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Abstract

Background: The rapidly expanding fields of genomics and proteomics have prompted the
development of computational methods for managing, analyzing and visualizing expression data
derived from microarray screening. Nevertheless, the lack of efficient techniques for assessing the
biological implications of gene-expression data remains an important obstacle in exploiting this
information.

Results: To address this need, we have developed a mining technique based on the analysis of
literature profiles generated by extracting the frequencies of certain terms from thousands of
abstracts stored in the Medline literature database. Terms are then filtered on the basis of both
repetitive occurrence and co-occurrence among multiple gene entries. Finally, clustering analysis
is performed on the retained frequency values, shaping a coherent picture of the functional
relationship among large and heterogeneous lists of genes. Such data treatment also provides
information on the nature and pertinence of the associations that were formed. 

Conclusions: The analysis of patterns of term occurrence in abstracts constitutes a means of
exploring the biological significance of large and heterogeneous lists of genes. This approach
should contribute to optimizing the exploitation of microarray technologies by providing
investigators with an interface between complex expression data and large literature resources.
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Background 
Microarray technologies provide the means of measuring the

expression of thousands of genes or proteins simultaneously.

This revolution brings new perspectives for the study of

expression networks and their regulation, potentially provid-

ing valuable insights into the molecular mechanisms

underlying disease [1]. Increasingly accessible microarray

platforms allow the unrestrained and rapid generation of

large expression datasets. As large volumes of data are being

generated, the need for data-mining programs that provide

the means to manage, normalize, filter, group and visualize

expression data expands. These tools help to identify subsets

of genes whose expression changes significantly and orga-

nize them according to their expression profiles. Although

necessary, this type of analysis does not reveal the biological

implications encrypted in expression data. Indeed, the eval-

uation of the functional significance of large, heterogeneous

and noisy groups of genes constitutes the real challenge for

microarray users [2].

A further problem is that the wealth of knowledge accumu-

lated after decades of biological research has resulted in a

considerable narrowing of research fields. As a consequence,

in-depth knowledge of gene function possessed by highly



2 Genome Biology Vol 3 No 10 Chaussabel and Cher

specialized investigators is biased and limited to relatively

small subsets of genes that become the focus of the expres-

sion-data analysis. The definition of functional classes and

improved access to information associated with individual

genes partly makes up for this lack of perspective. However,

information about gene function is primarily contained in

the 11 million articles indexed in the Medline database.

Evaluating the functional associations that might exist

among large groups of genes from this huge volume of liter-

ature is not feasible in a time frame compatible with the

pace at which the data can be generated. Limitations in our

capacity to explore the functional dimension of microarray

expression are one of the major impediments to the

optimal exploitation of this powerful technology. Surpris-

ingly, only a few groups have previously addressed this

shortcoming [3-5].

We describe here how a literature-derived term frequency

database can be generated and mined through the analysis

of patterns of occurrences of a restricted subset of relevant

terms. This ‘literature profiling’ produces a coherent picture

of the functional relationships among large and heteroge-

neous lists of genes and should enable the development of

tools for rapidly extracting meaningful knowledge from large

microarray expression databases.

Results and discussion 
Literature indexing 
The method requires articles related to each of the genes

included in the analysis to be extracted. This is done by

querying the Medline database though PubMed [6] using

appropriate search strings. We chose to retrieve entries con-

taining the official gene name, abbreviation or aliases in the

title field. Information about gene nomenclature can be

found on the website of the Human Gene Nomenclature

Committee (HGNC [7]). Using this source we created a data-

base containing URLs in the PubMed query format for the

more than 10,500 known human genes defined by HGNC (for

example, for protein kinase C eta: the URL found in the data-

base is http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/

query?db=0&form=1&term=PRKCH+%5Bti%5D+OR+PKC-

L+%5Bti%5D+OR+PRKCL+%5Bti%5D+OR+protein%20kin

ase%20C%20eta+%5Bti%5D; pointing a web browser to this

address gives the 17 entries that would have been retrieved

by typing the following search string: ‘PRKCH [ti] OR PKC-L

[ti] OR PRKCL [ti] OR protein kinase C eta [ti]’). URL

entries are indexed by GenBank [8] and LocusLink [9] IDs

and can be downloaded as a Microsoft Excel table (see

Additional data files). The search for relevant literature for

each individual gene is complicated by the fact that the

same gene can have many different names associated with it

and that the same name or abbreviation can have different

meanings. A rapid scanning of the search results is useful

for the identification and removal of inappropriate search

strings (see below).

For each gene, the result of the query is downloaded in XML

format. Abstracts are then extracted from the file by means

of a macro running on Microsoft Excel and saved as a new

file to be used for text analysis.

Methodologies described in this report were tested on a list

of 70 genes (see Additional data files) derived from a subset

of conditions belonging to a sample gene-expression dataset

generated to study the transcriptional response of profes-

sional antigen-presenting cells to pathogens using high-

density oligonucleotide arrays (D. Chaussabel, R. Semnani,

M. Mcdowell, D. Sacks, A. Sher and T.B. Nutman, unpub-

lished observations). We were able to find at least five rele-

vant records in the Medline database containing abstracts

for 44 out of the 70 genes listed. Another 10 genes had at

least five records with accompanying abstracts when their

generic name was used as a search string (for example,

‘interferon induced transmembrane protein’ instead of

‘interferon induced transmembrane protein 1’). 

Text analysis 
Word occurrence in abstracts is determined for each gene by

analyzing the contents of Medline entries (nearly 4,000 in

the example presented here). This parameter describes the

relative frequency of abstracts containing a given word (for

example, 18.2% of the abstracts indexed for the gene

GADD45B contain the word ‘proliferation’). 

Data filtering 
Occurrence values are assigned to every unique word found

in the literature analyzed, resulting in tens of thousands of

entries for each gene. A vast majority of these terms are

either found ubiquitously (for example, ‘if’, ‘because’, ‘cell’,

‘identified’ are present in most abstracts of most genes) or

very rarely (present in very few abstracts of few genes) and

therefore are of very little use for the definition of gene-spe-

cific term occurrence profiles. However, a third category of

terms can be found in most abstracts of very few genes and

convey relevant information about these genes. These terms

are characterized both by high occurrence values in gene-

specific collections of abstracts and a low baseline occur-

rence in the literature. 

An example is given in Figure 1, where terms present in more

than 25% of the abstracts related to the gene ‘RANTES’ are

plotted on the y-axis. Baseline occurrence was determined by

averaging the values found for these terms for genes picked at

random from all known human genes. As shown Figure 1,

when sufficient genes are used to constitute the baseline, aver-

aged occurrence values become stable. In this example we

found that most of the terms for which baseline occurrence

was less than 5% conveyed significant information on that

gene (for example, ‘infection’, ‘secreted’, ‘chemokine’, ‘inflam-

matory’). Some (‘production’, ‘regulated’) seemed to be less

meaningful, however, and terms with higher baseline occur-

rence were nonspecific (for example, ‘induced’, ‘response’,
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‘activation’, ‘important’). As expected, terms such as ‘a’, ‘we’,

‘protein’ or ‘cells’ had the highest baseline occurrence (92%,

59%, 41% and 39% respectively). 

The terms found in thousands of abstracts retrieved for the

list of genes considered in this report were filtered systemat-

ically using several criteria. The first step consists in remov-

ing terms commonly found throughout the scientific

literature. A baseline occurrence for each term was deter-

mined by taking the average occurrence of the set of 250

randomly picked genes as described in Figure 1. In our

example, terms with a baseline occurrence of more than 5%

were categorized as undiscriminatory and eliminated

(Table 1). In the second step, term-occurrence values for

each gene were compared to the baseline. We arbitrarily set

the difference cut-off between gene term occurrence and

baseline occurrence at 25% (see Table 1). A term can only be

useful in defining relationships among genes if it is shared

by at least two of them. For this reason, only terms found to

pass the filter for at least two of the genes considered for

analysis are further retained (see Table 1). For the set of

genes used to illustrate the technique (Table 2, and see Addi-

tional data files) 101 terms out of nearly 25,000 were

retained after application of these filters. Stringency of term

selection can be adjusted at the user’s convenience by modi-

fying the filtering parameters. For instance, a greater

number of relevant terms might be retrieved by lowering

thresholds, insuring term specificity at the cost of increasing

the level of noise (less-relevant terms) in the list of terms.

When lists of terms become too noisy, the manual removal

of irrelevant terms can be considered. 

Clustering analysis 
Isolating useful information out of tens of thousands of irrel-

evant terms closely resembles the task of sorting through

gene-expression data produced by microarray technology.

But the parallel is not restricted to the filtering of data as we

also found that tools used for the analysis of gene expression

could be applied to term-occurrence values to identify groups

of genes sharing similar ‘literature profiles’. The vocabulary

defined after successive rounds of filtering is used to create a

term-by-gene array of term-occurrence values relative to

each individual gene. Relationships among genes are then

assessed by hierarchical clustering analysis using a software

package originally created for the analysis of gene-expression

data [10]. The resulting clustergram shows the grouping of

genes according to patterns of term occurrences (Figure 2).

Genes are grouped on the basis of similarity between term-

occurrence profiles. The nature of the relationships found

through the analysis of term occurrences in abstracts can be

Figure 1
Gene-specific and baseline term occurrences in the literature. The
literature-mining technique we describe compares term occurrence in a
collection of abstracts relating to a specific gene to their occurrence in an
unbiased set of abstracts (baseline occurrence in the literature). In the
example illustrated here, the occurrence values for terms present in
more than 25% of the abstracts relating to the gene RANTES are plotted
on the y-axis. To determine baseline occurrence, occurrence values found
in the literature concerning this gene are then averaged with values found
for an increasing number of genes chosen randomly from all known
human genes indexed in the LocusLink database (x-axis). Terms with high
occurrence values in the collection of abstracts relating to RANTES and a
low baseline occurrence in the literature are plotted in green.
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Table 1

Term selection by filtering

Occurrence in abstracts

Terms Baseline AK3 H2A IRF7 ISG15

A 92.6 85.7 84.6 100 100

Active 5.9 14.3 7.7 28.6 0

Cell-free 0.6 0 0 0 0

Histone 1.4 0 92.3 0 0

Infected 1.2 0 0 28.7 28.7

Interestingly 2.7 0 0 14.3 0

Interferon 1.1 0 0 78.6 71.4

Levels 13.9 0 7.7 7.1 42.9

Protein 41.2 28.6 38.5 57.1 100

Signaling 5.3 0 0 7.1 0

This sample was extracted from a table (see Additional data files)
containing occurrence values for nearly 25,000 terms for each of the 50
genes used in our example. It illustrates the selective process resulting
from the use of several filtering rounds. Baseline occurrence levels are
calculated by averaging the occurrence values determined for 250
randomly chosen genes. The occurrence values for four of the genes
included in the analysis are shown here: H2A (histone 2A), IRF7
(interferon regulatory factor 7), AK3 (adenylate kinase 3), ISG15
(interferon-stimulated protein, 15 kDa). The first filtering removes terms
with high baseline occurrence levels (shown in italics). The second filter
selects the terms with occurrence values over baseline by at least 25%
(bold). Only terms meeting this criterion for at least two genes - in this
case ‘interferon’ and ‘infected’- are retained.



determined by browsing this diagram. The relationships

among genes listed in Table 2 as determined through the

analysis of literature content are represented by the dendro-

gram detailed in Figure 3. In this tree diagram the distance

between nodes is inversely proportional to the degree of cor-

relation found between the genes. The main ramifications of

the tree define the predominant groups identified by this

analysis. To help understand the nature of the associations

found among groups of genes, occurrence values of a limited

number of terms used in the analysis are shown opposite the

dendrogram (Figure 3). 

It is notable that the functional groups identified in this list

of genes significantly induced after infection of professional

antigen-presenting cells are related to immune responses.

Genes for transcription factors that control inflammatory

responses and programmed cell death make up the first gene

cluster considered (Figure 2, color coded in blue). These

genes have abstracts with a frequent occurrence of terms

such as ‘TNF’ (the inflammatory mediator tumor necrosis

factor), ‘death’ or ‘apoptosis’. The largest group is composed

of genes associated with the term ‘interferon’ (also ‘IFN’ and

‘IFN-alpha’, color coded green, Figure 2); indeed, STATs are

factors specifically required for interferon signaling. Inter-

feron regulatory factors (IRFs) trigger the interferon

response, whereas other members of the group are effector

antiviral molecules (for example, ISG15, ISG20) sometimes

associated with terms such as ‘virus’, ‘infected’ or ‘infection’

(OAS, Mx1, Mx2). The next group (Figure 2, red) is com-

posed exclusively of chemokines. Interestingly, the analysis

of abstract contents was able to distinguish monokines

belonging to the CXCR family (SCYB chemokines: IP-9,

IP-10, MIG; associated with ‘CXC’, ‘CXCR’, ‘monokine’ or

‘MIG’) from CC chemokines (SCYA chemokines: LARC,

RANTES, MCP2, MCP3). The last group (Figure 2, violet) is

composed of genes involved throughout the MHC class I

antigen-presentation pathway. Specifically, these genes

encode proteins involved in the degradation of proteins into

peptides by the immunoproteasome (PSMAs, PSME), anti-

genic peptide loading and transport (ABCB2 also known as

TAP1, for transporter associated with antigen processing 1)

and presentation at the cell surface (HLA-F, B2M). It is

notable that one of the closest pairs formed consists of a

receptor-ligand pair: VEGF and NRP2 (Figure 3). Overall,

these examples illustrate the concept that appropriate terms

taken out of context can still convey valuable information

and can be used to rapidly explore and assess the biological

meaning of complex datasets.

Analyzing patterns of term occurrence in groups of
genes with different degrees of association 
The basis for analyzing expression patterns is the assump-

tion that genes under common transcriptional control are

involved in similar processes [1,11]. This notion provides a

rationale for developing tools to evaluate the existence of

functional relationships among groups of co-regulated

4 Genome Biology Vol 3 No 10 Chaussabel and Cher

Table 2

List of genes used to illustrate the technique and their
abbreviations

Abbreviation Gene name

ABCB2 ATP-binding cassette, subfamily B (MDR/TAP), member 2
AK3 Adenylate kinase 3
B2M Beta-2-microglobulin
BIRC3 Baculoviral IAP repeat-containing 3
CFLAR CASP8 and FADD-like apoptosis regulator
DUSP1 Dual specificity phosphatase 1
DUSP4 Dual specificity phosphatase 4
DUSP5 Dual specificity phosphatase 5
G1P3 Interferon, alpha-inducible protein (clone IFI-6-16)
GADD45A Growth arrest and DNA-damage-inducible, alpha
GADD45B Growth arrest and DNA-damage-inducible, beta
GBP1 Guanylate binding protein 1, interferon-inducible, 67kD
GCH1 GTP cyclohydrolase 1
H2AFO H2A histone family, member O
HLA-F Major histocompatibility complex, class I, F
IFIT Interferon-induced protein with tetratricopeptide repeats
IFITM Interferon induced transmembrane protein
IL15R Interleukin 15 receptor
IL7R Interleukin 7 receptor
IP10 Interferon induced protein 10
IP9 Interferon induced protein 9
IRF4 Interferon regulatory factor 4
IRF7 Interferon regulatory factor 7
ISG15 Interferon-stimulated protein, 15 kDa
ISG20 Interferon stimulated gene (20kD)
MCP2 Monocyte chemotactic protein 2
MCP3 Monocyte chemotactic protein 3
MIG Monokine induced by gamma interferon
MIP3A Macrophage inflammatory protein 3 alpha 
MMP9 Matrix metalloproteinase 9
MT1A Metallothionein 1A (functional)
MX1 Myxovirus (influenza) resistance 1
MX2 Myxovirus (influenza) resistance 2
NFKB1 Nuclear factor kappaB 1 (p105)
NFKB2 Nuclear factor kappaB2 (p49/p100)
NFKBIA Nuclear factor kappaB inhibitor, alpha
NR4A3 Nuclear receptor subfamily 4, group A, member 3 (NOR1)
NRP2 Neuropilin 2
OAS 2´-5´-oligoadenylate synthetase
PDE4B Phosphodiesterase 4B, cAMP-specific
PSMA Proteasome (prosome, macropain) subunit, alpha
PSME Proteasome activator subunit 2 (PA28)
PTP1B Protein tyrosine phosphatase 1B
RANTES RANTES
SOD2 Superoxide dismutase 2, mitochondrial
STAT1 Signal transducer and activator of transcription 1, 91kD
STAT4 Signal transducer and activator of transcription 4
TNFAIP3 Tumor necrosis factor, alpha-induced protein 3
TNFAIP6 Tumor necrosis factor, alpha-induced protein 6
TRAF1 TNF receptor-associated factor 1
VEGF Vascular endothelial growth factor

The genes for which a sufficient number of abstracts could be retrieved
are listed. For the complete list of co-induced genes and ESTs included in
the analysis, see Additional data files.
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Figure 2
Analysis of patterns of term occurrence in abstracts. After filters have been applied to the original list, selected term-occurrence values relating to each
gene are analyzed. Terms (columns) and genes (rows) were grouped on the basis of similarities between patterns of term occurrence in abstracts by
hierarchical clustering. Some of the areas of the clustergram are shown in detail. Clusters are further referenced by color codes: blue, ‘nuclear factors’;
orange, ‘receptor-ligand pair’; green, ‘interferon-related’; red, ‘chemokines’; violet, ‘MHC class I antigen-presentation pathway’. Shades of yellow indicate
different levels of term occurrence in abstracts.
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Figure 3
Annotated dendrogram obtained by clustering term-occurrence values relative to each gene. The corresponding clustergram is shown in Figure 2. Genes
are arranged according to patterns of term occurrence. Distances between nodes of the tree diagram indicate the degree of association between genes
or groups of genes. A subset of representative terms used in the analysis was chosen to annotate this list of genes. Shades of yellow indicate different
levels of term occurrence in abstracts. Table 1 lists the gene abbreviations used.

V
as

cu
la

r
E

nd
ot

he
lia

l
K

in
as

es
P

ho
sp

ha
ta

se
s

H
is

to
co

m
pa

tib
ili

ty
C

he
m

ot
ac

tic
C

X
C

C
C

In
te

rfe
ro

n
P

ro
lif

er
at

io
n

T
N

F
N

F
ka

pp
aB

A
po

pt
os

is
D

ea
th

R
ep

ai
r

Le
uk

em
ia

U
bi

qu
iti

n
G

T
P

-B
in

di
ng

H2AFO
VEGF
NRP2
PTP1B
DUSP
GCH1
B2M
HLA-F
ABCB2
PSMA
PSME
IP10
MIG
IP-9
RANTES
MCP3
MCP2
MIP3A
IFITM
IFIT
ISG20
GBP1
IRF4
IRF7
OAS
G1P3
ISG15
STAT4
STAT1
MX2
MX1
PDE4B
TNFAIP6
MMP9
IL-7R
IL-15R
TNFRSF4
SOD2
CFLAR
TNFAIP3
TRAF-1
NFKB1
NFKB2
NFKBIA
MT1A
GADD45B
GADD45A
NR4A3
AK3
BIRC3

H2AFO
VEGF
NRP2
PTP1B
DUSP
GCH1
B2M
HLA-F
ABCB2
PSMA
PSME
IP10
MIG
IP9
RANTES
MCP3
MCP2
MIP3A
IFITM
IFIT
ISG20
GBP1
IRF4
IRF7
OAS
G1P3
ISG15
STAT4
STAT1
MX2
MX1
PDE4B
TNFAIP6
MMP9
IL-7R
IL-15R
TNFRSF4
SOD2
CFLAR
TNFAIP3
TRAF-1
NFKB1
NFKB2
NFKBIA
MT1A
GADD45B
GADD45A
NR4A3
AK3
BIRC3

Term occurrence
in abstracts 

2.
5%

5% 7.
5%

10
%

12
.5

%
15

%
17

.5
%

20
%

22
.5

%
25

%



genes. In the group of 50 co-induced genes in our example,

we found that 101 terms were shared by at least two genes

(according to our filtering criteria) with as many as 300 pos-

itive associations between genes and terms (defined as

exceeding baseline occurrence by 25%). For comparison,

analysis of the literature relative to 50 genes picked ran-

domly from all known human genes indexed in the

LocusLink database only retrieved 49 shared terms and 109

associations (Figure 4b). This is in contrast with the 116

shared terms and 523 associations found when 50 genes are

picked randomly from a homogenous functional group (all

known cytokines and chemokines and their receptors,

Figure 4c). As shown by this example, the number of associ-

ations found by literature profiling correlates with the likeli-

hood that a group of genes is functionally related.

Conditions for the formation of ‘meaningful’ gene
clusters 
We sought to identify the critical elements leading to the for-

mation of clusters of related genes described in Figure 2 and

represented in Figure 5a using similar color codes. The

terms making up each gene’s ‘literature profile’ include gene

names or words making up gene names. To meet our filter-

ing criteria each term must have had a high occurrence in

the literature of at least two of the genes covered by the

analysis. To test the relative importance of such terms for

the analysis, gene names and term-occurrence values were

clustered without gene names (for example, RANTES, IP10,

NFkappaB, STAT, IRF) or terms included in gene names (for

example, interferon, proteasome, regulatory, monokine). As

shown in Figure 5b, clusters were largely conserved. Gene

names or terms included in gene names are therefore not

necessary for the formation of meaningful clusters but may

have a significant role: terms such as ‘NFkappaB or ‘inter-

feron’, which are found throughout the literature on genes

involved in these pathways, will generate valid associations.

Similarly, the discovery of references to the chemokine

‘RANTES’ in abstracts relevant to different genes suggests

the existence of a functional link. Indeed, the literature-

mining tool developed by Jenssen et al. [5] is based on a

gene co-citation network and therefore relies entirely on the

same type of association. 

To exclude the possibility that groups of meaningful genes

may arise by using a sufficient number of co-occurring

terms, we permuted term-occurrence values for each gene

before clustering (Figure 5c). The fact that this treatment

results in a complete loss of the original hierarchy proves

that the formation of meaningful groups of genes cannot be

attributed to a clustering artifact.

Literature profiling of large gene lists 
The size of the list of genes that must be analyzed can vary

greatly from one microarray experiment to another. In an

ideal setting, the analysis of gene-expression patterns groups

co-regulated genes into small subsets. In most cases,

however, partitioning of the data on the basis of expression is

impaired by a small number of conditions or straightforward

expression profiles. As a consequence, microarray experi-

ments often generate lists of several hundred genes for which

biological meaning must be sought. The use of a mining tech-

nique such as the one described here will be most valuable in

this context. In this section we give two examples of literature

profiles generated from published datasets.

When a large number of genes are analyzed, the level of

noise (less-specific terms) can be more important, and filter-

ing criteria were adjusted accordingly. The fixed 25% cut-off

we used in our previous example can be too high for a gene

represented by hundreds of abstracts but can also be rela-

tively low when considering a gene for which only five

abstracts could be retrieved. To take such discrepancies into

account we optimized the cut-off for each gene as follows:

cut-off = t + (k/n) where t is the minimum threshold, k is a

constant and n is the number of abstracts retrieved for a

given gene; t and k must be set arbitrarily and will directly

influence resolution and noise levels. For these examples we

chose t = 15% and k = 1.5, therefore cut-off values for genes

represented by 5 or 100 abstracts are 45% and 16.5% respec-

tively. The gene-term specificity was further improved by

adding a filter that removes terms present in the vocabulary

of more than half of the genes considered (for example,

‘bound’, ‘contained’, ‘clones’, ‘putative’, ‘process’). Such a

filter is particularly appropriate for large datasets, as the

chance of less-specific terms being retained by other filters

increases with the number of genes analyzed. The functional

heterogeneity inherent in large gene lists eliminates the risk

of relevant terms being removed by this filter. Similar

themes were identified when the cut-off applied in the previ-

ous example is used instead. However, increasing the strin-

gency of the filter resulted in a tighter clustering of large

datasets. In these examples we eliminated redundant singu-

lar/plural forms by averaging term-occurrence values

derived from both entries (considering, for instance,

‘lipoprotein’ and ‘lipoproteins’ as a single entity). 

In the first dataset a list of nearly 200 genes and expressed

sequence tags (ESTs) that constitutes the human

macrophage ‘common transcriptional program’ induced

upon bacterial infection [12] is analyzed. Sufficient publica-

tions could be retrieved for 147 of these genes (see Addi-

tional data files). Patterns of term occurrence appear once

gene names have been rearranged by hierarchical clustering

(Figure 6). The existence of functional relationships

between genes can be inferred from the visual analysis of

the resulting clustergram (Figure 6, top left panel). Putative

relationships are then confirmed by investigating the few

relevant publications pinpointed by the analysis of litera-

ture profiles. 

Several groups of genes involved in different aspects of the

immune response to an infection were uncovered by literature
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Figure 4
The degree of association found among groups of genes by literature profiling correlates with their likelihood of being related. (a) The clustergram
resulting from the analysis of the list of co-induced genes used to illustrate the mining technique is given for comparison. (b) A group of 50 genes was
picked at random from all known human genes listed in the LocusLink database and their literature content was analyzed. (c) A group of 50 genes was
picked at random from the list of known interleukins, chemokines and chemokine receptors and subjected to a similar analysis. The number of positive
gene-term associations retained after filtering (term occurrence for a given gene higher than the baseline by 25%) is shown for each group. Numbers of
shared terms for (a), (b) and (c), was 101, 49 and 116, respectively.

300 associations 

109 associations 

523 associations 

Terms
G

en
es

Term occurrence
in abstracts 

2.
5%

5% 7.
5%

10
%

12
.5

%
15

%
17

.5
%

20
%

22
.5

%
25

%

(a)

(b)

(c)



profiling (interferon response, chemotaxis, inflammation:

Figure 6d,f, and g, respectively). But many other functional

groups were also identified as follows. 

As indicated by their names, lipoprotein lipase (LPL) and

low-density lipoprotein receptor (LDLR) genes are involved

in lipid and cholesterol metabolism and were logically co
m
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Figure 5
Conditions for the emergence of groups of related genes. (a) Groups of related genes found by clustering term-occurrence values. The color code is
similar to the one used in Figure 2. (b) Grouping is conserved after gene names or terms making up gene names are removed from the analysis (for
example, NFkappaB, RANTES, interferon, vascular, MIG). (c) Associations shown in (a) disappear when occurrence values are permuted for each of the
genes, suggesting that associations made through the analysis of patterns of term occurrence do not arise by chance from a sufficiently high number of
co-occurring terms.
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Figure 6
Profiling the bacteria-induced macrophage activation program. Literature profiles were generated for a list of nearly 200 genes constituting the ‘common
transcriptional program’, induced in human macrophages upon bacterial infection ([12], see also Additional data files). The clustergram generated for the
analysis of patterns of term occurrence is shown at top left. (a-g) Detailed views for groups of genes (columns) sharing a common vocabulary (rows).
Groups of terms were selected on the basis of clustering hierarchy whereas the number of genes shown in the inserts is arbitrary. For gene
abbreviations see Additional data files.
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associated by literature profiling (Figure 6a). Interestingly,

the CD36-like 1 antigen (alias thrombospondin receptor-like

1 - CD36L1) clustered tightly with LPL and LDLR and shared

with these genes terms such as ‘lipoprotein’, ‘lipid’ or ‘cho-

lesterol’ (Figure 6a). This association was validated by

browsing the literature relevant to CD36L1 whch contains

reports showing the role of this molecule as a receptor for

high-density lipoprotein. 

The two major groups of proteinases involved in extracellu-

lar matrix degradation - serine proteinases and metallopro-

teinases - have been grouped by literature profiling

(Figure 6b: urokinase plasminogen activation cascade (UPA,

PLAUR, SERPIN) and matrix metalloproteinases (MMP14,

MMP10, MMP1)). Both families are activated during inflam-

mation and, as indicated by their literature profiles, are

involved in tumor invasion and metastasis [13,14]. In the

context of a bacterial infection these proteins enable acti-

vated macrophages to cross endothelial barriers and gain

access to the site of the infection [15,16] (other terms shared

by these genes are ‘migration’, ‘vascular’, ‘endothelial’). An

extracellular-matrix-binding protein, SPARC (secreted

protein, acidic, cysteine-rich, alias osteonectin), was also

associated with these proteinases by literature profiling.

SPARC can increase endothelial permeability and is known to

participate in tumor angiogenesis and extravasation [17].

Interestingly, this protein has not been reported as being

upregulated upon cell infection and its possible role in

macrophage transendothelial migration was never addressed.

This example illustrates how functional relationships that

could not be deduced from gene names were uncovered

through the analysis of patterns of term occurrence: matrix

metalloproteinases (MMP1, 10, 14) and urokinase plasmino-

gen activator (UPA, SPARC) are matrix-interacting molecules

involved in tumor invasion and metastasis.

The cluster shown in Figure 6c is composed of members of

two genes families: adenosine receptors (ADORA3 and

ADORA2A) and purinergic receptors (P2RX1 and P2RX7).

Indeed, although not evident from its name, P2RX acts as a

receptor for a phosphorylated form of adenosine (adenosine

triphosphate).

Another interesting example where non-obvious associa-

tions were revealed by literature profiling is shown in

Figure 6e. This group consists of genes for which related

abstracts have in common terms such as ‘disorder’, ‘allele’,

‘recessive’ or ‘autosomal’. This shared vocabulary is indica-

tive of an association that, given the diversity of genes impli-

cated, would have undoubtedly been overlooked by the mere

examination of the gene list. Indeed, a rapid search of the

Online Mendelian Inheritance in Man database (OMIM

[18]) for genes associated with the terms ‘severe’ and ‘disor-

der’ confirmed that mutations of GALC, LAMB3, GJB2,

JAG1, TGFBI, LPL and LDLR were the origin of serious dis-

orders: Krabbe disease, Herlitz junctional epidermolysis

bullosa, autosomal dominant deafness - Vohwinkel syn-

drome, Alagille syndrome, corneal dystrophy, type I hyper-

lipoproteinemia and hypercholesterolemia, respectively. In

addition, two genes sharing a similar vocabulary could be

found outside the region outlined in Figure 6e: GCDH

(linked to glutaric acidemia type I) and MPI (linked to car-

bohydrate-deficient glycoprotein syndrome, type Ib).

Literature profiles were generated for a second large dataset

consisting of the 200 genes and ESTs found to be the most

differentially regulated in classic versus desmoplastic

medulloblastomas in a study of central nervous system

tumors [19]. At least five references were found for 137 of the

genes listed (see Additional data files). In contrast to the

previous example, gene expression in this case was not mea-

sured for a purified cell population but for heterogeneous

tumor tissue. This fact is reflected in the analysis of litera-

ture profiles, as groups of genes could be found to be associ-

ated with brain tissues (Figure 7f, for example, HPCA

(hippocalcin), SYP (synaptophysin), GRIK1 (glutamate

receptor, ionotropic, kainate 1), APLP (amyloid beta A4 pre-

cursor-like protein)), immune cells (Figure 7b, for example,

CD40, IL15RA (IL-15 receptor, alpha chain), LILB4 (leuko-

cyte immunoglobulin-like receptor 4)) or tumor cells

(Figure 7a, for example, MYBL1 (v-myb avian myeloblastosis

viral oncogene), ABL2 (v-abl Abelson murine leukemia viral

oncogene homolog 2)). Interestingly, three genes whose

products are known to promote viral replication were associ-

ated with v-myb and v-abl oncogenes (shared terms: ‘virus’,

‘transformation’ or ‘leukemia’): TAX1BP1 (Tax1-binding

protein 1), CREB3 (cAMP-response element binding protein

3/LZIP) and TARBP2 (TAR-binding protein 2) (Figure 7a)

[20-22]. These proteins could have a potentially important

role in the regulation of cell growth, as TAX1BP, CREB3 and

TARBP possess anti-apoptotic, tumor suppressor and onco-

genic activities [23-25], respectively. Another group of genes

encoding three enzymes (PLK (Polo-like kinase), CDKN3

(cyclin-dependent kinase inhibitor 3/p27-Kip1), CDC25A

(cell division cycle 25A)) and a transcription factor (E2F1,

E2F transcription factor 1) involved in the control of the cell

cycle were grouped (Figure 7g). All three enzymes have been

found to be overexpressed in tumors of various origins

[26-28]. Other groups of functionally related genes are

shown in Figure 7: some are ion channels (Figure 7d,

whereas others are associated with keratinocytes (Figure 7c)

or involved in the respiratory chain (Figure 7e). A wide

diversity of adhesion molecules was also identified

(Figure 7h). These included the obvious - MCAM (melanoma

cell adhesion molecule) - but also ATP1B2 (ATPase, Na+/K+

transporting, beta 2 polypeptide, which is believed to func-

tion in neuron-astrocyte adhesion [29,30]), THBS (throm-

bospondin, an adhesion molecule involved in blood

clotting), OPN (osteopontin, which promotes osteoclast

adhesion [31]) and OSF2 (osteoblast-specific factor 2, a

human homolog of the insect protein fasciclin thought to

have a role in bone adhesion [32]). Finally, as shown in
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Figure 7
Profiling classic medulloblastomas. Literature profiles were generated for a list of 200 genes found to be differentially expressed by classic versus
desmoplastic medulloblastomas in a study of central nervous system embryonal tumors recently published by Pomeroy et al. ([19] and see Additional
data files). The clustergram generated for the analysis of patterns of term occurrence is shown at top left. (a-i) Detailed views for groups of genes
(columns) found to share a common vocabulary (rows). Groups of terms were selected on the basis of clustering hierarchy, whereas the number of
genes shown in the inserts is arbitrary. For gene abbreviations see Additional data files.
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Figure 7i, MADH2 and MADH5 (mothers against decapenta-

plegic homolog 2 and 5) shared with TGFB3 (transforming

growth factor beta 3) terms such as ‘TGF-beta’, transform-

ing’ and ‘factor beta’, reflecting the involvement of MADH in

the signaling pathway of TGF-beta family members [33]. 

Taken together, these examples demonstrate the power of the

analysis of literature profiles in revealing unsuspected func-

tional relationships in large and heterogeneous lists of genes.

Benefits and limitations 
The mining technique we describe is designed to guide the

interpretation of complex expression databases. Key aspects

of the technique contributing to the fulfillment of this goal

include. The method is independent of the user’s knowledge

of gene function and can therefore be used to identify

promising findings rapidly in an unbiased way. The method

renders the data intelligible by bringing functional coher-

ence to large and heterogeneous lists of genes. The terms

used as criteria to explore relationships among genes differ

with the composition of the group of genes considered for

analysis. Because the basis for classifying genes is flexible,

associations made between them will change with the

context in which they are found. The technique is based on

the analysis of the content of scientific publications and con-

stitutes a contemporary solution for the exploitation of

swelling literature resources by providing investigators with

leads for further in-depth investigation of the literature.

Term-occurrence data derived from literature profiling can

be used to annotate heterogeneous gene lists, thus adding to

the value of this technique as a visualization tool (Figure 3). 

The implementation of our mining technique as a computa-

tional tool is hindered by the need to retrieve the relevant lit-

erature reliably for each gene included in the analysis.

Indeed, gene-by-gene editing of automatically generated

PubMed query strings is often required to insure low levels

of false positives among the abstracts retrieved. Several

names and abbreviations are often associated with a single

gene but are used in a different context (for example, to des-

ignate drugs, bacterial strains or medical procedures), or

they belong to the English vocabulary (e.g. ‘Wars’ = ‘trypto-

phanyl-tRNA synthetase’, ‘Sky’ = ‘TYRO3 protein tyrosine

kinase’, ‘God’ = ‘Godzilla’). Short acronyms are especially

problematic (for example, ‘CT’, the abbreviation for ‘calci-

tonin’ can be found in the title of over 20,000 abstracts, of

which only 25 contain the term ‘calcitonin’). Parsing issues

that are caused by a confusing gene nomenclature can,

however, be avoided when curated literature resources are

available (for example, the Yeast Literature Database [34]). 

The reduction of the information contained in the litera-

ture is also limiting. Words taken out of their context

convey useful but limited information, and this superficial

assessment of the literature can only be used to direct

further investigation. The selection of terms through

rounds of filtering inevitably results in the selection of irrel-

evant terms (false positives), and pertinent terms will also be

lost (false negatives). Reviewing the terms and literature that

prompted the definition of relationships among genes can

easily identify false-positive associations. False-negative

associations are harder to identify and can only be kept to a

minimum by combining existing approaches designed to

assess the biological significance of large sets of genes. Like

the other literature-mining approaches previously pub-

lished, our technique cannot be expected to give definitive

answers, but nonetheless provides investigators with much-

needed solutions for the functional evaluation of complex

microarray data [35]. 

Relatively few groups have attempted to resolve the bottle-

neck constituted by the inability of highly specialized investi-

gators to assess the existence of relationships between genes

in a high-throughput fashion [3-5]. Jenssen et al. [5] ana-

lyzed literature contents to create a gene-to-gene co-citation

network revealing associations between genes. Our tech-

nique differs fundamentally from Jenssen et al.’s method in

that it is based on term occurrences in indexed abstracts as

opposed to gene name co-citation frequencies. This

approach allowed us to take advantage of the powerful algo-

rithms used for the analysis of patterns of gene expression.

Also, this literature-profiling method should benefit from

ongoing efforts to improve visualization tools, clustering

techniques, and associated statistics [36,37]. Another major

advantage arises from the capacity to include any of the

terms present in abstracts, resulting in a considerable

increase in the number of potential relationships generated.

Finally, the number of genes covered by this type of analysis

is also much greater, thanks to the low requirements in the

volume of literature associated with each gene. 

Text-mining software is also available commercially.

Omniviz [38], one of the most advanced solutions for the

analysis of the scientific literature, can group publications

(or patents or any other kind of text entries) associated with

a common theme (for example, Alzheimer’s disease) through

the analysis of their content. In contrast, our mining algo-

rithm was specifically designed to group genes (instead of

publications) through the analysis of the content of their

associated literatures. This conceptual difference makes the

techniques distinct from one another. Our approach requires

the literature to be indexed for each gene and treated sepa-

rately throughout the analysis. We also filter terms using

stringent criteria, a critical step that allows the analysis of

patterns of term occurrences by hierarchical clustering. 

Applications and perspectives 
This report constitutes a proof of principle on the feasibility

and use of literature profiling for high-throughput research.

Although room exists for improvements in indexing, filter-

ing and clustering strategies, the methodology described

provides a blueprint for the development of computational
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tools that can rapidly assess literature content to guide the

biological interpretation of complex expression data.

Because this literature-mining technique analyzes data at a

high level it is independent of the platform used by investi-

gators (for example, spotted cDNA or high-density oligonu-

cleotide arrays, protein arrays) and could find applications

in both genomics and proteomics research. 

In addition to providing help to explore large expression

datasets, occurrence values displayed for certain terms in the

format used in Figure 3 can be used to annotate large and

complex lists of genes, providing readers with information

on gene function. In our example, giving occurrence values

for terms such as ‘apoptosis’, ‘endothelial’, ‘interferon’,

‘inflammatory’ ‘chemoattractant’ or ‘histocompatibility’ pro-

vides a ‘naive’ reader with insight into the function attrib-

uted in the literature to each of the listed genes. 

Associating literature profiles with gene-expression data

could be used for orienting gene discovery. It is believed that

co-regulated genes share similar promoters and/or are

involved in similar biological processes [1]. Using this princi-

ple of ‘guilt by association’, functions attributed to known

genes can be inferred for unknown genes sharing similar

expression profiles. In the first example used in this report

(see Additional data files), many of the genes were identified

using literature profiles as being related to ‘interferon’,

‘virus’ and ‘infection’, and thus it can be assumed that some

of the genes and ESTs that were not included in the analysis

from lack of literature (see Additional data files) are also

associated with these terms. For instance, among the co-reg-

ulated ESTs is the ‘Homo sapiens cig5 mRNA, partial

sequence’ (AF026941), which was obtained using differen-

tial display analysis to identify sequences for which tran-

scription is induced following cytomegalovirus infection

[39]. Another co-regulated but poorly studied gene is

‘secreted and transmembrane 1’ (U77643), which resembles

a cytokine or growth factor in its broad structural character-

istics [40]. This gene was later reported to be the ligand for

the surface antigen CD7 and found to be capable of activat-

ing NK cells [41], which constitute the primary source of

IFN-gamma during early responses to infection [42]. In both

examples the link to ‘interferon’, ‘virus’ or ‘infection’ can

only be suspected, but certainly deserves attention because

these sequences are regulated together with genes known to

be involved in the biology of interferons.

Conclusions 
The sequencing of whole genomes and the introduction of

technologies capable of measuring simultaneously the

expression of thousands of genes provides biological

research with a global perspective that opposes the trend

over the past few decades of the narrowing into highly spe-

cialized research fields. But the optimal exploitation of these

invaluable resources by researchers necessitates the develop-

ment of mining tools to explore and interpret data in a time

frame compatible with the impressive rate at which they are

generated. Individual knowledge is built on associations

made between the information we acquire from the litera-

ture. The method we describe here mimics this learning

process by associating meaningful terms found in scientific

publications to create a coherent picture of the relationships

that exist within complex groups of genes. Because this analy-

sis is performed independently of knowledge of gene function

it provides a means of rapidly probing the biological signifi-

cance of complex expression data in an unbiased fashion. 

Materials and methods 
Literature indexing 
Relevant literature was retrieved for each gene by querying

Medline for entries containing gene names or abbreviations

or aliases. The URL database used to generate basic PubMed

search strings for human genes can be downloaded (see Addi-

tional data files). The database is indexed by LocusLink [9]

and GenBank IDs [8]. Most search strings must be edited on

a gene-by-gene basis, as a vast majority of publications do not

adhere to the official nomenclature and gene names and

abbreviations in use can differ from the aliases provided by

HGNC or lack specificity (see discussion in ‘Benefits and limi-

tations’). Acronyms that contain only few letters are particu-

larly problematic and must often be removed from the query

in order to avoid high proportions of false-positive hits. 

Data filtering 
Data were filtered as described in Results and discussion

using Microsoft Excel. The spreadsheet used to filter the

gene list analyzed in this report and baseline occurrence

values can be downloaded (see Additional data files).

Examples 
The literature profiles generated for the two large published

datasets analyzed in this report can be downloaded (see

Additional data files) and explored using the clustergram

browser Treeview, which is available online at no charge

[10]. The three types of files provided for each example

(ATR, GTR, CDT) must be copied in the same folder before

opening the CDT file with Treeview. 

Text analysis 
Results from PubMed queries can be downloaded using the

save button on the toolbar after selecting the appropriate

output format (the default output format - ‘summary’ - must

be substituted by ‘XML’). Abstracts are extracted from the

output files and saved in a new file containing abstracts sep-

arated by a new line. The text analysis of abstract content

was performed using the simstat/wordstat modules

(Provalis Research, Montreal). Individual files are merged

into a single file by Wordstat’s ‘document conversion wizard’

that can be opened in simstat and analyzed by running the

‘content analysis’ statistics. The output consists of a table

14 Genome Biology Vol 3 No 10 Chaussabel and Cher



(crosstab - tabulate: word occurrence; display: category

percent), which can be saved as a tab-delimited text file.

Hierarchical clustering 
Clustering analysis was performed using Cluster/Treeview

programs available from the Eisen lab website [10]. Genes

were grouped using the average linkage hierarchical cluster-

ing algorithm.

Additional data files 
Additional tables contain an index of the gene abbreviations

used throughout the paper and a detailed list of non-obvious

functional relationships identified by the exploration of

Figures 6 and 7. Our URL database of indexed PubMed

entries and a sample term filtering table are available in a

Microsoft Excel spreadsheet format. The literature profiles of

Figures 6 and 7 (ATR, GTR and CDT files) can be read by the

well-known open source dendrogram browser Treeview [10].
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