Skip to main content
Figure 3 | Genome Biology

Figure 3

From: The Wnts

Figure 3

The known Wnt signaling pathways. (a) In the Wnt/β-catenin pathway, Wnt signaling depends on the steady-state levels of the multi-functional protein β-catenin. In the absence of Wnt signal, a multi-protein destruction complex that includes the adenomatous polyposis coli protein (APC) and a member of the Axin family facilitates the phosphorylation of β-catenin by glycogen synthase kinase 3 (GSK3). GSK3 substrates also include APC and Axin; phosphorylation of each of these proteins leads to enhanced binding of β-catenin. Phosphorylated β-catenin is bound by the F-box protein β-TrCP, a component of an E3 ubiquitin ligase complex, and is ubiquitinated; the ubiquitin tag marks β-catenin for destruction by the proteasome. When a cell is exposed to a Wnt, the Wnt interacts with its coreceptors Frizzled and LRP. Activation of Frizzled and LRP leads to the phosphorylation of Dishevelled (Dsh), a cytoplasmic scaffold protein, perhaps through stimulation of casein kinase Iε (CKIε) and/or casein kinase II (CKII). Dsh then functions through its interaction with Axin to antagonize GSK3, preventing the phosphorylation and ubiquitination of β-catenin. In vertebrates, inhibition of GSK3 may involve the activity of GSK3 binding protein (GBP/Frat), which binds to both Dsh and GSK3 and can promote dissociation of GSK3 from the destruction complex. Unphosphorylated β-catenin escapes degradation, accumulates in the cell, and enters the nucleus, where it interacts with members of the TCF/LEF family of HMG-domain transcription factors to stimulate expression of target genes. In addition to the components of the Wnt/β-catenin pathway described here, many additional proteins with potential roles in regulating Wnt/β-catenin signaling have been reported including the phosphatase PP2A and the kinases Akt/protein kinase B, integrin-linked kinase (ILK), and PKC. (b) Signaling through the Wnt/Ca2+ pathway appears to involve activation of the two pertussis-toxin-sensitive G proteins, Gαo and G.αt, in combination with Gβ2 [34,35]. G-protein activation then leads to an increase in intracellular Ca2+ and the subsequent stimulation of Ca2+/calmodulin-dependent kinase II (CamKII) [37]. Activation of the Wnt/Ca2+ pathway also results in stimulation of PKC activity in the form of the translocation of PKC to the plasma membrane [34]. Downstream targets of the Wnt/Ca2+ pathway have not been identified. (c) The Wnt/polarity pathway, which regulates cytoskeletal organization; the Drosophila Wnt/polarity pathway that regulates the polarity of trichomes in the wing is shown as an example. In this case, the nature of the polarity signal is not known.

Back to article page