN correctly

predicted the structure of these two genes; each correctly

predicted aspects of the gene models, but EST and BLASTX

data were necessary to accurately determine the structure of

the two genes.

Gene splits/merges 
Gene splits/merges were defined as changes involving

more than one gene in both Release 2 and 3. While not

common, splits/merges are interesting in that they involve

simultaneous restructuring of multiple Release 2 annota-

tions. One notable example is the split of CG8278 into the

CG30350 and sns annotations (Figure 5). In this instance,

BLASTX, GenBank/EMBL/DDBJ, and cDNA records indi-

cate that the 3� half of CG8278 should be split off as a sepa-

rate gene model (CG30350), while the GenBank:AF254867
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Figure 1
A resolved misassembly from Release 2 sequence contains new trypsin genes. This illustration and Figures 3-8 are derived from the output of the
graphical annotation tool Apollo [19], but these illustrations are not intended to be a direct representation of the data used to annotate the regions.
Only evidence (shown in the black panels) directly used to annotate the gene models (shown in the cyan panels) are depicted in these illustrations. The
plus strand is shown above the center scale, the minus strand below the center scale. Thin lines represent introns and thick boxes represent exons.
Vertical green lines in the exons represent start codons and vertical red lines represent stop codons. An 8.5-kb region of genomic sequence on
chromosome arm 2R was missing in Release 2 because of an apparent misassembly that incorrectly joined two tandemly repeated trypsin genes with a
concomitant deletion of the intervening sequence (region shown in gray in the center scale). The missing sequence constituted an inverted repeat of 4kb
bordered by a simple repetitive sequence (S.C., unpublished results). Resolution of this error in Release 3 has led to the annotation of three new trypsin
genes (blue rectangles): CG30025 (similar to �Try), CG30028 (similar to ��Try), and CG30031 (similar to ��Try). Gene-prediction data (dark purple for
Genie and lavender for GENSCAN), cDNA data (dark green), and BLASTX protein similarity (red for Drosophila proteins, orange for other species’
proteins) support the new trypsin genes. 

BLASTX homology to other 
eukaryotic proteins

BLASTX homology to other 
Drosophila proteins

cDNA

Genie and GENSCAN predictions

λTry βTry

εTryαTryηTry θTryζTryκTry

δTry ιTryCG30031

CG30025CG30028

gap in Release 2 genomic sequence
6.4025Mb 6.405Mb 6.4075Mb 6.41Mb 6.4125Mb 6.415Mb 6.4175Mb 6.42Mb 6.4225Mb



Figure 2
Distribution of predicted peptide lengths in Release 2 and 3. (a) Comparison of protein lengths less than 2,000 amino acids shows that overall, Release 3
proteins of all lengths (blue) are more numerous than those in Release 2 (black). One exception is those proteins shorter than 100 amino acids: because
of stricter data requirements for Release 3 annotations, some small Release 2 annotations were not preserved (inset). (b) Comparison of Release 2
(black) and 3 (light blue) protein lengths with predictions by GENSCAN (purple) and Genie (dark blue). Also shown are the lengths of proteins that were
deleted (orange) or added (green) in Release 3. Of note is the underprediction of genes expressing small proteins by the program GENSCAN (purple).
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record indicates that the 5� exon of CG8278 plus six other

Release 2 annotations should be merged into the extensive

sns annotation. There were 93 cases in which Release 2

annotations suffered a reassignment of exons more

complex than a simple gene split or merge to generate

Release 3 annotations. 

Complex gene models
Eukaryotic genomes defy our efforts to impose simple or

computable rules of gene structure and organization. We dis-

covered many examples of genes that overlap, that share

transcription units, or that produce a dozen or more different

protein products. FlyBase uses the following nomenclature

Figure 4
The Release 2 annotation CG6645 was split to create CG32054 and CG32053. Only evidence (black panel) directly used to annotate the gene models
(cyan panel) is shown. While Release 2 annotation CG6645 on chromosome arm 2L consisted of a single long transcript (light blue), review of assembled
EST and cDNA sequencing reads (light green) and BLASTX evidence (red) led to the creation of two smaller Release 3 annotations from the two halves
of the original gene model. These new annotations (dark blue) were designated CG32054 and CG32053. Although the Genie prediction (purple data on
black panel) supports a single coding transcript, the remaining data were judged to be stronger evidence of two separate genes. Note that for CG32053,
the second exon was not included in either gene prediction, and was added on the basis of on cDNA sequencing read and BLASTX evidence (arrow).
The chromosome scale at the bottom is red to denote the location of these annotations on the minus strand. 

BLASTX homology

cDNA sequencing reads

complete cDNA

Genie prediction

CG6645 (Release 2 annotation)

GENSCAN prediction

CG32054 (split from CG6645 Release 2 annotation) CG32053 (split from CG6645 Release 2 annotation)

10052000 10051500 10051000 10050500 10050000 10049500 10049000 10048500 10048000

Figure 3
Release 2 annotations CG14409 and Flo-2 (CG11547) were merged to create an expanded Flo-2 (CG32593) gene model. Only evidence (black panel)
directly used to annotate the gene model (cyan panel) is shown. Alignments of ESTs and cDNA sequence reads (light green) and an assembled full-insert
cDNA clone sequence (dark green) support the merger of the Release 2 annotation CG14409 (light blue) and the adjacent gene, Flo-2 (light blue), on the
X chromosome. The expanded Release 3 Flo-2 annotation (dark blue) was assigned the new annotation number CG32593 to reflect this significant
change. Predicted exons derived from a single cDNA clone are joined by thin horizontal lines, indicating introns. Predicted exons not so joined derive
from different cDNA clones. Distance along the chromosome arm is shown in the scale at the bottom; the scale is black to denote the location of these
annotations on the plus strand. Although the lowermost two transcripts appear to be duplications of other transcripts, they contain a slight variation in
their 5�� exon that is not visible at the scale used in this figure.

cDNA sequencing reads

complete cDNA

CG14409 (Release 2 annotation) Flo-2 (Rel. 2)

Flo-2 (CG32593) (merge of CG14409 and Flo-2 Release 2 annotations)

14.58Mb 14.6Mb 14.62Mb 14.64Mb 14.66Mb



for complex genes: in cases of more than one transcript

derived from the same genomic region (and from the same

DNA strand), FlyBase assigns gene designations based on

the extent of the coding regions, not the extent of the tran-

scripts. If there is any overlap within the protein products

produced, even (theoretically) a single amino acid, FlyBase

considers those proteins to be products of a single gene.

Alternative splicing or dicistronic transcripts may result in

completely non-overlapping protein products produced

from overlapping transcripts; these are described in FlyBase

as separate genes. An interesting example is the previously

described Su(var)3-9 gene [43], which encodes different

transcripts that share 5� coding exons; these overlapping

transcripts encode two functionally different proteins, one a

chromatin-binding factor and the other a translation-initia-

tion factor. Despite their disparity in function, the two pro-

teins share 80 amino acids at their amino termini and are

thus classified as a single gene by FlyBase. In the following

sections, we describe the complex gene models we observed:

nested genes, overlapping genes, alternatively transcribed

genes, and dicistronic genes.

Nested genes 
The phenomenon of genes within genes, in which a gene is

included within the intron of another gene, is common. In the

analysis of the 2.9 Mb Adh region of Drosophila, the fre-

quency of nested genes was reported to be approximately 7%

[44]. In extending this analysis to the entire euchromatin, we

find that 7.5% (1,038) of all Release 3 genes, including non-

coding RNAs, are included within the introns of other genes.

Of the 879 nested protein-coding genes, the majority (574)

are transcribed from the opposite strand of the including

gene. We observed 26 cases in which the exons and introns of

a gene pair are interleaved. Transposons may also be located

within the introns of genes; we observed 431 such cases.

Overlapping genes 
We analyzed the mRNAs predicted for neighboring genes to

find those transcripts that share common non-protein-

coding genomic sequence. About 15% of annotated genes

(2,054) involve the overlap of mRNAs on opposite strands.

Some of these involve overlapping messages that have been

previously described (for example, Dopa decarboxylase and

CG10561 [45]); however, the vast majority were not previ-

ously known to overlap. Complementary sequences between

distinct RNAs from overlapping genes on opposite strands

have previously been reported in eukaryotes and have been

implicated in regulating gene expression (for reviews see

[46,47]). For example, the complementary sequence shared

between Dopa decarboxylase and CG10561 is thought to be

involved in regulating the levels of these transcripts [45].

The large number of such overlapping transcripts identified

here raises the possibility that antisense interactions may

not be an uncommon mechanism for regulating gene expres-

sion in Drosophila.

We were surprised to find over 60 cases of overlapping genes

on the same strand, for which cDNA/EST data indicate that

the 3� UTR of the upstream gene overlaps the 5� UTR of the

downstream gene. In some instances, the 3� UTR of the

upstream gene extends past the postulated translation start

of the downstream gene. One example of such an overlap-

ping model is CG9455 and Spn1 (CG9456), tandem genes

encoding serine protease inhibitors (Figure 6). The two gene

models are individually supported by a variety of BLASTX

data as well as full-insert cDNA sequences. Interestingly, the

10 Genome Biology Vol 3 No 12 Misra et al.

Figure 5
Complex split/merge creates updated sns annotation and new annotation CG30350. Only evidence (black panel) directly used to annotate the gene
models (cyan panel) is shown. Occasionally, annotation of a particular region required complex rearrangement of the exons comprising the Release 2
gene models. In this case, the second exon of the Release 2 annotation CG8278 (light blue) was split off as a new gene (CG30350, dark blue) on the
strength of DGC cDNA data (dark green) and BLASTX evidence (red). The remaining exon of CG8278, along with six other Release 2 annotations
(CG13755, CG12495, CG13754, CG2385, CG13753, and CG13752; light blue), were merged together into the large sns gene (dark blue), strongly
supported by sequence of a full-length sns cDNA, GenBank:AF254867. 

CG13755 (Release 2 annotation) CG12495 CG13754 CG2385 CG8278 CG13753 CG13752

Genie and GENSCAN predictions

GenBank (AF254867: sns)

BLASTX homology

DGC clone

sns (merged: CG13755, CG12495, CG13754, CG2385, CG8278, CG13753, CG13752)

CG30350 (split from CG8278)

3.864Mb 3.872Mb 3.88Mb 3.888Mb 3.896Mb 3.904Mb 3.912Mb



5� exon of the DGC cDNA clone covering the Spn1 gene

(AT24862) is entirely included in the 3�-most exon of the

CG9455 DGC cDNA clone (GH04125). The existence of over-

lapping genes raises many questions. Are such pairs of genes

typically co-regulated? Where are the transcriptional regula-

tory elements for the downstream gene? What are the struc-

tural constraints on the overlapping sequences? 

Alternatively transcribed genes 
One mechanism for increasing potential protein and regula-

tory diversity is through the production of alternative tran-

scripts. Approximately 20% of Release 3 genes have more

than one predicted transcript, and this is almost certainly an

underestimate. Many instances of internal alternative splic-

ing as well as alternative polyadenylation will have been

missed, as our dataset of cDNA sequences contained many

more 5� ESTs than 3� ESTs or complete cDNAs. As cDNA

collections are expanded, including those representing spe-

cific stages, tissues, and cell types, additional genes with

multiple transcripts and additional protein species produced

by alternative splicing will undoubtedly be identified.

Despite likely underestimation, the level of alternative splic-

ing that was observed clearly illustrates that alternative

splicing is an important mechanism for generating tran-

script diversity in Drosophila (see Supplementary Table 2 in

the additional data files).

Alternative splicing creates opportunities for diversity both

at the level of gene regulation and of protein diversity. In

Release 3, 35% of the 2,729 genes encoding multiple tran-

scripts generate only one protein product; the transcripts

differ only in their UTRs. Very commonly, these alternative

transcripts vary in the location of 5� non-coding exons, sug-

gesting the use of alternative promoters and offering the

possibility of differential regulation. The other 65% of genes

with alternative transcripts encode two or more protein

products, indicating that alternative splicing generates con-

siderable protein diversity in Drosophila.

A large number of related proteins can be produced from a

single gene by the simple substitution of a single domain.

This mechanism has been taken to an extreme level in the

case of mod(mdg4), which produces at least 29 distinct tran-

scripts that share 5� exons, but are alternatively spliced to an

array of different 3� exons [48,49]. Remarkably, eight of

these transcripts appear to be generated by a trans-splicing

mechanism, using variable 3� exons encoded on the opposite

strand. (Seven trans-spliced variants were previously

reported [48,49]; our analysis suggests eight.) Although we

did not find any further examples of trans-splicing, we did

find that a similar gene, lola, generates at least 21 alternative

transcripts (including four previously described [50]). The

many lola transcripts also share 5� exons, but contain one of

an array of different 3� exons. Both lola and mod(mdg4)

encode families of specific RNA polymerase II transcription

factors that include a BTB/POZ dimerization domain near

each amino terminus [50,51]. mod(mdg4) has been impli-

cated in a range of cellular and developmental processes,

including chromatin insulator functions [52] and apoptosis

[53], and it has been suggested that its many different iso-

forms underlie the pleiotropic nature of this gene [49].

Alternative splicing can produce two (or more) distinct non-

overlapping protein products from a single pre-mRNA

species; we identified 12 such cases (for example, Vanaso

and �-Spec, see Figure 7). The mRNAs produced most com-

monly share 5� UTR sequences, but may also share 3� UTR

sequences. FlyBase defines complexes of this type as two
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Figure 6
The 3�� UTR of CG9455 overlaps the downstream gene Spn1. Only evidence (black panel) directly used to annotate the gene models (cyan panel) is
shown. This example of tandem overlapping genes is supported by full-insert cDNA sequences (dark green) and assembled EST and cDNA sequencing
reads (light green). The 3�� UTR of the CG9455 transcript (dark blue) extends past the initiation site of the Spn1 transcript (dark blue). BLASTX data
(red) demonstrate that these transcripts encode independent proteins.
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separate genes, since two non-overlapping protein products

are produced. Although other groups sometimes describe

such genes as dicistronic (since the unprocessed transcript is

dicistronic), we do not include this type in our categorization

of dicistronic genes (see below). The component coding

regions are resolved on separate mRNAs, and thus internal

translation initiation is not required. We view these cases as

one extreme along a continuum of protein diversity created

by alternative splicing.

Dicistronic genes 
Examples of dicistronic transcripts have been previously

reported in Drosophila [54-61]. Our results confirm that,

while not common, numerous examples of apparent

dicistronic transcripts are encountered in Drosophila. We

limit the term ‘dicistronic’ to genes that meet the following

criteria: two distinct and non-overlapping coding regions

contained on a single processed mRNA, requiring internal

initiation of translation of the downstream CDS. In order to

categorize a transcript as dicistronic, we required that each

CDS exceed 50 amino acids in length and show some similar-

ity to known proteins. The Release 3 annotation contains 31

gene pairs that can be described as dicistronic by these crite-

ria (Figure 8, and see Supplementary Table 3 in additional

data files). This includes 12 cases for which the dicistronic

transcript is represented by a single cDNA. There are 17 addi-

tional pairs, denoted as putative, for which there is insuffi-

cient BLASTX evidence to support both ORFs in a dicistronic

gene model (see Supplementary Table 3). Since the determi-

nation of genes as dicistronic requires multiple classes of data

to confirm the transcript structure and validate the coding

regions, there are undoubtedly additional dicistronic genes

yet to be uncovered throughout the genome.

For many of the predicted dicistronic genes (31/48), there is

evidence supporting alternative monocistronic transcript(s)

for either the upstream or downstream CDS, or for both.

This includes Mosc1A+Mosc1B, for which the monocistronic

transcript encodes a fusion protein encompassing both CDSs

[59]. In some cases the dicistronic form may be less preva-

lent than the monocistronic forms: it has been estimated

that the dicistronic Adh+Adhr transcript is only 5% as abun-

dant as that of the Adh monocistronic transcripts [57]. 

Translation of the second CDS of a dicistronic transcript

requires that initiation of translation occur at an internal

site. There are two proposed mechanisms for the initiation of

internal translation. One mechanism is that internal initia-

tion occurs by partial disassembly of the ribosome at the ter-

mination of translation of the first CDS, followed by

continued scanning by the 40S ribosomal subunit [62]. The

following conditions are thought to be criteria for the riboso-

mal scanning mechanism: an absence of any ATG codons in

the intercistronic region, an intercistronic region of 15 to

78 bp, and an optimized consensus translation start site for

the second CDS. We assessed the sizes of intercistronic
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Figure 7
Vanaso and �-Spec are separate annotations that share an untranslated 5� exon. Only evidence (black panel) directly used to annotate the gene models
(cyan panel) is shown. Coding sequences are delineated by green vertical lines (starts of translation) and red vertical lines (stops of translation). The
Release 3 annotations Vanaso and �-Spec (dark blue) on chromosome arm 3L overlap at their most distal 5� end, sharing a portion of their untranslated
regions. These gene models are supported by many ESTs and cDNA sequencing reads (light green), a complete cDNA clone (dark green), and several
GenBank records (dark green). In spite of the shared initiation point for these transcripts, none of the remaining exons or coding sequences coincides.
Note the small exon (arrow) predicted by Genie and GENSCAN. This exon is not included in the �-Spec annotation, for lack of other supporting
evidence, but alternative cDNA clones including this exon will be screened for directly in cDNA libraries [30].

cDNA sequencing reads
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Genie and GENSCAN predictions
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1.776Mb 1.774Mb 1.772Mb 1.77Mb 1.768Mb 1.766Mb 1.764Mb 1.762Mb 1.76Mb



regions and the number of ATGs in these regions, and found

that there are seven pairs of dicistronic genes that appear to

conform to this pattern (indicated in Supplementary

Table 3). The majority of dicistronic cases clearly do not

conform to such a model of partial ribosome disassembly

and continued scanning. In four cases, the intercistronic

region is less than 4 bp. However, most of the annotated

dicistronic pairs are separated by several hundred base

pairs, and the separation can be as much as 4.5 kb. In these

longer intercistronic regions, there may be multiple ATG

codons before the second translation start site. A mechanism

of translation initiation utilizing an internal ribosome entry

site (IRES [63]) appears a better explanation for these cases.

Oh et al. [64] have hypothesized that certain Drosophila

genes with long 5� UTRs might be translated via internal

ribosome entry. If this is the case, translation of the second

CDS within a dicistronic transcript may be effected by the

same initiation mechanism.

Assessment of Release 3 quality 
Did we miss genes? 
Andrews et al. [16] suggested that the number of genes in

Drosophila might be a severe underestimate, based on 7,297

testes EST sequences they generated and aligned to the

annotated genome. However, using their data, as well as

23,087 additional testes-derived ESTs [29], we predict a

similar number of genes in Release 3 as in previous releases.

The more likely explanation for their results is that 5� exons,

and not genes, were under-predicted in Drosophila, since

there is EST evidence for testes-specific promoters and tran-

scripts [29]. In most cases, the testes ESTs did not align to

Release 1 genes because only the downstream CDS had pre-

viously been annotated for those genes, whereas in Release 3

the UTRs that match the testes ESTs are annotated.

Gopal et al. [15] reported 1,042 novel genes that were not

included in the Release 2 annotation. After completing our re-

annotation, we compared this set of 1,042 genes to our data.

We found that 75% of their predicted genes mapped to

euchromatin, 16% mapped to heterochromatin, 7% mapped

within transposable elements, and 1% could not be found in

the Release 3 genomic sequence. Of the 75% that mapped to

euchromatin, 66% (520) do match Release 3 annotations. The

remaining 34% did not match Release 3 annotations, leading

to the possibility that some or all of these may represent novel

genes. Incorporating their methods (threading GENSCAN

predictions to look for structural homology) into our computa-

tional approach may uncover additional missed genes.

One way to address the quality of the Release 3 annotations

is by comparative sequence analysis. In an accompanying

paper, C. Bergman et al. [65] surveyed sequence conserva-

tion in approximately 0.5 Mb of the D. melanogaster

genome containing 81 genes using comparative data from

four Drosophila species (D. erecta, D. pseudoobscura,

D. willistoni and D. littoralis). Their comparison to our

D. melanogaster annotations detected no genes conserved

in other species that were missed in Release 3 [65].
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Figure 8
CG31188 is a dicistronic gene. Data directly used to annotate the dicistronic gene model are shown in the black panel and the gene models generated
from these data are shown in the cyan panel. Coding sequences are delineated by green vertical lines (starts of translation) and red vertical lines (stops of
translation). Dicistronic genes (dark blue) were predicted when assembled cDNA sequencing reads or complete cDNA sequence (light and dark green)
span two complete open reading frames (ORF1 and ORF2, shaded in cyan panel) that are separated by in-frame stop codons. There must be additional
evidence supporting the existence of both predicted peptides. In the case of CG31188 on chromosome arm 3R, each of the two ORFs shares homology
with proteins from other eukaryotes (orange) or Drosophila (red).
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Other genes likely to be missed are genes with small ORFs

(because of the arbitrary length cutoffs we used, see Materi-

als and methods), and genes expressed transiently during

development, at very low levels, and/or in cells and tissues

not represented by the DGC cDNA libraries. Future DGC

cDNA clones will be generated by directed screening of

cDNA libraries with probes matching predicted exons [30],

and cDNAs selected during the re-annotation process to rep-

resent alternative transcripts not currently in the DGC.

Reliance on gene prediction data versus cDNA data 
Of the final set of annotations, 93% contain sequences that

are present in Genie-predicted exons and 96% contain

sequences that are present in GENSCAN-predicted exons

(Table 3). Only 249 (2%) of protein-coding gene models

were created without an ab initio model, that is, solely on the

basis of cDNA or protein homology evidence. The fact that

98% of our accepted annotations span a region containing a

gene prediction supports both the strength of the prediction

programs’ algorithms as well as our reliance on them for our

methods. However, both Genie and GENSCAN gene models

were often wrong in detail, when compared to cDNA

sequence alignments for three main reasons: first, exon mis-

associations: the programs placed exons from one gene with

the exons of a neighboring or nested gene; second, erro-

neous splice site calls: the donor and acceptor sites were

slightly misplaced; or third, missed mini- and micro-exons:

small ORFs were not identified [20,66]. 

The fraction of gene models that are based solely on gene

prediction data has decreased considerably, from 2,348

(17%) in Release 1 to 815 (6%) in Release 3 (Table 3). This

shift was primarily due to the more recently available

Drosophila EST and cDNA sequences, rather than newly

evident similarity to sequences in other species.

Alignment of full-length cDNA sequences from the same

strain continues to be the best way to annotate gene models

[66-68]. The number of ESTs generated by the BDGP project

increased from around 86,000 in Release 2 to 246,248 in

Release 3 [29] and the number of sequenced full-insert

cDNAs from around 1,000 in Release 2 to over 9,000 in

Release 3 [30]. For approximately 6,000 of these, the com-

pletely assembled sequence was available during the re-

annotation effort (see Materials and methods). In addition,

8,699 ESTs from the community deposited in dbEST [69],

including a set of 7,297 from a testes cDNA library [16], were

available. In all, 78% of the protein-coding genes show a

match to an EST sequence (Table 3) and over half to full-

insert cDNA sequences. We anticipate further improvement

to gene models as more cDNA data become available.

Non-consensus splice sites and small introns 
All introns within protein-coding genes were examined for

conserved GT/AG splice junctions with the Sequin program

[70,71], and all instances of annotations lacking GT/AG

splice junctions were inspected and commented on. Of the

48,039 total splice junctions, 0.5% are annotated with

GC/AG splice junctions, a frequency that might justify

describing GC as an alternative splice donor. Eleven

instances of AT/AC splice junctions are annotated. An espe-

cially well supported example of AT/AC usage is CG1354,

which has more than 25 confirming ESTs. Other cases of

non-consensus splice sites appear rare; however, more are

likely to be documented in the future. The particular align-

ment algorithm used (see Materials and methods) and our

reliance upon gene-prediction data imposed a bias against

unconventional splice sites. In a number of cases for which

an unconventional splice junction was supported by cDNA

data, the precise location of the junction could not be deter-

mined, owing to repeated sequence at the donor and accep-

tor sites. A good example of this type of pattern is sba

(CG13598). Two alternative transcripts for this gene are sup-

ported by cDNA data, and both appear to contain an uncon-

ventional, ambiguous splice junction. The two transcripts

share the unconventional splice acceptor site; they differ in

the location of the non-consensus splice donor site, but the

two donor sites are identical in sequence.

We also examined every gene model with an intron less than

48 bp. The frequency of such introns in Drosophila is low;

32 are annotated in Release 3. There are several well sup-

ported examples of introns less than 45 bp, with at least two

supporting cDNAs derived from the sequenced strain. These

include mod(r) and csul, each with an intron of 44 bp, and

CG11892, with a diminutive intron of 43 bp.

SWISS-PROT/TrEMBL validation of the models 
We used the SWISS-PROT and TrEMBL protein databases

[13] and the PEP-QC software program [12] to validate the

integrity of the annotations and to track consistency with pre-

viously published data (see Materials and methods). Of the

3,687 annotated peptides with a cognate in the curated

SWISS-PROT/TrEMBL dataset, 75% (2,764) were of identi-

cal length and had more than 99% sequence identity. Cura-

tors examined each case with less than 100% sequence

identity, and in some cases, annotation errors were detected

and corrected. For example, translation start sites were

shifted to the experimentally reported position, which in

some cases was downstream of the predicted start. However,

in most cases discrepancies appeared to be due to strain-spe-

cific polymorphisms or errors in the reported DNA sequence

on which the SPTRreal entries were based (see Materials and

methods). Given the high quality of the underlying Release 3

genomic sequence, we believe that in many cases the Release

3 annotation is more accurate than the sequences deposited

by the community in SWISS-PROT and TrEMBL.

Confidence in Release 3 gene models 
The amount of evidence attributable to each Release 3 gene

model varies considerably, and therefore our confidence in

these gene models, even the confidence in two alternative
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transcripts encoded by the same gene, may differ greatly. To

estimate the reliability of a gene model, we developed a clas-

sification system that groups data into four categories: com-

putational gene predictions; protein similarities; alignments

of ESTs and other partial cDNA sequences; and alignments of

full-insert cDNA sequences. One point was assigned to each

data type that overlapped a given annotation, and a score of 1

to 4 was determined for each transcript, with 1 being the

lowest and 4 being the highest confidence (see Materials and

methods). As shown in Table 4, more than 80% of transcripts

and more than 75% of genes were assigned a confidence value

of 3 or 4. Thus, we have high confidence in a large proportion

of the Release 3 gene models.

Limitations in our methods 
The Release 3 annotations should be much more consistent

than in previous releases because fewer curators were

involved, a defined set of rules was used, and additional vali-

dation steps were performed (see Materials and methods).

We set a rigorous standard for the annotations by requiring

attributable evidence for every gene model, for example, a

gene prediction, an alignment to a GenBank/EMBL/DDBJ

accession, or a curated personal communication to FlyBase.

However, during the Release 1 analysis, Drosophila

researchers annotated particular families of genes about

which they were expert and for which they may have had

specific unpublished information. Much of the evidence for

these annotations was not released to the public domain and

is not currently available, so some of the details of these gene

models were lost in Release 3. The solution in these cases is

for biologists in the community to continue to submit error

reports to FlyBase to be curated by FlyBase as personal com-

munications. The resulting set of annotations will be

stronger because every gene has traceable evidence that is

available in the database and is annotated according to a

standard set of rules.

As is expected with such a complex analysis, rules cannot be

expected to cover every eventuality. As a result, some of the

annotations are based partially on curator judgment, intro-

ducing a potential source of inconsistency. Visual inspection

and curator expertise were absolutely necessary in overcom-

ing shortcomings of the automated processes such as identi-

fying GC splice donors and sorting out complex gene models.

It was also essential for annotating unusual cases, such as

the dicistronic genes and overlapping gene models. Further,

it should be noted that manual annotation is an iterative

process. Subsequent to an initial annotation call, a set of

automatic verification steps was carried out. Potential errors

were reviewed and, where appropriate, annotations were

modified as a result of the verification analysis.

Accessing data and reporting errors 
The Release 3 genomic sequence available at GenBank/

EMBL/DDBJ [7] includes all gene models, that is, the

extent of transcripts and each corresponding CDS. More

complete information, including all classes of evidence,

can be obtained from FlyBase, presented in Gadfly Gene

Annotation reports, in interactive Genome Browser maps,

in the Apollo annotation tool, and by batch download. In

addition to transcript structures, the Gene Annotation

report presents the evidence supporting a gene model, any

comments included by the annotator, and a thumbnail

view of the immediate genomic region. There are links to

the reports for adjacent genes, to the FlyBase Genome

Browser view of the surrounding region, and to FASTA

files of protein, transcript, and genomic sequences.

Another link takes users to the results of automated

BLASTP and InterProScan [72] analyses of the predicted

peptides. The coordinates, comments, and sub-features of

the annotations (such as UTRs, exons, and so on) can be

downloaded in a number of formats, including XML and

GFF. The interactive genome browser shows all transcripts

annotated within a region; a zoom feature allows the user

to choose the level of resolution. Additional data classes

can be added, at the discretion of the user, including the

extent of DGC cDNA clones and EST data, the BAC clones

used for determination of the genomic sequence, and the

position of P-element insertions isolated by the BDGP

Gene Disruption Project [73].

Researchers can also use the Apollo genome annotation and

curation tool [19] to view the supporting data in greater

detail. This Java software tool is available for local installa-

tion [74] and bulk downloads of the annotations and compu-

tational evidence are available in XML or GFF format [75].

Sequence data in multiple FASTA format for the entire set of

annotations are also available at this site. In addition, Apollo

includes software to request and retrieve the annotations

and other data transparently from FlyBase/BDGP. Many

individual investigators have already contributed substan-

tially to the Release 3 annotations by submitting corrections

to gene structures using the error report forms [76], and

researchers can continue to submit reports to FlyBase in this

manner. In the future, we hope that by enabling researchers

to send an Apollo XML output file to FlyBase for review,

error reporting of fine gene structures will be simplified.

Future updates 
Changes to the sequence 
The BDGP will continue to finish the remaining problematic

regions of the euchromatic genomic sequence to high quality

(see [17]), and focus efforts on refining the sequence of the

heterochromatin [25]. Changes to the sequence will be sub-

mitted to GenBank/EMBL/DDBJ every 6 to 12 months. 

Because sequence updates at the time of new releases will

result in changes to the coordinate system for each chromo-

some arm and for GenBank/EMBL/DDBJ accession units, it

will be particularly important for researchers to make note

of specific release and version dates when providing

sequence coordinates. FlyBase encourages researchers to
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refer to coordinates as associated with specific GenBank/

EMBL/DDBJ accession and version numbers.

Changes to gene models 
Future re-annotation will be on a gene-by-gene basis, rather

than a survey of the entire genome. Future analyses will

include new large-scale datasets, including the Anopheles

gambiae genomic sequence, the D. pseudoobscura genomic

sequence, and additional DGC cDNA sequences [30].

Changes to the gene models will occur more often than

changes in the sequence, and will be reported in date-

stamped updates of the GenBank/EMBL/DDBJ accessions

and FlyBase records. Such changes are reflected in the feature

annotations only and thus do not constitute new releases, as

the underlying genomic sequence does not change. 

FlyBase will also focus on the localization of many more

annotation features to the genome view, such as regulatory

elements, mutational lesions, rearrangement breakpoints,

and P-element insertion sites. Many of these sequence fea-

tures are already in the FlyBase genetic data tables and gene

annotation reports, based on data from literature curation,

computational analyses (for example [77]), and large-scale

projects such as the BDGP Gene Disruption Project.

Changes to functional annotation 
In the annotation of genes in Release 1 attributes of gene

products were predicted with respect to their molecular func-

tions, the roles they might play in biological processes, and

their cellular locations, using the controlled vocabularies

developed by the Gene Ontology (GO) Consortium [78].

These predictions were computational, using a program

known as LOVEATFIRSTSITE written by M. Yandell [3].

Since then, FlyBase curators have assessed each of these

annotations, retaining in FlyBase only those that were reason-

ably secure, and have re-annotated many genes with GO

terms of higher granularity. This work, together with the cura-

tion of GO terms from the literature and sequence records,

has resulted in 7,299 genes sharing 25,057 GO annotations.

This analysis has not yet been repeated for the Release 3 gene

products, but the curation of GO terms for all new genes and

all split/merged genes is now in progress. When this annota-

tion is completed we will have a benchmark for further auto-

matic predictions of GO terms, using programs similar to

LOVEATFIRSTSITE [3] and PANTHER [79].

Conclusions 
Annotation of eukaryotic genomes is not a straightforward

process, owing to the limitations of the current gene-predic-

tion algorithms. However, we have made the annotation

process much more rigorous by utilizing a large set of experi-

mental data, manual curation, and defined standards. By

using a large amount of cDNA alignment data and a tool

facilitating the rapid visual inspection of evidence for each

gene model, we were able to significantly improve the quality

of Drosophila gene annotations. We found that a compre-

hensive set of curation rules was crucial to making manual

annotation consistent and reliable. We also found that com-

parison of predicted peptides to experimentally verified

SWISS-PROT and TrEMBL sequences was an important

quality-assessment step. In future, we plan to make the

automated analysis of predicted polypeptides, including

identification of their protein domains and sequence similar-

ities, a more integrated part of genomic sequence annota-

tion. Finally, by making the annotations, comments, and all

supporting evidence available to users, we have provided the

scientific community with the resources to assess the quality

of each gene model.

Our analysis reveals a number of genes that fall outside the

definition of conventional gene models: neighboring genes

with overlapping UTRs; genes with alternative transcripts

encoding distinct coding regions; and dicistronic transcripts.

An even larger number of genes show alternative splicing or

are nested within neighboring genes. Currently, gene-predic-

tion algorithms are unable to accurately predict such gene

models. Studies like this one are a prerequisite to extending

current computational methods to more successfully and

specifically predict eukaryotic gene structures, by defining

the classes of features and the requirements for supporting

evidence. Once sophisticated computational pipelines can

cope with the full range of complex genomic features, we will

benefit from better resources for biological investigation.

FlyBase is one of several major model organism databases

with high-quality euchromatic sequence charged with cura-

tion of experimental data from the literature. Unlike many

other organisms, Drosophila has a genetic history reaching

back to 1910, and an enormous amount of data to tie to the

sequence. In this paper, we have addressed one of the first

challenges, accurately annotating the genomic sequence,

by utilizing the extensive resource of full-insert

D. melanogaster cDNA sequences and FlyBase gene records

(containing existing community data), and by manually

curating the gene models using defined methods and con-

trolled vocabularies. However, there is more work necessary

to tie the annotated genomic sequence and annotated

peptide sequences to further experimental data from the lit-

erature, results of large-scale analyses (for example,

microarray expression data), and new computational analy-

ses (for example, comparative sequence analysis). We

believe shared data-exchange formats and ontologies will be

vitally important to curate, collate, and structure this huge

amount of data in a way that allows researchers to exploit

the information to its full potential.

Materials and methods 
Re-annotation of the euchromatic genome was performed by

dividing the long finished chromosome arm sequences from

the BDGP into 250-350 kb segments roughly corresponding
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to the Release 2 sequences available at GenBank/EMBL/

DDBJ [6-11], running a ‘pipeline’ of computational analysis

steps on this sequence [12], and allowing one curator to

annotate all of the genes on one segment using the genomic

feature editor, Apollo. Apollo is a new graphical user inter-

face developed in a collaboration between FlyBase-BDGP

and Ensembl, that allows curators to view the results of com-

putational analyses and to edit the annotations efficiently

[19]. Curators manually examined 437 segments, constitut-

ing 117 Mb of euchromatic sequence. We note that because

of sequence finishing and other adjustments, the length,

composition, and end sequences of some updated Release 3

submissions may not match the Release 2 submissions, but

most of the genes remained on the accession in which they

were annotated in Release 2.

We aligned to the genomic sequence 254,947 Drosophila

ESTs and over 9,000 full-insert cDNA sequences from the

BDGP [29,30] and the community. We also incorporated

protein data from BLASTX sequence similarity searches

[22,23] of the SWALL (SWISS-PROT/TrEMBL/

TrEMBLNEW) peptide dataset [13,80,81] from a broad

range of species.

Curation rules 
We have attempted to provide documentation for as many

annotation decisions as possible. In addition to providing

access to evidence (EST and full-insert cDNA sequence

reads, prior sequence submissions, BLASTX homologies,

and gene prediction data), we have developed and made

available a set of annotation rules (see [82] and additional

data files) and have provided textual comments to explain

atypical or subjective annotations.

The annotation rules promote consistency in the annotation

effort, and deal with all aspects of annotation: from assess-

ment of whether a marginal gene prediction should be the

basis for a new gene model to the annotation of atypical splice

sites; from the determination of alternative transcriptional

starts and stops, and the designation of translation starts, to

the use of comments to flag atypical or questionable annota-

tions. Cases with insufficient, atypical, or conflicting data that

the rules did not address were left to the discretion of the

annotator; in such instances, comments to document the sub-

jective nature of the gene model were added. 

Typically, at least one annotation was created containing

each site of alternative splicing represented in the

EST/cDNA data. For atypical splice junctions, a higher level

of supporting data was required (see below). Often, sites of

alternative splicing were supported by ESTs but not full-

insert cDNAs. Since, as a matter of policy, we tried to avoid

creating partial transcript models, this required that we pos-

tulate transcripts combining, for example, 5� and 3� ESTs

corresponding to different cDNAs. In some cases, these com-

binations may not exist in vivo. In particularly complex

cases, curators did not create every splice form suggested by

the data, but commented that the potential exists for addi-

tional splice forms. 

The rules used were specific for this annotation effort, in

particular, for the types of data currently available. For

example, because of the limited amount of 3� EST data, little

attempt was made to annotate alternative transcripts that

differ as a result of multiple polyadenylation sites.

Establishment of the annotation rules included the develop-

ment of a set of controlled comments, that is, comments that

are reproducibly phrased and are consistently used. Such

controlled comments were used to confirm atypical gene

structures, such as the use of atypical splice sites or overlap-

ping UTRs, and to document the evidence used in subjective

cases, such as an unusual gene structure based on a single

EST or a gene model based solely on gene-prediction data.

DGC cDNA clones that appeared to contradict other evi-

dence were also flagged; most frequently, these were not

full-length or appeared to contain intronic sequences.

Annotation of non-protein-coding genes 
To annotate small, non-protein-coding RNA genes previ-

ously collected in the FlyBase database, we retrieved

sequences for each gene from GenBank [6,7] and generated

a multiple-FASTA dataset. Occasionally, sequence was

retrieved from the original literature. The FASTA dataset

was then aligned to the Release 3 genome by Sim4 align-

ment. MicroRNAs were aligned by BLASTN analysis; a

single exact match was found for each of the microRNAs

listed in FlyBase.

Evidence for gene structures 
Gene prediction data 
The publicly available version of Genie, which does not

utilize EST or BLAST evidence [20], predicted 13,794 genes

on the finished sequence. GENSCAN predicted 19,189 genes.

As reported previously [3,20], Genie appears to predict

fewer false positives, perhaps because it has been trained on

Drosophila sequences, whereas GENSCAN has only been

trained on vertebrate datasets [21]. However, GENSCAN

also shows greater sensitivity than Genie, identifying some

real genes that Genie fails to find. To balance the false-

positive and false-negative rates of GENSCAN, we used an

empirical prediction score as a threshold, as done previously

[44]. In the absence of other supporting evidence for a gene,

we used GENSCAN predictions only when at least one exon

had a score > 45; this is a stringent threshold, as 21% of the

genes in Release 3 with full-length cDNA evidence do not

contain any exons scoring > 45.

BLASTX/TBLASTX sequence similarity data 
To detect proteins with significant sequence similarity, we

used BLASTX to compare translated genomic sequence to

peptides in other species included in SWALL [13,83], and
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TBLASTX to compare translated genomic sequence to

virtual translations of the rodent UniGene set [84] and

insect sequences in dbEST [69]. We also looked for sequence

similarities to Drosophila peptides that had experimental

verification, but not to those representing purely hypotheti-

cal or computational gene models (see below). Although the

number of proteins in a public database like TrEMBL [13]

has increased exponentially in the time between the Release

1 annotation in November 1999 and the Release 3 annota-

tion in 2002 [85], the increased size of the protein datasets

resulted in a 14% increase in the number of fly genes that

produce proteins with similarity to other proteins. In March

2000, Adams et al. [3] reported that 9,612 (71%) of the

13,601 of the Release 1 genes showed a match to another

protein. We now find that 10,996 (82%) of the Release 3

protein-coding genes show a match by BLASTX or TBLASTX

(with expectation value less than or equal to 1 x e-7).

However, we note that the datasets we used were fixed

before the release of the genomic sequence of A. gambiae

[86], the only other dipteran (or arthropod) with a complete

genome sequence. We expect that a higher percentage of

Drosophila proteins will show sequence similarity to

Anopheles proteins, because A. gambiae is more closely

related to D. melanogaster than are the other available

model organisms [86].

EST and cDNA alignment data 
Prediction of gene models was made more rigorous by the

increased availability of cDNA data. However, misleading

alignments can be created by the presence of genomic DNA

contaminants, cDNA clones containing two independent

cDNAs co-ligated in the same plasmid vector (chimeras),

and internal priming of cDNAs during library synthesis.

cDNA clones derived from incompletely processed primary

transcripts are not readily distinguishable from alternative

splicing without experimental verification. Moreover, cDNA

sequences designated as full length may actually be trun-

cated; approximately 1,000 of the 9,000 full-insert

sequences from the BDGP are probably not full-length

[29,30]. The Sim4 alignment tool can make mistakes in

determining splice site junctions or completely fail to align

very small exons [24,67]; indeed, a small number of cases of

failure to align microexons were identified by Stapleton et al.

[30] when they compared the predicted translation products

of cDNAs with those of Release 3 gene models. However,

Haas et al. found est2genome and other alignment tools

were, in general, not superior to Sim4 [24,67]. Despite these

limitations, alignment of complete cDNA sequences is

invaluable in detecting UTRs, alternative splicing events,

detailed exon-intron structures, nested genes, and other key

aspects of gene models.

Full-insert Drosophila melanogaster cDNA sequences came

from a number of sources. The largest set of full-insert cDNA

sequences came from the BDGP Drosophila Gene Collection

(DGC) project [5,29,30]. Of the protein-coding genes, 9,297

(69%) show a match to full-insert sequences from the cDNA

clones in the DGC, and in some cases, more than one DGC

clone provided definitive gene models for alternatively

spliced products. At the time of annotation, we had access to

full-insert sequencing reads from 9,074 of the 10,910 cDNA

clones, but only some 6,000 of these had been fully assem-

bled. Gene models based on incompletely assembled cDNA

clones were marked ‘incomplete’. These gene models will be

among the first annotations to be updated.

Sequences deposited in public databanks like GenBank/

EMBL/DDBJ [6-11] by Drosophila researchers provided

definitive evidence for a number of genes. For a subset of well-

studied genes, FlyBase curators synthesized all of the available

sequence and literature data into high quality Annotated Ref-

erence Gene Sequences (ARGS) that have been deposited in

GenBank’s RefSeq division [1]. These ARGS sequences corre-

spond to 795 (6%) of the Release 3 annotations.

Other sequences came directly to FlyBase as error reports

from the scientific community. FlyBase curated 636 reports

with information about 1,094 genes as personal communica-

tions, and any sequences supplied in these reports were

aligned to the genome. In all, 825 (6%) of the annotations

overlapped these sequences (Table 3). Accurate annotation of

three gene families in particular was greatly facilitated by

sequence submitted in error reports: 85 cytochrome P450

monooxygenase genes (B. Dunkov, personal communication,

FBrf0132129, FBrf0126925; D.R. Nelson, personal communi-

cation, FBrf0136021), 80 gustatory receptor genes (H.

Robertson, personal communication, FBrf0141780; K. Scott

and R. Axel, personal communication, FBrf0137428), and 61

odorant receptor genes (H. Robertson, personal communica-

tion FBrf0136024; C. Warr and L. Vosshall, personal com-

munication, FBrf0128191).

Determination of confidence values 
The extent of each transcript and corresponding CDS was

extracted from the ‘Drosophila Genomic Sequence Annota-

tions’ file (in GFF format [87]), which is available [75]. The

extent of overlap of each transcript against the supporting

evidence used during the re-annotation was determined

using an intersection algorithm to determine the annota-

tions overlapped by particular types of evidence [12].

The evidence datasets used included: gene prediction based on

Genie [20] and GENSCAN [21]; Sim4 alignments to EST and

full-insert cDNA sequencing reads derived from the BDGP

cDNA project [29,30], the earlier analysis of the Adh region

[44], and dbEST (for example [16]); FlyBase ARGS [1];

GenBank/EMBL/DDBJ entries identified as Drosophila cDNA

sequences [6-11] and error report submissions to FlyBase [1,2];

and BLASTX protein homology data. For a complete list of the

evidence datasets and their description see [82]. Data were fil-

tered using the Bioinformatics Output Parser (BOP), which

also assembled all EST and full-insert cDNA sequence reads
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from a particular cDNA clone into a virtual assembly

(BOP [12]). The Apollo tool displayed these assemblies with

sequence gaps indicated differently from introns.

The algorithm used to assess relative annotation quality

assigned one point for overlap of a gene prediction, either

Genie or GENSCAN or both. One additional point was

assigned for overlap with protein similarity data. The

remaining datasets were considered in the following order

and resulted in an additional one or two points: the cDNA

and annotation data were analyzed to determine if any entry

in this class spanned the entire length of the CDS; if so, an

additional two points were assigned, and if not, GenBank/

EMBL/DDBJ and error report entries were analyzed and if

any spanned the length of CDS, two points were assigned; if

none of these data classes corresponded to the full-length

CDS, then the existence of partial cDNA data and/or over-

lapping EST data merited one point. Details of the rules for

this classification system can be found at [82].

Integrity checks 
SWISS-PROT/TrEMBL validation of the translated models

by PEP-QC is described below. Both annotated segments

and chromosome arms were validated using the Sequin soft-

ware tool from the NCBI [71], which found mistakes in exon-

intron structure, start of translation, and ID duplication. We

queried our dataset for proteins < 50 amino acids, CDS fea-

tures making up less than 25% of the predicted transcript

length, introns < 48 bp, and visually inspected each annota-

tion in these classes making comments where appropriate.

We checked annotations that overlapped transposable ele-

ments and tRNA genes, or appeared multiple times in the

genome with duplicate identifiers. We verified that deleted

Release 2 annotations had no independent evidence in liter-

ature-curated references. Finally, in order to allow the con-

struction of a wild-type proteome from the mutant

sequenced y1; cn1 bw1 sp1 strain, we replaced annotated

sequences from known mutated genes (y, cn, bw, MstProx,

LysC, Rh6) with RefSeq wild-type sequences from GenBank

with an appropriate note.

Non-consensus splice sites 
All introns within protein-coding genes were examined for

conserved GT/AG splice junctions with the Sequin program

[70,71], and all instances of annotations lacking GT/AG splice

junctions were inspected and commented upon. Splice junc-

tions were based upon alignment of cDNA/EST sequence

and, in the absence of such data, on gene prediction models.

Even for transcript structures based upon EST data, the

number of atypical splice junctions is probably an underesti-

mate. The alignment algorithm used (Sim4) forced intron

junctions to occur at GT/AG sites whenever possible, even at

the expense of a several-base mismatch. This occasionally

resulted in apparent early translation termination, in which

case the annotator checked for a GC donor that would allow

read-through. Other GC splice annotations were based on

information in the literature or GenBank/EMBL/DDBJ

records. With the exception of GT/AG junctions, we imposed

a higher standard of verification for unconventional splice

annotations: sequence data from a cDNA isolated from the

sequenced strain, or multiple consistent ESTs.

SWISS-PROT/TrEMBL validation of the models 
The SWISS-PROT and TrEMBL protein databases [13] were

used to validate the integrity of the annotations and to track

consistency with previously published data. The SWISS-

PROT Protein Knowledgebase [80] is a curated protein

sequence database that provides a high level of annotation, a

minimal level of redundancy and high level of integration

with other databases. The TrEMBL database [81] contains

the translations of all CDS present in the EMBL Nucleotide

Sequence Database [8,9], which are not yet integrated into

SWISS-PROT [80]. A non-redundant set of SWISS-PROT

and TrEMBL Drosophila sequences was created, and

sequences representing purely hypothetical or computa-

tional gene models (those corresponding to CG, BG, or EG

genes in FlyBase) were excluded. The PEP-QC program [12]

compared the resulting collection of 3687 D. melanogaster

sequences (SPTRreal) to the annotated peptides using

BLASTP [22]. Each gene was placed into one of four ‘valida-

tion’ categories: Perfect match to SPTRreal (annotated

peptide of identical length with 100% sequence identity),

Single AA substitutions (annotated peptide of identical

length with � 99% sequence identity), Significant mismatch

(annotated peptide and SPTRreal entry do not align over

their entire length, but do contain aligned spans of 40

residues or 20% peptide length, with at least 97% sequence

identity), or Poor match (poor or no BLAST hits). For the

first two categories, the SPTRreal peptide was allowed to

match a portion of the annotated peptide if it was designated

as a ‘fragment’ of the full peptide sequence (125 or 3.4% of

SPTRreal genes are designated with this tag). 

In Release 3, about 75% of all genes with a cognate in SPTR-

real are in the Perfect match and Single AA substitution cate-

gories (2,764 out of 3,687). Curators examined every gene

marked Single AA substitutions, Significant mismatch, or

Poor match. In some cases, annotation errors were detected

and gene models were modified to produce a translation

matching the SPTRreal sequence. For example, curators

used the PEP-QC output to change translation start sites to

the experimentally reported position where appropriate. In

other cases, discrepancies may be due to strain polymor-

phisms, errors in the reported DNA sequence on which the

SPTRreal entries were based, or undetected errors in either

the Release 3 annotation or sequence. Given the high quality

of the underlying Release 3 genomic sequence, we believe

that in many cases the Release 3 annotations are more accu-

rate than the SPTRreal sequences.

The improvement over the Release 2 annotations is evident.

The combined number of Perfect match and Single AA
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substitution annotations has increased by 22%, from 2,260

in Release 2 to 2,764 in Release 3, while the combined

number of Significant mismatch and Poor match annota-

tions has decreased by 35% (1,427 in Release 2 versus 923 in

Release 3). Over the past two years, SWISS-PROT has incor-

porated sequences from Releases 1 and 2 of the genomic

annotations into the curated protein sequences (E. Whit-

field, personal communication). Therefore, while the overall

quality of the sequences in SWISS-PROT has almost cer-

tainly increased during this time, it is still worth asking the

question - how well do the Release 3 annotations match

SWISS-PROT sequences deposited before the initial genome

annotations? This question was answered for the Release 1

annotations using a dataset of 1,049 polypeptide sequences

created in SWISS-PROT before 1999, prior to the publica-

tion of the annotated Release 1 sequence [14]. That group

found that 578, or 55%, of this SWISS-PROT set had an

annotated peptide of identical length with at least 95%

amino acid identity (A. J. Gentles, personal communica-

tion). Performing the same analysis using the Release 3

annotations, we find that 694, or 66%, of the peptides in the

same SWISS-PROT dataset match with 95% identity. This

20% increase in the number of matching polypeptides most

likely is a reflection of the improvement in the quality of the

annotations. But what about the 34% of cases that show sig-

nificant mismatch between Release 3 and SWISS-PROT? We

have examined these cases and believe that the large major-

ity of these remaining discrepancies are not due to mistakes

in our annotation, but due to strain polymorphisms, as well

as errors in the sequence underlying the SWISS-PROT

entries created before 1999. If this were indeed the case,

then the analysis of Karlin et al. [14] would have grossly

overestimated the error rate in the Release 1 annotations. 

Drosophila genes 
References for all Drosophila genes mentioned in the paper

can be found in FlyBase [1,2].

Additional data files 
Supplementary tables of annotated pseudogenes, the distribu-

tion of alternatively spliced transcripts, and dicistronic

genes, along with the guidelines for re-annotation, are avail-

able with the online version of this paper.
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