The strength of genetic interactions scales weakly with mutational effects
 Andrea Velenich^{1}Email author and
 Jeff Gore^{1}
DOI: 10.1186/gb2013147r76
© Velenich et al.; licensee BioMed Central Ltd. 2013
Received: 11 February 2013
Accepted: 26 July 2013
Published: 26 July 2013
Abstract
Background
Genetic interactions pervade every aspect of biology, from evolutionary theory, where they determine the accessibility of evolutionary paths, to medicine, where they can contribute to complex genetic diseases. Until very recently, studies on epistatic interactions have been based on a handful of mutations, providing at best anecdotal evidence about the frequency and the typical strength of genetic interactions. In this study, we analyze a publicly available dataset that contains the growth rates of over five million double knockout mutants of the yeast Saccharomyces cerevisiae.
Results
We discuss a geometric definition of epistasis that reveals a simple and surprisingly weak scaling law for the characteristic strength of genetic interactions as a function of the effects of the mutations being combined. We then utilized this scaling to quantify the roughness of naturally occurring fitness landscapes. Finally, we show how the observed roughness differs from what is predicted by Fisher's geometric model of epistasis, and discuss the consequences for evolutionary dynamics.
Conclusions
Although epistatic interactions between specific genes remain largely unpredictable, the statistical properties of an ensemble of interactions can display conspicuous regularities and be described by simple mathematical laws. By exploiting the amount of data produced by modern highthroughput techniques, it is now possible to thoroughly test the predictions of theoretical models of genetic interactions and to build informed computational models of evolution on realistic fitness landscapes.
Keywords
Epistasis Evolution Fitness landscapes Genetic interactions YeastBackground
Genetic interactions [1] have shaped the evolutionary history of life on earth. They have been found to limit the accessibility of evolutionary paths [2], to confine populations to suboptimal evolutionary states and, on larger time scales, to control the rate of speciation [3]. Epistatic interactions can also be relevant to the development of complex human diseases such as diabetes [4]. Complex traits and diseases are determined by a multiplicity of genomic loci [5], whose independent effects and interactions [6] are often necessary to understand the phenotype of interest. Despite the broad implications of epistatic interactions, a quantitative characterization of their typical strength is still lacking. In this study, we consider growth rate in yeast as an example of a complex trait modulated by genetic interactions.
Previous studies [7–10] on the relation between the growth effects of a mutation and its epistatic interactions have often been based on a handful of mutations, and only in recent years has anecdotal evidence started being replaced by robust statements based on large data sets. Perhaps the most impressive of these datasets is the one made publicly available with the publication of the article entitled 'The genetic landscape of a cell' by Costanzo et al. [11]. The genome of the budding yeast Saccharomyce cerevisiae includes approximately 6,000 genes, about 1,000 of which are essential. Viable mutants can be constructed by knocking out any of the approximately 5,000 nonessential genes, by reducing the expression of the essential genes, or by partially compromising the functionality of the gene products. The dataset (see Additional file 1, Figure S1) has been compiled with the growth rates of about 5.4 million double knockout mutants, a sizable fraction of all possible double knockout mutants in yeast. Supported by the Costanzo et al. dataset, we consider the fundamental question of whether mutations with larger effects have stronger genetic interactions.
Results and discussion
An unbiased definition of genetic interactions
depends only on which pair of genes is considered, being a geometric measure for the 'curvature' of the fitness landscape (Figure 1b).
The definition of E has found some favor in the theoretical literature [7, 16], but it is not routinely used to analyze experimental data apart from rare exceptions [8, 17]. Its main drawback is that synthetic lethals have a log growth rate of ∞, and require a separate although simpler analysis in which lethal interactions can simply be counted. The definition of E proves instead to be extremely valuable when quantifying the strength of nonlethal genetic interactions.
Epistatic interactions scale weakly with mutational effects
With the appropriate definition of epistasis, a simple relation between the growth rate effects of two mutations and the expected strength of their interaction emerges.
that is, the variance of the random variable E relative to the bin labeled by growth rates G_{01} and G_{10}. In the rest of the paper we will refer to such variance as var(G_{01}, G_{10}), emphasizing that the variance in the strength of epistatic interactions is, eventually, a function of G_{01} and G_{10} (Figure 2a). The square root of the variance, σ(G_{01}, G_{10}), then represents the expected strength of epistasis as a function of the independently varying effects of the two single knockouts. A natural expectation for the dependence of epistasis on the effect of the combined mutations comes from rescaling Figure 1a; if all the log growth effects of single and double knockouts increase by a factor of two, then the strength of epistasis should also increase by a factor of two. Unexpectedly, however, when combining deleterious mutations, the strength of epistatic interactions does grow with the effects of the mutations that are combined, but the dependence is much weaker; when the effect of both single knockouts is doubled, the strength of epistasis increases only by a factor of √2 (Figure 2).
The scaling described above is seen only for deleterious knockouts. When combining the beneficial knockouts in the dataset instead, the strength of epistasis is close to zero (Figure 2c, inset). This might be because the slightly beneficial knockouts are not adaptive mutations, but simply remove genes that are not needed in the conditions chosen for the experiment, so that their interactions are likely to be negligible. However, in apparent contrast to this observation, recent studies [8, 18] on adaptive mutations in Escherichia coli suggest that genetic interactions between adaptive mutations are mostly negative. In fact, during adaptation, the prevalence of negative interactions is likely to be caused by biased sampling, because the mutations that fix in the population are likely to be the ones that solve environmental or biological challenges for an organism. Diminishing returns arise because the appearance of multiple 'solutions' to the same challenge is not necessarily preferable over the presence of a single solution. Rather than focusing on mutations that fix during a bout of adaptation, the Costanzo et al. dataset includes a large fraction of all possible pairs of genes in the yeast genome. Because for most pairs the two genes are involved in unrelated biological processes, interactions are often vanishingly small. We did observe, however, that the distribution of epistatic interactions is asymmetric, with a heavy tail of deleterious interactions (Figure 2d).
Experimental uncertainty generates spurious epistatic interactions
When inferring genetic interactions from experimental data, it is important to take into account that each measured growth rate is affected by some uncertainty, and that measurement errors in the growth rates could erroneously be interpreted as genetic interactions. Importantly, for each single and double mutant, the Costanzo et al. dataset provides the mean growth rate together with its estimated experimental uncertainty (the growth rate of each mutant being measured at least four times).
Comparison between theory and experiment
The scaling of epistasis observed in the Costanzo et al. dataset (Figure 2) is in sharp contrast to the predictions of Fisher's geometric model [19], a popular model of epistasis in which genetic interactions emerge from geometry. As we saw, when the effects of the two knockouts are similar (G_{01} = G_{10} = G), the variance of epistasis is approximately proportional to G. By contrast, in the Fisher's model, the variance var(G, G) would grow faster than G^{2} (Figure 2c; see Additional file 1, Supplementary text 2), a much stronger dependence than the linear dependence observed experimentally.
Notice that it is not unlikely that epistasis will cancel the effect of the second mutation, so that the growth rate of the double knockout mutant is greater than 0.95, that is, greater than the growth rate of either of the single knockout mutants.
In this case, a deviation from the null model that is greater than three standard deviations would be needed for the double knockout mutant to have a growth rate greater than that of the single knockout (0.60), making the event extremely unlikely.
Epistasis constrains the evolutionary dynamics
The previous section provided two examples of reciprocal sign epistasis, realized when two deleterious mutations produce a double mutant that is fitter than either of the two single mutants (Figure 4a). In those cases, a fitness valley limits the evolutionary accessibility of the fitter double mutant, and only on longer time scales may the simultaneous appearance of two mutations [20, 21] drive a population to the new local fitness maximum. In this context, the scaling behavior of epistasis is of great importance, because it determines the number and the topology of the evolutionarily accessible paths [2, 22, 23], ultimately affecting the possible outcomes of the evolutionary process.
In particular, if σ(G, G) is proportional to G, then the probability of observing sign epistasis is independent of G. The Fisher's model implies a superlinear dependence of σ(G, G) on G, thus predicting a greater probability of observing sign epistasis among mutations with strong effects. Instead, if the scaling of σ(G, G) is proportional to √G (Figure 2), then sign epistasis is more likely to occur among mutations with small effects (Figure 3b). When the relative growth rate effects of the single knockouts are small (<2 to 3%), experimental uncertainty prevents us from pinpointing which pairs of genes are epistatic. This does not mean, however, that mutations with small effects do not interact. Assuming that the scaling of epistasis we measured directly for mutations with intermediate and large effects extends to mutations with small effects, a consequence of the observed scaling of epistasis is the roughening of the local fitness landscape in the proximity of an evolutionary optimum; when the fitness effects of available mutations become small [24], epistatic interactions become increasingly relevant [25, 26], reducing the accessibility of evolutionary paths and further slowing down the rate of adaptation [27, 28]. The evolutionary dynamics on correlated fitness landscapes [10, 29] with the realistic correlations described here certainly deserves further experimental and theoretical investigation.
The scaling of genetic interactions may be generic
A comparison between different definitions of epistasis
Finally, it is important to emphasize that the traditional definition of epistasis remains slightly more successful at discovering the functional relations between genes, as cataloged in the GO database (see Additional file 1, Figure S6). Part of the reason for this could be that some of those functional characterizations were suggested by the traditional definition of epistasis in the first place. It is certainly true, however, that many of the topranking interactions according to the geometric definition of epistasis involve single and double mutants with small growth rates; for those mutants, experimental noise is relatively large, and this may cause a few weakly interacting pairs to be incorrectly ranked as strongly interacting. It is likely that the experimental protocols could be easily adjusted to reduce the relative uncertainty on the growth rate of especially slowgrowing mutants to avoid this issue (for example, by allowing for a much longer time for growth or by measuring the growth rates of additional replicates).
Conclusions
We analyzed the growth rates of about five million double mutants in the dataset associated with the work by Costanzo et al. We characterized how the strength of genetic interactions depends on the growth effects of the mutations being combined, and found a weaker dependence than that predicted by current theoretical models. Although the results were obtained mainly from entire gene knockouts, there is some evidence that the observed scaling might extend to the interactions between single point mutations. The scaling of epistasis might or might not be generic [35, 36]; important drivers could be the harshness of the environment [37], details about the evolutionary history [38–40], sexual versus asexual reproduction [41] and, perhaps most importantly, metabolic [42–45] and genetic complexity [46, 47]. In general, the experimentally observed scaling suggests a previously unexplored class of correlated fitness landscapes with tunable roughness, in which epistasis depends explicitly on the effects of the mutations being combined.
A clear limitation of our discussion is that only pair interactions were considered. Although highthroughput experiments will provide data on higherorder interactions, a solid understanding of pair interactions remains necessary before addressing nmutation interactions. A genuine threemutation interaction, for instance, should be defined as the unexplained deviation from what can be computed by combining the effects of all relevant mutations and their pair interactions [10, 48], perhaps using linear fits within the additive null model for log growth rates.
The results we present here were based on a geometric definition of epistasis. We compared this definition with a more standard definition, highlighting the desirable mathematical properties of the geometric definition and the simple phenomenological relations it produces.
In conclusion, although each epistatic interaction between specific genes depends on biological details and remains largely unpredictable from first principles, we have shown that the statistical properties of an ensemble of interactions can display conspicuous regularities, and can be described by simple mathematical laws.
Materials and methods
The Costanzo et al. dataset is publicly available [49]. The file sgadata_costanzo2009_rawdata_101120.txt.gz was downloaded on August 17, 2010 and analyzed with Mathematica (code available at the Gore laboratory website [50]). We restricted our analysis to double knockout mutants whose growth rates were positive numerical values and for which the growth rates of both single mutants were numerical values (see Additional file 1, Figure S1). Some genes appear in the dataset both as query and array genes; care was taken to avoid double counting.
The exponentially growing intervals used for the binning of the log growth rate effects were defined as [2^{n}, 2^{n1}] for an appropriate range of integer n's. Owing to the rarity of extremely deleterious mutations, bins for positive n's contained only a few data points, while bins with large negative n's were extremely small. In the figures we reported only bins for n = 7 to 0, containing log growth rate effects ranging from 2^{0} = 1 to 2^{8} = 0.0039 or, alternatively, relative growth rate effects ranging from 2^{1} = 0.5 to 2^{0.0039} = 0.997. Different choices for the binning sizes and positions did not significantly alter the results of the analysis.
In order to quantify the contribution of experimental uncertainty to epistasis, we generated nine randomized mock datasets. The mean level of noisegenerated epistasis in these nine datasets is reported in Figure 4 (dashed lines), and we provide an extensive discussion of the choice of Student's tdistributions to generate the mock datasets from the original dataset (see Additional file 1, Supplementary text 3).
The GO database go_201207assocdbtables.tar.gz was downloaded from the GO site [51] on July 19, 2012. The MySQL database was queried with Python and analyzed Mathematica (code available upon request).
Conflict of interest
The authors declare that they have no conflict of interest.
Abbreviations
 DamP:

Decreased abundance by mRNA perturbation
 GO:

Gene Ontology.
Declarations
Acknowledgements
We are grateful to Mingjie Dai for collaboration during the early stages of the study. We thank Kirill Korolev, Pankaj Mehta, and the members of the Gore laboratory for providing comments and advice on the manuscript. This research was funded by an NIH Pathways to Independence Award, NSF CAREER Award, Pew Biomedical Scholars Program, and Alfred P. Sloan Foundation Fellowship.
Authors’ Affiliations
References
 Phillips PC: Epistasis  The essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008, 9: 855867. 10.1038/nrg2452.PubMedPubMed CentralView ArticleGoogle Scholar
 Weinreich DM, Delaney NF, DePristo MA, Hartl DL: Darwinian evolution can follow only very few mutational paths to fitter proteins. Science. 2006, 312: 111114. 10.1126/science.1123539.PubMedView ArticleGoogle Scholar
 Dettman JR, Sirjusingh C, Kohn LM, Anderson JB: Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature. 2007, 447: 585588. 10.1038/nature05856.PubMedView ArticleGoogle Scholar
 Hoh J, Ott J: Mathematical multilocus approaches to localizing complex human trait genes. Nat Rev Genet. 2003, 4: 701709.PubMedView ArticleGoogle Scholar
 Mackay TFC, Stone EA, Ayroles JF: The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009, 10: 565577.PubMedView ArticleGoogle Scholar
 Jansen RC: Studying complex biological systems using multifactorial perturbation. Nat Rev Genet. 2003, 4: 145151.PubMedView ArticleGoogle Scholar
 Gros PA, Le Nagard H, Tenaillon O: The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics. 2009, 182: 277293. 10.1534/genetics.108.099127.PubMedPubMed CentralView ArticleGoogle Scholar
 Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF: Negative epistasis between mutations in an evolving bacterial population. Science. 2011, 332: 11931196. 10.1126/science.1203801.PubMedView ArticleGoogle Scholar
 Wilke CO, Adami C: Interaction between directional epistasis and average mutational effects. Proc R Soc Lond B Biol Sci. 2001, 268: 14691474. 10.1098/rspb.2001.1690.View ArticleGoogle Scholar
 Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski R: Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol. 2007, 7: 6073. 10.1186/14712148760.PubMedPubMed CentralView ArticleGoogle Scholar
 Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AHY, van Dyk N, et al: The genetic landscape of a cell. Science. 2010, 327: 425431. 10.1126/science.1180823.PubMedView ArticleGoogle Scholar
 Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C: Systematic mapping of genetic interaction networks. Annu Rev Genet. 2009, 43: 601625. 10.1146/annurev.genet.39.073003.114751.PubMedView ArticleGoogle Scholar
 Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn JY, Ou J, San Luis BJ, Bandyopadhyay S, Hibbs M, Hess D, Gingras AC, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boone C, Myers CL: Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods. 2010, 7: 10171024. 10.1038/nmeth.1534.PubMedPubMed CentralView ArticleGoogle Scholar
 Mani R, StOnge RP, Hartman JL, Giaever G, Roth FP: Defining genetic interaction. Proc Natl Acad Sci USA. 2008, 105: 34613466. 10.1073/pnas.0712255105.PubMedPubMed CentralView ArticleGoogle Scholar
 Tan L, Gore J: Slowly switching between environments facilitates reverse evolution in small populations. Evolution. 2012, 66: 31443154. 10.1111/j.15585646.2012.01680.x.PubMedView ArticleGoogle Scholar
 Peters AD, Lively CM: Epistasis and the maintenance of sex. Epistasis and the evolutionary process. Edited by: Wolf JB, Brodie ED, Wade MJ. 2000, Oxford: Oxford University Press, 99112.Google Scholar
 Martin G, Elena SF, Lenormand T: Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nat Genet. 2007, 39: 555560. 10.1038/ng1998.PubMedView ArticleGoogle Scholar
 Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ: Diminishing return epistasis among beneficial mutations decelerates adaptation. Science. 2011, 332: 11901192. 10.1126/science.1203799.PubMedPubMed CentralView ArticleGoogle Scholar
 Fisher RA: The Genetical Theory of Natural Selection. 1930, Oxford: Clarendon PressView ArticleGoogle Scholar
 Weinreich DM, Watson RA, Chao L: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution. 2005, 59: 11651174.PubMedView ArticleGoogle Scholar
 Weissman DB, Desai MM, Fisher DS, Feldman MW: The rate at which asexual populations cross fitness valleys. Theor Pop Biol. 2009, 75: 286300. 10.1016/j.tpb.2009.02.006.View ArticleGoogle Scholar
 Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans ST: Empirical fitness landscapes reveal accessible evolutionry paths. Nature. 2007, 445: 383386. 10.1038/nature05451.PubMedView ArticleGoogle Scholar
 Velenich A, Gore J: Synthetic approaches to understanding biological constrains. Curr Opin Chem Biol. 2012, 16: 323328. 10.1016/j.cbpa.2012.05.199.PubMedPubMed CentralView ArticleGoogle Scholar
 EyreWalker A, Keightley PD: The distribution of fitness effects of new mutations. Nat Rev Genet. 2007, 8: 610618.PubMedView ArticleGoogle Scholar
 Tan L, Serene S, Chao HX, Gore J: Hidden randomness between fitness landscapes limits reverse evolution. Phys Rev Lett. 2011, 106: 198102PubMedView ArticleGoogle Scholar
 Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE: Secondorder selection for evolvability in a large Escherichia coli population. Science. 2011, 331: 14331436. 10.1126/science.1198914.PubMedPubMed CentralView ArticleGoogle Scholar
 Orr HA: The population genetics of adaptation the distribution of factors fixed during adaptive evolution. Evolution. 1998, 52: 935949. 10.2307/2411226.View ArticleGoogle Scholar
 Orr HA: The genetic theory of adaptation a brief history. Nat Rev Genet. 2005, 6: 119127.PubMedView ArticleGoogle Scholar
 Kryazhimskiy S, Tkčik G, Plotkin JB: The dynamics of adaptation on correlated fitness landscapes. Proc Natl Acad Sci USA. 2009, 106: 1863818643. 10.1073/pnas.0905497106.PubMedPubMed CentralView ArticleGoogle Scholar
 Breslow DK, Cameron DM, Collins SR, Schuldiner M, StewartOrnstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS: A comprehensive strategy enabling highresolution functional analysis of the yeast genome. Nat Methods. 2008, 5: 711718. 10.1038/nmeth.1234.PubMedPubMed CentralView ArticleGoogle Scholar
 Xu L, Barker B, Gu Z: Dynamic epistasis for different alleles of the same gene. Proc Natl Acad Sci USA. 2012, 109: 1042010425. 10.1073/pnas.1121507109.PubMedPubMed CentralView ArticleGoogle Scholar
 Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L, Mnaimneh S, Ding H, Zhu H, Chen Y, Cheng X, Brown GW, Boone C, Andrews BJ, Hughes TR: The synthetic genetic interaction spectrum of essential genes. Nat Genet. 2005, 37: 11471152. 10.1038/ng1640.PubMedView ArticleGoogle Scholar
 Barabási AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004, 5: 101113. 10.1038/nrg1272.PubMedView ArticleGoogle Scholar
 The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nat Genet. 2000, 25: 2529. 10.1038/75556.PubMed CentralView ArticleGoogle Scholar
 Dixon SJ, Fedyshyn Y, Koh JLY, Keshava Prasad TS, Chahwan C, Chua G, Toufighi K, Baryshnikova A, Hayles J, Hoe KL, Kim DU, Park HO, Myers CL, Pandey A, Durocher D, Andrews BJ, Boone C: Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci USA. 2008, 105: 1665316658. 10.1073/pnas.0806261105.PubMedPubMed CentralView ArticleGoogle Scholar
 Tischler J, Lehner B, Fraser AG: Evolutionary plasticity of genetic interaction networks. Nat Genet. 2008, 40: 390391. 10.1038/ng.114.PubMedView ArticleGoogle Scholar
 Harrison R, Papp B, Pál C, Oliver SG, Delneri D: Plasticity of genetic interactions in metabolic networks of yeast. Proc Natl Acad Sci USA. 2007, 104: 23072312. 10.1073/pnas.0607153104.PubMedPubMed CentralView ArticleGoogle Scholar
 Wagner A: Gene duplications robustness and evolutionary innovations. BioEssays. 2008, 30: 367373. 10.1002/bies.20728.PubMedView ArticleGoogle Scholar
 Wagner A: Distributed robustness versus redundancy as causes of mutational robustness. BioEssays. 2005, 27: 176188. 10.1002/bies.20170.PubMedView ArticleGoogle Scholar
 Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J, Hoe KL, Kim DU, Ideker T, Grewal SI, Weissman JS, Krogan NJ: Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science. 2008, 322: 405410. 10.1126/science.1162609.PubMedPubMed CentralView ArticleGoogle Scholar
 Azevedo RBR, Lohaus R, Srinivasan S, Dang KK, Burch CL: Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature. 2006, 440: 8790. 10.1038/nature04488.PubMedView ArticleGoogle Scholar
 Segrè D, DeLuna A, Church GM, Kishony R: Modular epistasis in yeast metabolism. Nat Genet. 2005, 37: 7783.PubMedGoogle Scholar
 He X, Qian W, Wang Z, Li Y, Zhang J: Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet. 2010, 42: 272276. 10.1038/ng.524.PubMedPubMed CentralView ArticleGoogle Scholar
 Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, GeliusDietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pál C, Papp B: An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet. 2011, 43: 656662. 10.1038/ng.846.PubMedPubMed CentralView ArticleGoogle Scholar
 Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási AL: Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature. 2004, 427: 839843. 10.1038/nature02289.PubMedView ArticleGoogle Scholar
 Sanjuán R, Elena SF: Epistasis correlates to genomic complexity. Proc Natl Acad Sci USA. 2006, 103: 1440214405. 10.1073/pnas.0604543103.PubMedPubMed CentralView ArticleGoogle Scholar
 Sanjuán R, Nebot MR: A network model for the correlation between epistasis and genomic complexity. PLoS One. 2008, 3: e266310.1371/journal.pone.0002663.PubMedPubMed CentralView ArticleGoogle Scholar
 Wood K, Nishida S, Sontag ED, Cluzel P: Mechanismindependent method for predicting response to multidrug combinations in bacteria. Proc Natl Acad Sci USA. 2012, 109: 1225412259. 10.1073/pnas.1201281109.PubMedPubMed CentralView ArticleGoogle Scholar
 The Genetic Landscape of the Cell. [http://drygin.ccbr.utoronto.ca/~costanzo2009]
 Gore Laboratory. [http://www.gorelab.org/software.html]
 Gene Ontology. GO Database Downloads. [http://www.geneontology.org/GO.downloads.database.shtml]
Copyright
This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.